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 The aim of this study was to compare some estimation methods (LS, M, S, LTS and MM) 

for estimating the parameters of simple linear regression model in the presence of outlier 

and different sample size (10, 20, 30, 50 and 100). To compare methods, the effect of 

chest girth on body weights of Karayaka lambs at weaning period was examined. Chest 

girth of lambs was used as independent variable and body weight at weaning period was 

used as dependent variable in the study. Also, it was taken consideration that there were 

10-20% outliers of data set for different sample sizes. Mean square error (MSE) and 

coefficient of determination (R2) values were used as criteria to evaluate the estimator 

performance. Research findings showed that LTS estimator is the best models with 

minimum MSE and maximum R2 values for different size of sample in the presence of 

outliers. Thereby, LTS method can be proposed, to predict best-fitted model for 

relationship between chest girth and body weights of Karayaka lambs at weaning period, 

to the researches who are studying on small ruminants as an alternative way to estimate 

the regression parameters in the presence of outliers for different sample size. 
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Introduction 

Regression analysis is an important statistical tool 

used to fit a model describing quantitative relationship 

between a response variable (such as body weight) and 

one or more explanatory variable such as chest girth, 

chest depth, body length etc. in animal research. To build 

a regression model, researchers (Benyi, 1997; Atta and El 

khidir, 2004; Topal and Macit, 2004; Çankaya, 2009; 

Sarti et al., 2009; Çankaya et al., 2011) have frequently 

used least squares (LS) method, due to the simplicity of 

the idea of minimizing the sum of squared residuals and 

the interpretability of the final model parameter estimates 

(Pérez et al., 2013). Although LS method achieves 

optimum results when the underlying error distribution is 

Gaussian to estimate the weight of live animals, it brings 

some disadvantages. One of these disadvantages, LS 

method is sensitive to outliers which can disturb the 

assumption of normality, one of the most important 

components of statistical studies. This situation reduces 

the predictive power of the method (Çankaya et al., 2011). 

For example, Nsoso et al. (2003) reported that the 

prediction equation for body weight based on heart girth 

was very poor (R
2
=0.04) during the dry season under 

extensive management, which is not a true prediction 

resulted from using an inappropriate method for their 

study. Successful use of regression requires an 

appreciation of both the theory and the practical problems 

that typically arise when the technique is employed with 

real-world data (Montgomery, 2012).  

Outliers may arise for many different reasons such as 

sampling, human, instrument error etc. and each different 

reason may require different treatments (Çankaya, 2009). 

If an outlier arises from a recording or measurement error, 

in this case elimination of these records may be a good 

solution. However, if the outliers represent a valid 

observation, it may point to some significant behavior 

falling out of range of the model (Zaman et al., 2001). So, 

robust regression methods such as M-estimation (Huber, 

1973) S-estimation (Rousseeuw and Yohai, 1984), LTS 

(Rousseeuw, 1984) and MM-estimation (Yohai, 1987) are 

described for the problems. The main propose of robust 

regression is to provide resistant (stable) results in the 

presence of outliers (Chen, 2002). Applications of robust 

regression methods in animal researches began to increase 

with the availability of related computer packages 

(Çankaya et al., 2006; Çankaya, 2009; Faustini et al., 

2010; Yadav et al., 2011). To our knowledge, there is 

incomplete knowledge on comparative studies of LS and 

robust regression methods for different sample size and 

on comparison of estimation methods for parameters of 

regression model in animal science. Accordingly, the 

objectives of the present study were; 1: to estimate the 

most appropriate mathematical model for defining the 
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relationship between chest girt and body weight for 

Karayaka lambs in weaning period when the data set was 

contaminated 10% and 20% with outliers, 2: to compare 

some estimation methods (LS-, M-, S-, LTS- and MM-

estimation) for estimating the parameters of simple linear 

regression model in the presence of outlier and different 

sample size (10, 20, 30, 50 and 100). 

Materials and Methods 

Materials 

In this study, the data are the measures of body weight 

(BW) and chest girth (CG) from totally 197 Karayaka 

lambs at weaning period which were raised at the 

Research and Application Farm of Agriculture Faculty of 

Ondokuz Mayis University.  

