

Turkish Journal of Agriculture - Food Science and Technology

www.agrifoodscience.com, Turkish Science and Technology

Estimating Time of Weed Emergence in Cucumber (Cucumis sativus L.)

Nihat Tursun^{1*}, İrfan Ersin Akinci², Mustafa Şahin³, Ahmet Uludağ⁴

¹Plant Protection Department, Agricultural Faculty, İnönü University, 44280 Malatya, Turkey

²Horticulture Department, Agricultural Faculty, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş, Turkey

³Animal Science Department, Agricultural Faculty, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş, Turkey ⁴Plant Protection Department, Agricultural Faculty, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey

ARTICLEINFO

ABSTRACT

Article history: Received 06 November 2014 Accepted 13 January 2015 Available online, ISSN: 2148-127X

Keywords: Cucumber Emergence model ERI MET Growing degree days (GDD) Weeds Modelling is carried out for eleven major weeds in cucumber to develop estimated models for weed emergence time. Weed species were grouped according to their emergence patterns. Amaranthus retroflexus, Chenopodium album, Heliotropium europaeum, Polygonum aviculare and Solanum nigrum were early emerging, Convolvulus arvensis, Cyperus rotundus, Cynodon dactylon, Portulaca oleracea and Sorghum halepense were season long emerging Tribulus terrestris was the late emerging weed species. Different non-linear growth curves (Chapman-Richard, Weibull, logistic, Gompertz and cubic spline) fitted to the data of cumulative percent emergence for the different species and years. Cubic spline seemed the best model for many species.

[°]Corresponding Author: E-mail: nihat.tursun@inonu.edu.tr

Türk Tarım - Gıda Bilim ve Teknoloji Dergisi, 3(5): 271-278, 2015

Hıyarda (Cucumis sativus L.) yabancı ot çıkış zamanın tahminine yönelik araştırmalar

MAKALE BİLGİSİ	ÖZET
Geliş 06 Kasım 2014 Kabul 13 Ocak 2015 Çevrimiçi baskı, ISSN: 2148-127X	İstatistiki modellerin geliştirilmesi için hıyar bitkisinde on bir önemli yabancı otun çıkış zamanın belirlenmesinde modellemeler yapılmıştır. Hıyar deneme arazisinde bulunan önemli yabancı otlar çıkış zamanlarına göre gruplara ayrılmıştır. Bu yabancı otlardan; <i>Amaranthus retroflexus, Chenopodium album, Heliotropium europaeum, Polygonum</i> <i>aviculare ve Solanum nigrum</i> erken, <i>Convolvulus arvensis, Cyperus rotundus, Cynodon</i>
Anahtar Kelimeler: Hıyar Çıkış modelleri ERI MET Büyüme gün derece (GDD)	dactylon, Portulaca oleracea ve Sorghum halepense bütün vejetasyon boyunca ve Tribulus terrestris ise geç çimlenen yabancı ot türü olarak belirlenmiştir. Farklı doğrusal olmayan büyüme eğrileri (Chapman-Richard, Weibull, logistic, Gompertz ve cubic spline) farklı yabancı ot türleri ve yıllar için çıkış yüzdeleri verileri esas alınarak uyarlanmıştır. Cubic splin model birçok yabancı ot türü için en iyi model olarak saptanmıştır.

[•] Sorumlu Yazar:

Yabancı otlar

E-mail: nihat.tursun@inonu.edu.tr

Introduction

Integrated weed management (IWM) which is an integral part of integrated pest management, further integrated crop management, has become more important due to agricultural and environmental problems created/contributed by traditional weed management methods and changing perceptions. IWM relies on biologic, ecologic, edaphic and climatic data to accomplish a sustainable control of weeds, which results in wiser use of chemical control techniques. Furthermore, bans and strict regulations of herbicides require new solutions to be able to find out effective and feasible control approaches. Knowledge on emergence of weeds can provide valuable information to determine correct method and timing of control of weeds with insights of competition with crop and other weed species, detrimental causes such as herbivore insects and diseases, and the reproductive possibility of given weed species (Forcella et al., 2000; Grundy, 2003).

Weed emergence has been modelled using different approaches (Forcella et al., 2000; Grundy, 2003). Basically two methods with their cons and pros have been used: Mechanistic models and descriptive models. In spite of formers depth in understanding of phenomena, its complexity for establishing is main drawback. Descriptive models are based on one or more climatic/edaphic data, soil temperature, soil humidity etc.; but they are also useful as a decision making tools despite their simplicity (Grundy, 2003). Although more studies have been seen in literature, Forcella's statement still stays accurate: "Surprisingly, emergence has not been studied in sufficient detail" (Forcella et al., 2000).

