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The aim of this study was to compare estimation methods: least squares method (LS), ridge 

regression (RR), Principal component regression (PCR) to estimate the parameters of multiple 

regression model in situations when the underlying assumptions of least squares estimation are 

untenable because of multicollinearity. For this aim, the effect of some body measurements on body 

weights (height at withers and rumps, body length, chest width, chest girth and chest depth, front, 

middle and hind rump width) obtained from totally 85 Karayaka lambs at weaning period raised at 

Research Farm of Ondokuz Mayis University was examined. Mean square error, R2 value and 

significance of parameters were used to evaluate estimator performance. The multicollinearity, 

between front and middle rump width which were used to estimate live weight, was eliminated by 

using RR and PCR. Although research findings showed that RR method had the smallest MSE and 

the highest R2 value, the estimates of PCR were determined to be more consistent when the 

importance tests of parameters were taken into account. The results showed that principal component 

regression approach should be used to estimate the live weight of Karayaka lambs at weaning period.   
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Introduction 

Regression analysis is the most commonly used 

statistical application used to predict the quantitative 

correlation between a dependent variable (Yi) and one or 

more independent variables (Xi). General purposes for 

using regression analysis can be listed as the prediction of 

i) future measurement values from values that can be 

measured early ii) the values of a feature that is hard to 

measure from a data set of a feature that is easy to measure 

iii) high-cost measurement values from low-cost 

measurement values (Huber and Dutter, 1974). 

The most commonly used method in regression 

analysis is the Least Squares (LS) method with the 

condition of some required assumptions such as normality. 

This method is based on the idea of reducing the sum of the 

coefficients of the difference between the Y values given 

by the equation (theoretical) and X values given by the 

measurements (actual). The reliability of the resulting 

model depends on realization of the assumptions of LS 

method. In case of significant multicollinearity between 

the examined independent variables, coefficients of the 

regression parameters predicted with LS method can cause 

the results to be misinterpreted.  

Ridge regression is a biased regression method 

developed to eliminate the negative effects that will occur 

on parameter predictions in case of multicollinearity 

(occurrence of a dependent interaction between 

independent variables) in regression analysis. Principal 

Components Regression is a regression method which 

explains original variables which have correlation between 

them with the help of fewer and new variables that are 

linear compounds of these variables.  

Prediction of results obtained in fields such as 

agriculture, socio-economy, medicine and biology with LS 

method without making the necessary assumptions can 

cause incorrect results. In this case, validities obtained with 

LS method should be suspected (Alpar, 1997). However, 
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in studies conducted within this context, the presence of 

multicollinearity, which is a significant criterion in the 

field of statistics, and solution techniques are not given the 

necessary importance. In addition, it is not clear which 

method is superior to other methods in case of 

multicollinearity in agriculture and especially in 

husbandry.  

The aim of this study was to examine and compare RR 

and PCR methods as an alternative to LS method, which is 

the most known and used method in case of 

multicollinearity, by considering the necessary 

assumptions, to find out the method which gives correct 

and reliable results in parameter estimation and to interpret 

the results.  

 

Material and Method 

 

Material 

In this study, body measurements (height at withers 

(HW), height at rumps (RH), body length (BL), chest depth 

(CD), chest width (CW), chest girth (CG), front rump 

width (FR), middle rump width (MR), and hind rump width 

(HR)) and live weight (LW) of a total of 85 Karayaka 

lambs at weaning period raised at Research Farm of 

Ondokuz Mayis University were used. In the multiple 

regression model, body measurements taken at weaning 

period (X variable cluster) form the independent variable 

group, while measurements of live weight (Y variable) 

form the dependent variable. SPSS and NCSS programs 

were used for statistical analysis. 

 

Method 

Regression analysis is one of the most commonly used 

methods to explain the association between one dependent 

and multiple independent variables. General expression of 

multiple regression model in Matrix form is given below 

(Alpar, 2011). 

 

Y=Xβ+ε 

 

In the equation, 

 

Y  : n x 1 dimensional dependent variable vector  

X  : n x (p+1) dimensional input matrix and the first 

column of this matrix consists of 1, while the other 

columns consist of variable values.  

β  : (p+1) x 1 dimensional coefficients vector 

𝜀 : n x 1 dimensional error vector 

 

and equation for n observation is shown as follows. 