To evaluate the efficiency of the LS-, M-, S-, LTS- 

and MM- estimation methods, different sample size (10, 

20, 30, 50 and 100) and 10-20% outliers of data groups 

that making random distribution were created with SPSS 

statistical package program (SPSS, 1999). Standardized 

residual test was used to determine whether the outlier in 

each data set. Significance was evaluated at P<0.05 for all 

tests. All statistical analyses were performed by SAS 

software (SAS, 2002). 

Methods 

Regression analysis consists of a collection of 

techniques that are used to explore relationships between 

variables (Çankaya, 2009). A main objective of regression 

analysis is to estimate the unknown parameters in the 

regression model. This process is also called fitting the 

model to data. Regression models can be either linear or 

nonlinear. A linear model assumes the relationships 

between variables are straight-line relationships, while a 

nonlinear model assumes the relationships between 

variables are represented by curved lines (Anonymous, 

2013). In animal researches, you will often see the 

relationship between the body weight and the chest girth 

measured an animal modeled as a linear relationship. A 

linear regression model with one predictor variables can 

be expressed with the following equation: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖 (i=1, 2, …, n) 

Where the intercept β0, the slope β1 are unknown 

parameters and εi is a random error component usually 

assumed to be normally distributed with mean zero and 

variance σ
2
, Yi is the dependent variable or response, Xi, is 

independent variable or the predictor. The intercept β0 

gives the value of Y that is expected when X=0. The slope 

β1 is interpreted as the expected change in Yi for a unit 

change in Xi (Çankaya, 2009). The data from this 

experiment were used to predict the body weight based 

on𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖, where yi is body weight of i
th

 lamb 

(kg), xi is the chest girth of i
th 

lamb (cm), 𝑏0 is the 

constant and 𝑏1 is the regression coefficient.  

Here, the methods used for estimation parameters 

could be introduced as follows. 

Least Squares Method: Least squares method is a 

procedure to determine the best fit line to data in the 

presence of normally distributed errors and 

homoscedasticity (constant variances) (Miller, 2006). The 

concept of "best fit" requires definition of some measure 

of the error between the data and the line. In other words, 

LS method attempts to find an estimate b for β which 

minimizes some criterion function of residuals where the 

i
th

 residual ri = ri(b) = yi -�̂�𝑖), which is defined as 

difference between the observed response value yi and the 

fitted response value �̂�𝑖 (Olive and Hawkins, 2003). LS 

method chooses �̂� to minimize 

𝑄(𝐿𝑆)(𝑏) = ∑ 𝑟𝑖
2

𝑛

𝑖=1

 

This method consists of the minimization of the sum 

of the squared residuals. However, in spite of the 

mathematical beauty and computational simplicity of LS 

method, this estimator is now being criticized more and 

more for its dramatic lack of robustness. In addition, even 

there is a single outlier; it can have a large influence on 

the results of regression equation (Rousseeuw and Leroy, 

1987). Outlier is defined as  

Outlier = {
0
1

      
if|ri| ≤ kσ
otherwise

 

Where, by default k=3, and scale σ is computed as 

corrected median of the absolute residuals. 

M- Estimation Method: The most common general 

method is M-estimation in the context of robust 

regression was first introduced by Huber (1973) as a 

result of making the least squares approach robust. M-

estimators use an iterative calculations process, whereby 

an estimate is obtained from eachiteration by weighting 

the observations according to their distance from the core 

of the data set. Huber's estimator is an M- estimator 

possessing the characteristics of robustness and efficiency 

(Çankaya, 2009; Palmer et al., 2006). 