Using soil temperature directly or as thermal time is the independent variable of many descriptive models. Recently models have been improved to use hydrothermal time. However, using only temperature data is still accurate (Forcella et al., 2000; Myers et al., 2004; Dorado et al., 2009), especially in irrigated crops under adequate soil moisture conditions (Masin et al., 2012). Different cropping activities and environmental and climatic factors require develop models for different conditions and crops (Colbach et al., 2005; Dorado et al., 2009; Masin et al., 2010).

Cucumber along with other vegetables is a cash crop for farmers in the Kahramanmaras Province of Turkey as well as the other provinces. Annual weeds are main problem in vegetables but perennials such as *Cyperus rotundus, Sorghum halepense*, and *Convolvuls arvensis* are also problem in some cases (Tepe, 2014). Weeds are problem in cucumber production. *Portulaca oleracea, Chenopodium album, Amaranthus retroflexus, Echinochloa crus-galli, Solanum nigrum* and *Seteria verticillata* are the densest weeds in cucumber fields (Uzun et al., 1993).

Requirements of IWM and getting less choice of herbicides due to regulations and resistance show need for searching new approaches. The aim of the current study is to show pattern of emergence of important weeds in cucumber to led finding out useful control methods.

Materials and Methods

Field procedure

Experiments were conducted in a field, which vegetables mainly cucumber has been grown for over two decades, in Kahramanmaras $(37^{\circ}34,8'00'' \text{ N}, 36^{\circ}55,8'00'' \text{ E})$, in Southern Turkey in cucumber growing seasons of 2010 and 2011. The soil was a loam calcareous with pH 7.75 and 3.03% organic matter (Table 1).

Table 1 Soil characteristics in 0-30 cm depth of experimental field

Soil	Values	Rating
characteristics	measured	Katilig
Saturation (%)	49.5	Modarate
pН	7.75	Mildly alkaline
Total soluble salt (%)	0.03	Non-saline
Lime-CaCO ₃ (%)	9.84	Calcareous
Organic Matter (%)	3.03	Sufficient
$P_2O_5 (mg kg^{-1})$	75.44	High
$K_2O (mg kg^{-1})$	218	High

The soil was tilled with chisel, followed by a disk harrow, and finally by a harrow to obtain a smooth seedbed as farmers applied in cucumber production. Before transplanting, 30 t ha⁻¹ sheep manure, 80 kg ha⁻¹ N, 90 kg ha⁻¹ P₂O₅, and 200 kg ha⁻¹ K₂O were applied to the field as recommended (Esiyok, 2012). Trifluralin (0.96 kg a.i. ha⁻¹) was applied before cucumber seedlings (cv. Merkur F₁) transplanting on 02 May 2010 and 10 May 2011 with 70 cm spaces between rows and 35 cm between plants in a row. When cucumber reached first flowering, 120 kg ha⁻¹ N was added as urea. The field was irrigated as soon as after transplanting by drip irrigation system and then 3 to 4 times per week.

The dominant weeds in research area were Amaranthus retroflexus L., Chenopodium album L., Convolvulus arvensis L., Cynodon dactylon (L.) Pers., Cyperus rotundus L., Heliotropium europaeum L., Polygonum aviculare L., Portulaca oleracea L., Solanum nigrum L., Sorghum halepense (L.) Pers. and Tribulus terrestris L.

Experimental studies based on Dorado et al. (2009). Seedling emergence monitored in 30 permanent quadrates (66 cm x 33 cm). Weed seedlings of each species were counted at every two weeks throughout the growing season, which were occurred ten times in total. After each assessment, isopropylamine salt of glyphosate (Roundup® Plus, 360 g a.e. L^{-1}) was applied at 2.16 kg a.e. ha⁻¹ with a backpack sprayer which was calibrated to deliver 190 L ha⁻¹ under 207 kPa pressure to control emerged weeds. Cumulative seedling emergence data from the field were converted into the basis of a square meter.

Soil temperature at 3 cm depth was recorded during the growing season using data loggers (HOBO® U12, Onset Computer Corporation).

Analysis of data

Only the soil temperature (growing day degrees, GDD) was used as independent variable for predicting

cumulative emergence because crop was irrigated 3 to 4 times a week.