[

y1

y2
∙

yn

] = [

1 x11

1 x21

x12 ⋯
x22 ⋯

x1p

x2p

1 ∙
1 xn1

∙ ⋯
xn2 ⋯

∙
xnp

] [

β0

β1
∙

βp

] + [

ε1

ε2
∙

εn

] 

 

Prediction equation of this equation is defined as 

follows. 

Ŷ = Xβ̂ 

Here, β̂ is the (p+1) x 1 dimensional coefficients vector 

consisting of b0, b1, b2, …, bp. In the prediction of this 

coefficients vector, different methods are utilized based on 

variables’ states of proving the variables.  

Least Squares Method 
The purpose of this method is to minimize the optimum 

results (Neter et al. 1990), in other words, the sum of 
squares of error terms, in case of error terms having a 
normal distribution and having homogeneous variance and 
thus to optimize the model. 

 

Q(EKK)(b) = ∑ ei
2

n

i=1

 

 

In multiple regression analysis, the following equation 
is utilized in the prediction of coefficients vector with LS 
method (Alpar, 2011). 

 

β̂ = [X′X]−1X′Y 
 

General expression of regression model is as follows in 
multiplicative form; 

 

Yi = β0Xi1
β1Xi2

β2Xi3
β3 … X

ip

βpei       i=1, 2, 3, …, n  

 

In the equation; 
 

Yi    : Dependent variable 

βj   : Parameters; j= 1, 2, 3, …, p 

Xi1, Xi2, …, Xip : Independent variables  
𝑒𝑖   : Error values 
 

When dependent variable data versus independent 
variable data are shown on graph, it may not always look 
like a linear line. That is, the association between the 
examined characteristics may look like a curvilinear 
distribution. In order to linearize this curvilinear state, 
observation values are exposed to logarithmical 
transformation in X and Y variables. This way, the 
regression equation, which is given in multiplicative form, 
is transformed into the following model (Sangun et al., 
2009; Çankaya et al., 2009). 

 
lnYi = lnβ0 + β1lnXi1 + β2lnXi2 + ⋯ + βplnXip + lnei 

 
In this equation, respectively Y=lnYi shows live weight, 

lnXi1, lnXi2, …, lnXip  show independent parameters (height 
at withers, height at rumps, body length, chest width, chest 
girth, chest depth, front rump width, middle rump width, and 
hind rump width) with (p=1,2,…,9), β1, β2, … , βp and a =

lnβ0 show regression parameters and lnei shows random 
error (Gunst and Mason,1980; Draper and Smith, 1981; 
Kleinbaum et al., 1998). 

However, in case of multicollinearity between 
independent variables, since variance increases in LS 
predictions, the results can remove from the actual values 
even if predictions are unbiased. For this reason, in case of 
strong linearity between independent variables in linear 
regression model, using methods alternative to LS method 
can decrease the variance and result in more stable results 
(Albayrak, 2006). 

 
Ridge Regression 
In Ridge regression (RR) model, Ridge regression is 

obtained by adding small k values (k≥0) to the diagonal 
factors of X′X matrix in the form of X′X matrix correlation 
(Hoerl and Kennard 1970). 

 

β̂(k)= (X'X+kI)
-1

X'y, …k≥0 
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Ridge regression method is used in i) showing the 

instability that occurs in coefficients on chart in the 

presence of strong multicollinearity, ii) obtaining smaller 

variance predictions than LS predictions when independent 

variables are correlated in multi linear regression model, 

iii) eliminating multicollinearity in independent variables, 

iv) in decreasing mean squared error (MSE) by changing 

variance in regression with coefficient bias. 

Finding the k parameter value of Ridge regression 

model depends on eigenvalue. Ridge trace plot is examined 

or the value of k parameter is found to find out at which 

point Ridge regression process becomes stable or is closer 

to eigenvalue 1.  

A great number of researchers have suggested various 

formulas to find out k value. Among these formulas, 

Kurtuluş (2001) utilized condition index in finding out k 

constant based on eigenvalue and obtained the following 

equation: 

 

k≤
λmax-100λmin

99
, k≠0 

 

By using this equation, the point where k parameter 

makes VIF value closest to 1 is found (Anderson, 1998; 

Üçkardeş et al., 2012). As cited by Albayrak (2005) from 

Anderson (1998), other criteria used in the selection of 

optimum k value can be listed as k constant approaches 

which provide the coefficients’ suitability to hypothetic 

expectations, their stability, reasonable size, acceptable 

error sum of squares and minimum VIFs (VIF values close 

to 1 together for independent variables).  