Instead of minimizing a sum of squares of the 

residuals, a Huber-type M estimator �̂�𝑀 or bM of β 

minimizes a sum of less rapidly increasing functions of 

the residuals: 

 𝑄(𝑀)(𝑏) =
𝑚𝑖𝑛

�̂�
∑ 𝑝 (

𝑟𝑖

𝜎
)

𝑛

𝑖=1

 

where ri = ri(b) = yi -�̂�𝑖. If σ is known, by taking 

derivatives with respect to β is also a solution of system 

of p equations: 

∑ 𝜓 (
𝑟𝑖

𝜎
) 𝑥𝑖𝑗 = 0                       𝑗 = 1, … , 𝑝                

𝑛

𝑖=1

 

where, ψ = p'. If p is convex, bM is the unique solution 

(Chen, 2002). For the LS estimate, p is the quadratic 

function, 

𝑝(𝑟) = {

1

2
𝑟2 𝑓𝑜𝑟|𝑟| ≤ 𝑘,

𝑘|𝑟| −
1

2
𝑘2 𝑓𝑜𝑟|𝑟| >𝑘,

 

Where k=1.345 for Huber estimator. 
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The robust version of R
2 

for the M estimate is defined 

as (SAS Institute Inc, 2009); 

𝑅2 =

∑ 𝑝 (
𝑦𝑖 − �̂�

�̂�
) − ∑ 𝑝 (

𝑦𝑖 − 𝑥𝑖
𝑇�̂�

�̂�
)

∑ 𝑝 (
𝑦𝑖 − �̂�

�̂�
)

 

S- Estimation Method: The S estimate proposed by 

Rousseeuw and Yohai (1984) is defined as the p-vector 

�̂�𝑆 = 𝑎𝑟𝑔 
𝑚𝑖𝑛

𝜃
 𝑆(𝜃) 

Where the dispersion S(θ) is the solution of 

1

𝑛 − 𝑝
∑ 𝜒

𝑛

𝑖=1

(
𝑦𝑖 − 𝑥𝑖

𝑇𝜃

𝑆
) = 𝛽 

β is set to ∫ 𝜒 (𝑠)𝑑 ϕ (𝑠) such that �̂�𝑆 and S(�̂�𝑆) are 

asymptotically consistent estimates of θ and σ for the 

Gaussian regression model. The breakdown value of the S 

estimate is 

𝛽

𝑠𝑢𝑝𝑠𝜒(𝑠)
 

The robust version of R
2
 for the S estimate is defined 

as 

𝑅𝑆
2 = 1 −

(𝑛 − 𝑝)𝑆𝑝
2

(𝑛 − 1)𝑆𝜇
2
 

for the model with the intercept term and 

𝑅𝑆
2 = 1 −

(𝑛 − 𝑝)𝑆𝑝
2

𝑛𝑆0
2  

for the model without the intercept term, where Sp is the S 

estimate of the scale in the full model, Sμ is the estimate 

of the scale in the regression model with only the 

intercept term, and S0 is the S estimate of the scale 

without any regressor (SAS Institute Inc, 2009). 

LTS Estimation Method: The least trimmed squares (LTS) 

estimate proposed by Rousseeuw (1984) is defined as the 

p-vector  

�̂�𝐿𝑇𝑆 = arg  
𝑚𝑖𝑛

𝜃
𝑄𝐿𝑇𝑆(𝜃) 

where 

𝑄𝐿𝑇𝑆(𝜃) = ∑ 𝑟(𝑖)
2

ℎ

𝑖=1

 

 

 

𝑟(1)
2 ≤ 𝑟(2)

2 ≤ ⋯ ≤ 𝑟(𝑛)
2  are the ordered squared residuals 

𝑟𝑖
2 = (𝑦𝑖 − 𝑥𝑖

𝑇𝜃)2, i=1,…,n, and h is defined in the range 
𝑛

2
+ 1+≤ ℎ ≤

3𝑛+𝑝+1

4
. 

 

By default, ℎ = [
3𝑛+𝑝+1

4
]. The breakdown value is 

𝑛−ℎ

𝑛
 for the LTS estimate (Chen, 2002). 