GDD = [(Tmax + Tmin)/2] - Tb

where Tmax and Tmin are the daily maximum and minimum soil temperatures, respectively. Tb, base temperature, used in the calculations of GDD for each species were:

8.8°C for A. retroflexus (Guillemin et al., 2008),
5.8°C for C. album (Guillemin et al., 2008),
10°C for C. arvensis (Lyons, 2009),
11.4°C for C. rotundus (Holt and Orcutt, 1996),
7.7°C for C. dactylon (Satorre et al., 1996),
5°C for H. europaeum (Anonymous, 2010)
0°C for P.aviculare (Battla and Benech-Arnold, 2004)
11.3°C for P. oleracea (Steinmaus et al., 2008),
12.0°C for S. halepense (Holt and Orcutt, 1996),
15.0°C for T. terrestris (Boydston, 1990)

According to emergence data which was counted in the field, mean emergence time (MET) and emergence rate index (ERI) were calculated as follows (Bilbro and Wanjura, 1982):

$$MET = \frac{N_{1}t_{1} + N_{2}t_{2} + \dots + N_{n}t_{n}}{N_{1} + N_{2} + \dots + N_{n}}$$

$$ERI = \frac{N_{1} + N_{2} + \dots + N_{n}}{MET}$$

where N is the number of newly emerged seedlings since the time of previous count, t is the GDD after transplanting, and n is the number of sampling times. Different models (Chapman-Richard, Weibull, logistic, Gompertz and cubic spline) for the different species were fitted to the data sets of cumulative percent emergence. Equations used in modeling are as follows:

Chapman- Richard: $y = a [1 - e^{-bx}]^c$ Weibull: $y = a [1 - e^{-(bx)^c}]$ Logistic: $y = a/[1 - e^{-b(x-m)}]$ Gompertz: $y = a [e^{-e^{-b(x-m)}}]$ Cubic spline:

-

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \sum_{i=1}^{} t(x-x_i)^3$$

t

where y represents the predicted cumulative percent emergence, x is cumulative GDD, a is the asymptote, b is the slope, m represents the point of inflection on the x axis, c is shape parameters, β_0 , β_1 , β_2 and β_3 are regression parameters to be estimated and t is the number of knots in the splines.

Determining the best model, Durbin-Watson autocorrelation test and the adjusted coefficient of determination was used for comparison (SAS, 2008).

Results

The number of individuals for weed species was higher in 2011 than 2010 except *Heliotropium europaeum* (Figure 1). The densest species, *Amaranthus retroflexus* was followed by *Sorghum halepense* in 2011 while *S. halepense* was followed by *A. retroflexus* in 2010. Most of the species have less than 70 individuals in per square meter in 2010 whereas more than 70 in 2011 (Table 2).

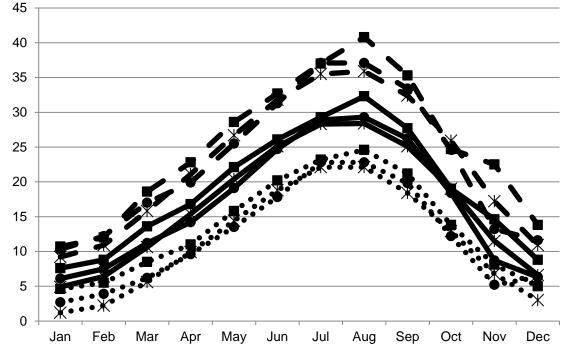


Figure 1 Monthly temperatures in the Kahramanmaraş Province. (Dots for average monthly minimums, solid lines for monthly averages, Dashes for average monthly maximums; and . for 2010, • for 2011, and X for long term average)

Table 2 Frequency class of weeds	5.	
Frequency class (Individual per m ²)	2010	2011
0-35	POLAV, CONAR, TRITE	POLAV, CONAR
36-70	CHEAL, HELEU, CYNDA, POROL, CYPRO	TRITE, HELEU
71-105	SOLNI	SOLNI, CYPRO, CYNDA,
106-140	AMARE	POROL
141-175	SORHA	CHEAL, AMARE, SORHA

Table 3 Density of weeds (number/m²), MET, ERI and the total percentage of emergence in counting times.