 

Principal Component Regression (PCR) 

Principal Component Regression (PCR) method is a 

technique which predicts the coefficients of variables in 

multiple regression analysis without the need to delete 

independent variables in case of multicollinearity between 

independent variables. PCR standard errors are decreased 

by adding a bias degree to regression predictions 

(Albayrak, 2006, Hintze, 2007).  

For PCR analysis, first of all, after all the variables 

(dependent and independent) are subtracted from their 

averages, they are divided by their own standard deviations 

and standardized. Later, independent variables are 

transformed to principal components and they are 

mathematically expressed with the following equation. 

 

X′X = PDP′ = Z′Z 

In the equation X′X; D describing PCR model shows 

correlation matrix for independent variables, P shows the 

diagonal matrix of X′X eigenvalue and X′X shows 

eigenvector matrix and Z shows data matrix (Albayrak, 

2006; Hintze, 2007; Topal et al., 2010). 

As a result of these operations, Z (Z1, ⋯ , Zn) variables 

which express the weighted average of X 

(X1, ⋯ , Xn) original independent variables are derived. 

Since these new variables are principal components, the 

correlation between principal components is zero. It will be 

possible to detect multicollinearity for very small 

eigenvalue. In order to eliminate multicollinearity data, 

generally compounds with small eigenvalue (Z) that can 

consist of one or two are removed. When the compound 

with small eigenvalue is removed from the analysis, 

multicollinearity problem won’t exist when regression is 

performed to independent variables on dependent 

variables. Later, the results are turned into X scale to obtain 

B predictions. It is thought that these predictions will be 

biased; however, it is expected that the extent of this bias 

will be higher than compensated with the decrease in 

variance (Albayrak, 2006; Hintze, 2007; Topal et al., 

2010). 

Mathematical prediction equation is given in the 

following equation. 

 

Â = (Z′Z)−1Z′Y = D−1Z′Y 

 

This prediction equation is similar to ordinary least 

squares regression applied on a different independent 

variables cluster. Two sets of regression coefficients such 

as A and B are associated with the following formulas. 

 

A = P′B 

B = PA 

 

Removal of a principal component can occur by 

equalizing the corresponding A element to zero (Albayrak, 

2006; Hintze, 2007; Topal et al., 2010). 

 

Results and Discussion  

 

In this study, the descriptive statistics of some body 

measurements and live weights obtained from Karayaka 

lambs at weaning period raised at Research Farm of 

Ondokuz Mayis University are given in Table 1. 

 

Table 1 Descriptive statistics of the traits examined in Karayaka lambs 

Traits n 
Ln 

(Mean) 

Mean of original 

data 

Std. 

deviation 

Variation Coefficient 

(VC) (%) 

Live weight (LW) 85 3.27 27.37 6.659 24.3 

Height at withers (WH) 85 3.97 53.29 5.115 9.6 

Height at rumps (RH) 85 3.98 53.56 4.809 9.0 

Body length (BL) 85 3.92 50.71 5.496 10.8 

Chest depth (CD) 85 3.29 26.87 2.853 10.6 

Chest width (CW) 85 2.57 13.53 3.365 24.9 

Chest girth (CG) 85 4.46 86.99 10.722 12.3 

Front rump width (FR) 85 2.55 13.13 2.923 22.3 

Middle rump width (MR) 85 2.60 13.85 3.022 21.8 

Hind rump width (HR) 85 2.50 12.44 2.238 18.0 
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Table 2 Correlation coefficients between examined traits and significance test results  

Traits LW WH RH BL CD CW CG FR MR 

WH 0.63**         

RH 0.60** 0.79**        

BL 0.49** 0.51** 0.51**       

CD 0.65** 0.55** 0.57** 0.43**      

CW 0.26* 0.11- 0.18- 0.37** 0.37**     

CG 0.73* 0.62** 0.62** 0.62** 0.73** 0.43**    

FR 0.30** 0.28* 0.30** 0.43** 0.42** 0.51** 0.58**   

MR 0.33** 0.31** 0.34** 0.42** 0.43** 0.57** 0.56** 0.96**  

HR 0.35** 0.33** 0.60** 0.46** 0.38** 0.38** 0.56** 0.86** 0.86** 
LW: Live weight; WH: Height at withers; RH: Height at rumps; BL: Body length; CD: Chest depth; CW: Chest width; CG: Chest girth; FR: Front rump 
width; MR: Middle rump width; HR: Hind rump width; *: P<0.05; **: P<0.01 

 