	Total percentage of emergence in each counting (%)							Emergence							
Weed species	Year	Density*	MET	ERI	1	2	3	4	5	6	7	8	9	10	Period
Chenopodium album	2010	40	293	0.14	40	50	60	90							Early
Chenopoalum album	2011	143	366	0.39	50	60	60	80	90						Early
Heliotropium	2010	70	266	0.26	40	40	50	70	90						Early
europaeum	2011	42	469	0.09	40	40	50	70	80	90					Larry
Polygonum aviculare	2010	6	484	0.01	40	50	60	90							Early
1 orygonum aviculare	2011	35	511	0.07	40	60	70	90	90						Larry
Amaranthus	2010	132	194	0.68	60	70	90	90							Early
retroflexus	2011	174	330	0.53	50	70	90	90							Larry
Solanum nigrum	2010	95	185	0.51	50	50	70	80	90						Early
Solunian nigram	2011	101	286	0.35	50	50	70	80	90						Larry
Convolvulus arvensis	2010	10	341	0.03	40	40	50	60	70	80	80	80	90		Whole
Convolvatas arvensis	2011	17	349	0.05	40	40	50	60	70	80	80	80	90		whole
Cyperus rotundus	2010	59	330	0.18	20	30	50	60	70	80	80	80	90		Whole
Cyperus rotundus	2011	87	441	0.20	30	40	50	70	80	80	80	80	90		whole
Cynodon dactylon	2010	58	327	0.18	40	50	60	80	80	80	80	80	90		Whole
Cynodon dderylon	2011	84	489	0.17	50	60	60	70	80	80	80	80	90		whole
Portulaca oleracea	2010	51	261	0.19	30	40	40	70	80	80	80	90			Whole
I ontataca oteracea	2011	106	383	0.28	20	20	50	70	80	80	90				whole
Sorghum halepense	2010	146	313	0.47	10	20	30	70	80	80	80	80	80	90	Whole
sorgnum nutepense	2011	153	333	0.46	10	20	40	70	70	70	80	80	80	90	whole
Tribulus terrestris	2010	10	329	0.03					10	30	50	90			Late
THORIUS IETTESTIIS	2011	60	433	0.14					30	70	80	90		Late	Late

*seedlings per m²

Species were classified depending on their emergence periods according to field observations (Table 3). Early emerging species, whole season species, and late emerging species. *Amaranthus retroflexus, Chenopodium album, Heliotropium europaeum, Polygonum aviculare* and *Solanum nigrum* was the early emerging species, which 90% of emergence completed until 12th week after transplanting of cucumber seedlings. *Convolvulus arvensis, Cyperus rotundus, Cynodon dactylon, Portulaca oleracea* and *S. halepense* was emerged from transplanting to the 20th week, which the last observations were done. Only *Tribulus terrestris* was the late emerging species, which emergence started after 10th week and reached 90% within two months.

MET values were higher in 2011 than 2010 for all species (Table 3). *S. nigrum* and *A. retroflexus* showed the shortest emergence period, 185 and 194 GDD of MET in 2010 and 286 and 330 GDD of MET in 2011, respectively. The *P. aviculare* showed the longest emergence period with 484 and 511 GDD in 2010 and 2011, respectively. The highest emergence rates was obtained from *A. retroflexus* (ERI 0.68 in 2010 and 0.53 in 2011) for both years and the lowest from *P. aviculare* (ERI 0.01 in 2010 and 0.07 in 2011) and *C. arvesis* (ERI 0.03 in 2010 and 0.05 in 2011) both years.

Table 4 and Figure 2 show the fitness of weed seedling emergence to model curves for both years. Durbin-Watson and the adjusted coefficient of

determination are taken into account; the Chapman-Richard function provided the best fit to the data of *P. aviculare* (year 2010), *P. oleracea* (year 2011). Moreover, the Weibull function for *P. aviculare* (year 2011), the Gompertz for *S. halepense* (year 2010) and the cubic spline model for other weed species (in 2010 and 2011) provided the best fit to the emergence data.

Discussion

Weeds that are included in the study are the major species in vegetable fields in Turkey (Ozer et al., 1999; Guncan, 2009). Although 2010 was warmer than 2011, more individuals emerged in 2011. It could be chilling temperatures in 2011, which could be caused breaking dormancy more for many species. It does not mean chilling did not affect *H. europaeum* because *H. europaeum* also germinates more after stratification (Aliloo and Darabinejad, 2013). Some other factors might be played role in the weed density such as soil factors besides temperature sole.

Depending on field observations, weed species were grouped under three distinct emergence patterns: early-emerging, a whole season emerging and late emerging species. Emergence to reach 90% of the early-period emerging species lasted up to 8-12 weeks. Whole season emerging species completed this process in 14-20 weeks. Late emerging species started its emergence 10th week and completed 16th week-20 week (Table 3). This

information can be used by farmers to decide weed control method and timing. Early emerging species (*A. retroflexus, C. album, H. europaeum, P. aviculare* and *S. nigrum*) need to be controlled preplanting herbicide applications or early post emergence applications. Especially ban of trifluralin will create further problem for farmers because there is no effective and cheap method to replace trifluralin application. Season long emerging species cannot be controlled with one time control practice either mechanical or chemical. They require integration of the methods thorough the season staring before transplanting of cucumber. Late emerging weeds cannot be competitive (Dorado et al., 2009); but, burs of *T. terrestris* can make harvest difficult for workers.

One of the aims of the study was to develop models predicting emergence of species in cucumber. Models used in this experiment fitted well to all species and years. However, there was no a single best model was able to fit all species or a species for both years. Cubic spline model (CPS) was the most appropriate one for many species and years suggesting use of this model in future research and development studies.

Table 4 The emergence of weeds used Chapman-Richard (RH), Weibull (WB), logistic (LOG), Gompertz (GOM) and cubic spline (CSP) models parameters and appropriateness of the models in cucumber

Waad Caasies			Estimat	ed parame	eters*				
weed Species	Year	Function	a, B ₀	b, β ₁	c, m, β_2	ß ₃	β_4	DW**	adj <i>R</i> ² **
		RH	104.1	.0013	.855			2.07	0.994
Weed Species Polygonum aviculare Chenopodium album Portulaca oleracea Amaranthus retroflexus		WB	106.5	.0029	.890			2.03	0.992
	2010	LOG	86.21	.0046	374.4			1.04	0.976
		GOM	89.82	.003	258.2			1.36	0.986
		CSP	-1.19	.283	001	2x10 ⁻⁶	2x10 ⁻⁶		0.993
Polygonum aviculare		RH	111.1	.0017	.965				0.965
		WB	112.1	.002	.972				0.966
	2011	LOG	89.39	.0056	315				0.939
		GOM	92.56	.003	217.8				0.953
		CSP	683	.243	-5x10 ⁻⁴	1×10^{6}	$1x10^{6}$		0.959
		RH	87.66	.0044	.855				0.986
		WB	88.27	.0085	.899				0.986
	2010	LOG	83.49	.011	142.1				0.957
	2010	GOM	84.17	.0081	89.72				0.973
		CSP	1.792	.477	0015	2x10 ⁻⁶	-2x10 ⁻⁶		0.987
Chenopodium album		RH	86.19	.0057	1.281	2410	2410		0.897
		WB	85.61	.0021	1.153				0.977
	2011	LOG	80.30	.0021	145.9				0.977
	2011	GOM	82.25	.0096	145.9				0.968
						-6x10 ⁻⁶	7x10 ⁻⁶		
		CSP	4.928	.085	.002	-0x10	/X10		0.993
		RH	95.17	.004	.929				0.986
	2010	WB	95.23	.005	.960				0.987
	2010	LOG	83.24	.013	142.3				0.941
		GOM	86.04	.008	100.2	2 10-6	4 10-6		0.960
Portulaca oleracea		CSP	6.464	.190	.001	-3x10 ⁻⁶	4x10 ⁻⁶		0.994
		RH	92.18	.001	.378				0.985
		WB	94.41	.012	.753				0.985
	2011	LOG	93.55	.005	301.2				0.959
		GOM	101.8	.003	214.5				0.976
		CSP	-4.66	.558	002	6x10 ⁻⁶	-6x10 ⁻⁶		0.982
		RH	106.3	.003	.618				0.988
		WB	119.2	.022	.789				0.988
	2010	LOG	78.60	.019	78.33				0.933
		GOM	81.60	.012	52.26	6	ć		0.947
Amaranthus retroflexus		CSP	3.040	.749	004	6x10 ⁻⁶	$-4x10^{-6}$		0.994
inarannas renojiexas		RH	96.87	.004	1.09				0.974
		WB	96.33	.002	1.05				0.976
	2011	LOG	82.87	.012	154.3				0.923
		GOM	87.33	.007	113.4				0.938
		CSP	785	.381	0007	1×10^{-6}	-8x10 ⁻⁶		0.984
		RH	90.84	.004	.433			$\begin{array}{c} 2.07\\ 2.03\\ 1.04\\ 1.36\\ 2.31\\ 2.01\\ 2.01\\ 2.06\\ 1.70\\ 1.50\\ 2.03\\ 2.04\\ 2.06\\ 1.48\\ 2.02\\ 0.17\\ 0.62\\ 2.06\\ 0.92\\ 2.02\\ 1.24\\ 1.29\\ 2.06\\ 0.76\\ 1.82\\ 1.24\\ 1.29\\ 2.06\\ 0.76\\ 1.82\\ 1.43\\ 1.41\\ 2.06\\ 0.94\\ 1.86\\ 1.14\\ 1.15\\ 2.06\\ 0.94\\ 1.86\\ 1.14\\ 1.15\\ 2.06\\ 0.69\\ 2.26\\ 1.06\\ 1.09\\ 2.26\\ 1.06\\ 1.09\\ 2.26\\ 1.06\\ 1.09\\ 2.26\\ 1.06\\ 1.09\\ 2.26\\ 1.06\\ 1.09\\ 2.26\\ 1.06\\ 1.09\\ 2.06\\ 0.78\\ 1.34\\ 1.60\\ 1.24\\ 0.53\\ 0.58\\ 2.06\\ 1.20\\ 0.48\\ 0.69\\ 0.89\\ \end{array}$	0.968
		WB	94.84	.013	.789				0.972
	2010	LOG	88.17	.008	153.8				0.921
		GOM	88.25	.005	86.56				0.928
Haliotropium auropaaum		CSP	3.963	0.711	004	9x10 ⁻⁶	-9x10 ⁻⁶		0.993
Heliotropium europaeum		RH	91.99	.001	.473			1.20	0.974
		WB	85.28	.14	.642			0.48	0.809
	2011	LOG	85.99	.004	290.3			0.69	0.936
		GOM	87.04	.003	168.4			0.89	0.953
		CSP	-10.2	.716	004	8x10 ⁻⁶	-8×10^{-6}	1.52	0.989