Table 3 Regression analysis results according to Least Squares Method  

Traits Coefficients 
Std 

Deviation 

Standardized 

regression coefficient 
t-value P Tolerance VIF 

Constant (b0) -6.672 1.010 0.159 -6.604 **   

WH 0.517 0.385 0.071 1.342 - 0.314 3.180 

RH 0.234 0.391 -0.006 0.598 - 0.341 2.930 

BL -0.034 0.264 0.191 -0.127 - 0.532 1.881 

CD 0.523 0.295 -0.018 1.770 - 0.423 2.366 

CW -0.018 0.115 0.545 -0.159 - 0.533 1.875 

CG 1.296 0.317 -0.485 4.089 ** 0.275 3.642 

FR -0.643 0.343 0.286 -1.873 - 0.071 14.069 

MR 0.380 0.370 0.071 1.026 - 0.061 16.476 

ASHR 0.119 0.247 0.159 0.480 - 0.216 4.629 
**: P<0.01    *: P<0.05  -: P>0.05 

 

Table 4 Correlation eigenvalue and the number of conditions 

Number Eigenvalue Condition index 

1 4.99 1.00 

2 1.64 3.04 

3 0.75 6.61 

4 0.58 8.53 

5 0.42 11.83 

6 0.21 23.28 

7 0.20 24.00 

8 0.14 34.36 

9 0.04 142.2 

 

 

With Kolmogorow – Smirnov normality assumption 

test applied on the data of the characteristics examined in 

the study, it was found that error terms of the data were 

normally distributed (P>0.05). Pearson correlation 

coefficients between live weights and some body 

measurements taken from Karayaka lambs and 

significance test results are shown in Table 2. 

There is positive correlation between the live weights 

and examined body measurements of Karayaka lambs at 

weaning period. While the highest correlation was found 

between front rump width and middle rump width (r=0.96, 

P<0.01), the lowest correlation was found between height 

at withers and chest width (r=0.11, P>0.05). In case of 

correlation coefficients between the variables examined 

being around 90%, multicollinearity problem should be 

considered. For this purpose, multiple regression analysis 

results of the variables examined are given below 

respectively according to LS, RR and PCR methods used.  

 

 

Results of Least Square Method  

Prediction coefficient, standard error, test statistics and 

VIF values of each parameter in LS method applied to form 

the equation of the association between live weights of 

Karayaka lambs at the period of weaning and their 

morphological traits (WH, RH, etc) used as independent 

variable are given in Table 3. 

According to multiple regression analysis results 

conducted by using LS method, regression coefficients of 

height at withers, height at rumps, body length, chest depth, 

chest width and front, middle and hind rump width, which 

are body measurements used in the prediction of live 

weight, were found to be statistically insignificant. In 

addition, multicollinearity was found between independent 

variables front rump and middle rump width (VIF>10) 

(Table 3). This result shows that inconsistent parameter 

predictions were made since standard error increased (for 

example, while the regression coefficient of RH is 0.234, 

the standard error of this coefficient is 0.319)  
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Results of Ridge Regression Method  

By using Ridge regression technique, it was found that 

62.7% of the linear association between live weights and 

morphological characteristics of Karayaka lambs at 

weaning period was explained and that the regression 

equation to be used in the prediction of this association was 

significant (P<0.001). 

When the condition index (CI) coefficients calculated 

for Equation X were examined, multicollinearity problem 

was considered since CI > 10 (Table 4). 

Table 5 shows Ridge regression analysis results 

determining k bias coefficient which eliminates 

multicollinearity problem and gives the highest R2 value, 

while Table 6 shows variance inflation factors.  

As can be seen in Tables 5 and 6, it can be seen that 

VIF values are lower than 10, in other words, 

multicollinearity is eliminated and k value that gives the 

highest R2 value is 0.011 (1.1%). At the same time, as 

reported by Anderson (1998), it can be seen that the 0.011 

(1.1%) is the k value that gives the sum of acceptable least 

error squares (0.1992=0.0396) and minimum VIF (VIF 

value <10) and maximum R2 (62.7%) for all variables. 

Table 7 shows regression coefficients predicted according 

to k = 1.1% bias constant and Ridge regression method and 

significance tests of these.  

When VIF values are examined, it can be seen that 

multicollinearity problem between front rump and middle 

rump measurements, which are body measurements used 

for live weight prediction, was eliminated with RR method 

(Table 7). In addition, a significant difference was found 

between the predicted Ridge regression parameters and LS 

parameters given in Table 4 in terms of both coefficients 

and the standard deviations of these coefficients. While this 

coefficient predicted with LS method was statistically 

insignificant especially due to the decrease in standard 

deviation value of regression coefficient predicted for chest 

width, it was found to be statistically significant when 

predicted with RR technique. 