		RH	97.84	.002	.389			1.16	0.968
		WB	97.83	.017	.484			0.53	0.972
	2010	LOG	74.79	.039	39.77			1.24	0.921
		GOM	75.07	.026	24.61			0.41	0.928
g 1 ·		CSP	6.764	1.12	.007	$2x10^{-6}$	$-2x10^{-6}$	2.26	0.993
Solanum nigrum		RH	90.93	.004	.825			1.20	0.974
		WB	94.38	.009	.853			0.48	0.809
	2011	LOG	76.22	.018	105.7			0.69	0.936
		GOM	79.46	.010	78.29			0.89	0.953
		CSP	-1.10	.501	011	6x10 ⁻⁶	$7x10^{-6}$	2.01	0.989
		RH	89.62	.005	2.03			1.18	0.986
		WB	88.00	.001	1.49			1.16	0.986
	2010	LOG	84.21	.010	240.3			0.91	0.980
		GOM	87.47	.006	187.2			1.19	0.988
		CSP	8.625	201	.003	-8x10 ⁻⁶	8x10 ⁻⁶	1.27	0.986
orghum halepense		RH	87.04	.004	.822			1.23	0.978
		WB	88.75	.010	.859			1.27	0.980
	2011	LOG	76.10	.019	103.7			0.61	0.937
		GOM	79.43	.010	77.09			0.82	0.954
		CSP	-3.41	.655	002	5x10 ⁻⁶	-5x10 ⁻⁶	1.59	0.983
		RH	102.0	.001	.697			1.24	0.992
		WB	107.9	.008	.760			1.14	0.991
	2010	LOG	85.3	.006	259			0.91	0.978
	2010	GOM	87.95	.004	169.4			1.28	0.989
		CSP	5.648	.257	0007	1x10 ⁻⁶	-1x10 ⁻⁶	2.19	0.996
Cyperus rotundus		RH	89.08	.003	.996	1710	IXIO	1.73	0.991
		WB	89.26	.003	.993			1.73	0.991
	2011	LOG	81.98	.003	215.3			0.92	0.972
	2011	GOM	83.98	.008	149.0			1.19	0.983
		CSP	.706	.245	0001	-3x10 ⁻⁶	5x10 ⁻⁶	1.83	0.983
		RH	103.7	.001	.495	-3x10	5X10	1.85	0.994
		WB	116.3	.001	.573			1.11	0.978
	2010	LOG							
	2010		77.40	.008	148.3			0.65 0.71	0.906
		GOM	80.07	.005	88.11	8x10 ⁻⁶	-8x10 ⁻⁶		0.927
Cynodon dactylon		CSP	195	.692	0039	8X10	-8x10	1.76	0.987
		RH	98.03	.0003	.318			1.32	0.993
	0011	WB	97.24	.013	.600			1.30	0.993
	2011	LOG	92.59	.005	377.6			0.84	0.986
		GOM	101.4	.003	292.3	5 10-6	5 10-6	1.06	0.992
		CSP	-10.5	.471	0025	5x10 ⁻⁶	-5×10^{-6}	1.49	0.997
		RH	94.09	.001	.470			1.86	0.990
		WB	97.70	.020	.673			1.39	0.991
	2010	LOG	78.69	.009	129.8			0.65	0.925
		GOM	81.07	.006	76.33		6	0.70	0.944
Convolvulus arvensis		CSP	4.573	.641	0035	7x10 ⁻⁶	-7x10 ⁻⁶	2.12	0.994
sonvolvalias di vensis		RH	92.54	.003	.926			1.54	0.981
		WB	94.27	.005	.933			1.55	0.981
	2011	LOG	78.45	.013	138.3			0.82	0.953
		GOM	82.40	.008	101.9			1.05	0.964
		CSP	1.389	.287	.0003	$-2x10^{-6}$	3x10 ⁻⁶	1.9	0.987
		RH	108.8	.002	1.28			0.17	0.946
		WB	93.89	.012	.752			0.13	0.892
	2010	LOG	117.5	.004	443.6			0.88	0.986
		GOM	95.06	.003	479.2			0.87	0.988
Fuiles tomostais		CSP	2.737	.323	001	$4x10^{-6}$	-4x10 ⁻⁶	1.44	0.993
Fribulus terrestris		RH	105.2	.002	.970			1.45	0.997
		WB	104.3	.008	.699			1.45	0.997
	2011	LOG	91.28	.006	306.6			0.82	0.988
		GOM	99.86	.004	239.3			1.16	0.995
	1	CSP	.656	.193	0003	6x10 ⁻⁶	-7x10 ⁻⁶	1.68	0.998

*a= upper asymptote; b= slope parameter, m= point of inflection on the x axis, c= shape parameters of the curve, β_0 , β_1 , β_2 , β_3 and β_4 = regression parameters. **DW= the critical value of durbin –Watson, adj R^2 = adjusted coefficient of determination.

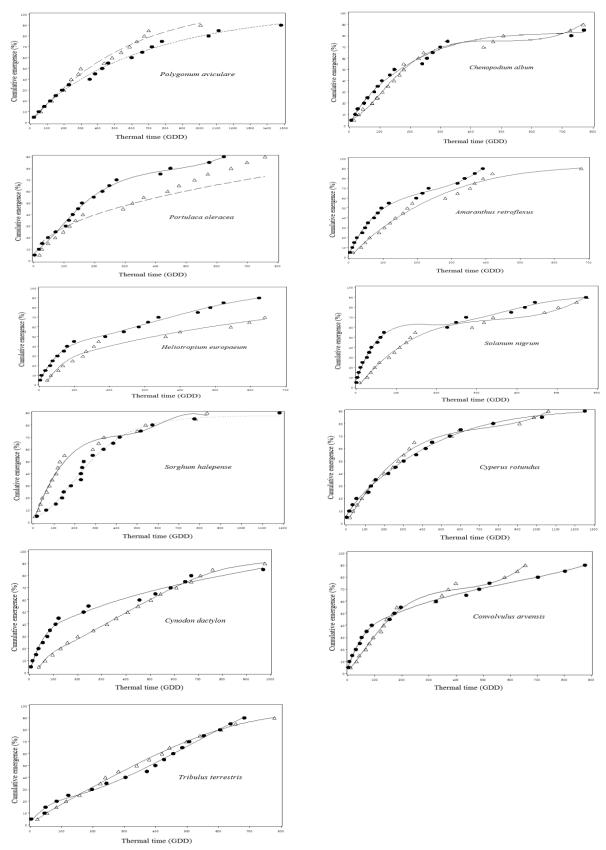


Figure 2 Cumulative emergence percent for weed species during 2010 and 2011 (Symbols for observed values and lines for predicted values; -- Weibull, — Chapman-Richard, •• Gompertz, __ cubic spline; \blacksquare Year 2011, \triangle Year 2010)