 

 

Table 5 k parameter selection 

k R2 Sigma B'B Average. VIF Max VIF 

0.00 0.634 0.198 0.687 5.671 16.490 

0.01 0.628 0.199 0.548 4.212 10.278 

0.011 0.627 0.199 0.539 4.111 9.867 

0.02 0.623 0.201 0.472 3.398 7.097 

0.03 0.618 0.202 0.423 2.877 5.243 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.08 0.600 0.206 0.311 1.702 2.018 

0.09 0.597 0.207 0.299 1.579 1.866 

 

 

Table 6 Variance Inflation Factor (VIF) values 

k WH RH BL CD CW CG FR MR HR 

0.00 3.14 2.92 1.89 2.38 1.88 3.70 13.98 16.49 4.66 

0.01 2.84 2.69 1.79 2.23 1.70 3.33 8.99 10.28 4.07 

0.011 2.81 2.67 1.78 2.21 1.69 3.30 8.65 9.87 4.02 

0.02 2.59 2.49 1.70 2.09 1.59 3.04 6.39 7.10 3.60 

0.03 2.39 2.32 1.63 1.97 1.49 2.79 4.85 5.24 3.21 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
0.08 1.70 1.68 1.33 1.51 1.20 1.95 1.99 1.95 2.02 

0.09 1.60 1.59 1.28 1.44 1.16 1.83 1.75 1.70 1.87 

 

 

Table 7 Regression analysis results according to k = 1.1% bias constant and Ridge regression method 

Independent 

Variable 
Coefficients 

Std. 

Deviation 

Standardized 

regression coefficients 
t-value 

Significance 

level 
VIF 

Constant  -6.640     - 

WH 0.517 0.365 0.167 1.417 - 2.81 

RH 0.237 0.374 0.073 0.635 - 2.67 

BL -0.011 0.260 -0.004 -0.041 - 1.78 

CD 0.544 0.290 0.196 2.221 * 2.21 

CW -0.010 0.110 -0.008 -0.088 - 1.69 

CG 1.243 0.306 0.520 4.063 ** 3.30 

FR -0.516 0.273 -0.392 -1.890 - 8.65 

MR 0.257 0.290 0.196 0.885 - 9.87 

HR 0.119 0.234 0.072 0.510 - 4.02 
**: P<0.01, *: P<0.05,  -: P>0.05 
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Figure 1 Variance Inflation Factor Plot for Ridge 

Regression with k = 1.1% bias constant 

Figure 2 Variance Inflation Factor Plot for Principal 

Component Regression Analysis 

 

Table 8 Descriptive statistics of principal component regression analysis  

Principal Component PC Coefficient Individual R-Squared Eigenvalue 

PC1 -0.089 0.414 4.993 

PC2 -0.092 0.146 1.641 

PC3 -0.03 0.007 0.755 

PC4 0.049 0.015 0.585 

PC5 0.054 0.013 0.422 

PC6 -0.091 0.019 0.215 

PC7 0.047 0.005 0.208 

PC8 0.056 0.005 0.145 

PC9 -0.171 0.011 0.035 

 

Table 9 Principal component regression analysis results  

Independent 

Variable 

Regression 

Coefficient 

Standard 

Error 

Standardized Regression 

Coefficient 
t P VIF 

Intercept -6.670      

WH 0.629 0.377 0.204 1.669 * 2.958 

RH 0.191 0.393 0.059 0.486 - 2.906 

BL -0.060 0.268 -0.021 -0.222 - 1.862 

CD 0.564 0.302 0.204 1.866 * 2.369 

CW 0.039 0.109 0.033 0.359 - 1.637 

CG 1.195 0.318 0.499 3.762 ** 3.506 

FR -0.164 0.127 -0.124 -1.289 - 1.851 

MR -0.160 0.092 -0.122 -1.745 * 0.976 

HR 0.187 0.249 0.113 0.753 - 4.495 

 

Table10 Comparison of LS, RR and PCR analysis results 

Methods MSE R2 R2
adj CV (%) Significance level of the method 

LS 0.0390 0.634 0.590 0.1910 <0.001 

RR 0.0393 0.627 0.587 0.0609 <0.001 

PCR 0.0429 0.623 0.549 0.0613 <0.001 

 

Table 4 shows multicollinearity problem in VIF values 

found in front and middle rump widths. Figure 1 shows the 

elimination and stabilization of this problem with k = 1.1% 

bias constant.  