References

- Ali AA, Shabnam D. 2013.. Evaluation of Different Techniques for Breaking Seed Dormancy of *Heliotropium europaeum* L. (Boraginaceae). J. BIOL. ENVIRON. SCI., 7: 87-91
- Anonymous. 2010. Sowing Months and Minimum Sowing Temperature. [Cited 2011.]. http://www.rareplants.de /shop/uploads/files_versions/table_sowing_months_www. rareplants. de.pdf.
- Battla D, Benech-Arnold RL. 2004. A quantitative analysis of dormancy loss dynamics in *Polygonum aviculare L.* seeds: development of a thermal time model based on changes in seed population thermal parameters. Seed Sci. Res. 13: 55-68.
- Bilbro JD, Wanjura DF. 1982. Soil crust and cotton emergence relationship. Transactions of the ASAE 25: 1485-1488.
- Boydston RA. 1990. Time of Emergence and Seed Production of Longspine Sandbur (*Cenchrus longispinus*) and Puncturevine (*Tribulus terrestris*). Weed Sci. 38: 16-21.
- Colbach N, Durr C, Roger-Estrade J, Caneill J. 2005. How to model the effects of farming practices on weed emergence. Weed Res. 45: 2–17.
- Dorado J, Sousa E, Caltha IM, Gonzalez-Andujar JL, Fernandez-Quintanilla C. 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Res. 49: 251-260.
- Esiyok D. 2012. Kışlık ve yazlık sebze yetiştiriciliği. Meta Basım, İzmir.
- Forcella F, Benech Arnold RL, Sanchez R, Ghersa CM. 2000. Modeling seedling emergence. Field Crops Res. 67: 123-139.
- Grundy AC. 2003. Predicting weed emergence: a review of approaches and future challenges. Weed Res. 43: 1–11.
- Guillemin JP, Reibel C, Granger S. 2008. Evaluation of base temperature of several weed species. In: 5th International weed science congress, Int. weed sci. soc., Vancouver, Canada.
- Güncan A. 2009. Yabancı Otlar ve Mücadele Prensipleri, Selçuk Üniversitesi Basımevi. Konya

- Holm LG, Plucknett DL, Pancho JV, Herberger JP. 1977. The World's Worst Weeds. Distribution and Biology, University Press of Hawaii, Honolulu, HI, USA, 610 pp.
- Holt JS, Orcutt DR. 1996. Temperature thresholds for bud sprouting in perennial weeds and seed germination in cotton. Weed Sci. 44: 523-533.
- Lyons K. 2009. *Convolvulus arvensis*. http://wiki.bugwood.org /Convolvulus_arvensis. [Cited 2011.].
- Masin R, Loddo D, Benvenuti S, Zuin MC, Macchia M, Zanin G. 2010. Temperature and Water Potential as Parameters for Modeling Weed Emergence in Central-Northern Italy. Weed Science, 58: 216-222.
- Masin R, Loddo D, Benvenuti S, Otto S, Zanin G. 2012. Modeling Weed Emergence in Italian Maize Fields, Weed Science, 60: 254-259.
- Myers MW, Curran WS, Vangessel MJ, Calvin DD, Mortensen DA, Majek BA, Karsten HD, Roth GW. 2004. Predicting weed emergence for eight annual species in the northeastern United States. Weed Sci. 52: 913–919.
- Özer Z, Önen H, Tursun N, Uygur FN. 1999. Türkiye'nin Bazı Önemli Yabancı Otları (Tanımları ve Kimyasal Savaşımları). Gaziosmanpaşa Üniversitesi, Ziraat Fakültesi Yayınları No:38, Kitaplar Serisi No:16, ISBN: 975-7328-24-3. Tokat, 1999.
- SAS. 2008. SAS user's guide. SAS Inst. Inc., Cary, NC, USA.
- Satorre EH, Rizzo FA, Arias SP. 1996. The effect of temperature on sprouting and early establishment of *Cynodon dactylon*. Weed Res. 36: 431–440.
- Steinmaus SJ, Prather TS, Holt JS. 2000. Estimation of base temperatures for nine weed species. J. of Experi. Bot. 51: 275-286.
- Tepe I. 2014. Yabancı otlarla mücadele. SİDAS Medya ltd. Şti. VAN
- Uzun A, Serim İ, Öngen KN. 1993. Turşuluk hıyarlarda yabancı ot sorunu ve mücadelesi üzerinde araştırmalar, Türkiye I. Herboloji Kongresi (3-5 Şubat 1993, Adana) Bildirileri, s 357-363.