 

Principal Components Regression Method  

 

Principal components regression analysis results of 

morphological characteristics measured at weaning period 

of Karayaka lambs are shown in Tables 8 and 9, 

respectively.  

According to PCR analysis, principal component 9 was 

found to have a low eigenvalue. The study was repeated by 

deleting two and three eigenvalue and a decrease was 

found in the explanatory power. For this reason, it was 

decided to delete only one component with very low 

eigenvalue, that is Z value, and to interpret the results.  

Figure 2 shows the elimination and stabilization of this 

problem with one low eigenvalue disposal with PCR 

analysis. 

It was found that the multicollinearity problem found 

for front rump and middle rump width, which are among 

independent variables used for live weight prediction of 

Karayaka lambs at weaning period was eliminated with 

principal components regression analysis (Table 9). 

According to the results obtained, it was found that WH, 

CD, CG and FR were statistically significant while 

predicting regression equation.  

10-2

10-1

100

101

102

10-4 10-3 10-2 10-1 100

Variance Inflation Factor Plot

K

V
IF

Variables

WH
RH
BL
CD
CW
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Comparison Results of the Method  
Table 10 shows mean squared error (MSE), coefficient 

of determination (R2), adjusted coefficient of 
determination (R2

adj) and Coefficient of Variation (CV%) 
values of LS, RR and PCR methods used in the live weight 
prediction of Karayaka lambs at weaning period.  

When Table 10 is examined, it was found that all of the 
models obtained with three different methods were 
statistically significant (P<0.001). It was found that 
following LS method, RR method had the lowest MSE and 
the highest R2 value. However, when Table 7 is taken into 
consideration, it was found that regression coefficients of 
all variables except for chest girth and chest depth were 
statistically insignificant, while principal components 
regression analysis equation showed that coefficients of 
height at withers and height at rumps were statistically 
significant besides chest girth and chest depth (Table 10). 
For this reason, it was found that PCR predictions were 
more consistent.  

 
Conclusion 

 
In agricultural researches based on cause and effect 

relation, multiple regression analysis is used in the 
assessment of data, while least squares method (LS) is 
preferred in the prediction of coefficients of regression 
equation since they are easily calculated and the results are 
easy to understand. However, validity of this method is 
decreasing since the data of the characteristics which are 
the subject of the research (for example, using body 
measurements to predict live weight in husbandry) most of 
the time cannot meet the necessary assumptions such as no 
significant association between independent variables. The 
factor that causes the breakdown of the related assumption 
and the LS method to become indefensible is the 
multicollinearity problem between independent variables. 
Due to these problems, multicollinearity problem should 
be eliminated so that the data obtained from agricultural 
researches can be interpreted healthily.  

In our study, first of all parameter estimations obtained 
with least squares (LS) method were found. Since a 
multicollinearity problem was found for parameters 
obtained with LS method, the assumption of not having an 
internal association between independent variables was not 
met. As a result of this problem, analysis results obtained 
by using LS method are erroneous and they can cause 
model prediction to be wrong (Ergüneş, 2004). Thus, for 
front and middle rump widths, VIF values, which are one 
of the indicators of multicollinearity problem, were found 
to be higher than the values obtained from Ridge regression 
and principal components regression.  

On the other hand, MSE value obtained as a result of 
analysis with LS method was found to be lower than that 
obtained with RR and PCR, while R2 value was found to be 
higher and these results were similar to the results of 
Ergüneş (2004), Çamdeviren et al. (2005), Topal et al. 
(2010) and Üçkardeş et al. (2012).  

As a conclusion, multi regression equation predictions 
were obtained with the help of different statistics programs 
(SPSS, NCSS) and with the help of the problems used, the 
effects of multicollinearity problem of independent 
variables were eliminated directly or indirectly. This way, 
a regression equation with lower errors, more consistency 
and thus with stronger prediction power was found. Thus, 

using biased predictors Ridge regression (RR) and 
Principal Components Regression (PCR) instead of LS 
predictor to eliminate the effects of multicollinearity 
between independent variables will contribute to healthier 
interpretation of the results. In addition, it is thought that 
studies in which the sensitivity and validity of these 
methods are tested with different sample sizes will 
contribute to researchers working in this field.  
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