The robust version of R
2
 for the LTS estimate is 

defined as 

𝑅𝐿𝑇𝑆
2 = 1 −

𝑠𝐿𝑇𝑆
2 (𝑋, 𝑦)

𝑠𝐿𝑇𝑆
2 (1, 𝑦)

 

For models with the intercept term and as 

𝑅𝐿𝑇𝑆
2 = 1 −

𝑠𝐿𝑇𝑆
2 (𝑋, 𝑦)

𝑠𝐿𝑇𝑆
2 (0, 𝑦)

 

For models without the intercept term, where 

𝑠𝐿𝑇𝑆
2 (𝑋, 𝑦) = 𝑑ℎ,𝑛√

1

ℎ
∑ 𝑟(𝑖)

2

ℎ

𝑖=1

 

SLTS is a preliminary estimate of the parameter σ in the 

distribution function 𝐿(.
𝜎⁄ ). 

Here 𝑑ℎ,𝑛is chosen to make sLTS consistent, assuming 

a Gaussian model (SAS Institute Inc, 2009). 

MM- Estimation Method:MM estimation is a combination 

of high breakdown value estimation and efficient 

estimation, which was introduced by Yohai (1987). MM- 

estimation method has three stage procedures (Stromberg, 

1993; Alma, 2011). 

 The first stage is calculating an S-estimation 

method with influence function 

𝑝(𝑥) = {
3 (

𝑥

𝑐
)

2

− 3 (
𝑥

𝑐
)

4

+ 3 (
𝑥

𝑐
)

6

, 𝑖𝑓|𝑥| ≤ 𝑐
  
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The value of tuning constant, c, is selected as 1,548. 

 The second stage calculates the parameters that 

provide the minimum value of ∑ 𝑝 (
𝑦𝑖−𝑥𝑖

′�̂�𝑀𝑀

�̂�0
)𝑛

𝑖=1  

where p(x) is the influence function used in the 

first stage with tuning constant 4,687 and �̂�0 is 

the estimate of scale form the first step (standard 

deviation of the residuals). 

 The final step computes the MM estimate of 

scale as the solution to 

1

𝑛 − 𝑝
∑ 𝑝 (

𝑦𝑖 − 𝑥𝑖
′�̂�

𝑠
) = 0,5

𝑛

𝑖=1

 

The robust version of R
2
 for the MM estimate is 

defined as (SAS Institute Inc, 2009); 

𝑅2 =

∑ 𝑝 (
𝑦𝑖 − �̂�

�̂�
) − ∑ 𝑝 (

𝑦𝑖 − 𝑥𝑖
′�̂�

�̂�
)

∑ 𝑝 (
𝑦𝑖 − �̂�

�̂�
)
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Results 

The data obtained from this study was initially 

examined for being compatible with Shapiro Wilk (n=10, 

20 and 30) or Kolmogorov Smirnov test (n=50 and 100) 

for normal distribution. Descriptive statistics (means, 

standard deviations, coefficients of variation) and 

significant values of normality test for body weight and 

chest girth of the Karayaka lambs at the weaning period 

with different sample size (n=10, 20, 30, 50 and 100) and 

10% outliers are given in Table 1. The average body 

weight of the Karayaka lambs is between 17.18 - 17.88 kg 

while the chest girth measurements are ranged from 58.90 

to 60.47 cm for the different sample size. In addition, it 

can be said that the data in terms of variation is a 

homogeneous structure because the coefficients of 

variation by BW and CG are generally small than 30%. 

In this study, four robust regression (M, MM, LTS and 

S-estimation) methods were comparatively evaluated 

against LS regression method in the presence of outlier 

(10 and 20% outliers in BW variable) and different 

sample size (10, 20, 30, 50 and 100). Table 2 presents the 

results of regression analysis in which five estimation 

methods were used to predict best-fitted model for 

relationship between CG and BW of Karayaka lambs with 

different sample size and 10% outliers. 

As seen Table 2, if 10% of the data set (BW variable) 

to be outliers, the model estimated by LTS estimation 

method was the best model for body weight due to 

maximum R
2
 and minimum MSE values for different 

sample size in this study. Moreover, the results for 10% 

outlier showed that LS method’s performance was 

generally increasing while the sample size was increasing. 

Descriptive statistics (means, standard deviations, 

coefficients of variation) and significant values of 

normality test for body weight and chest girth of the 

Karayaka lambs at the weaning period with different 

sample size and 20% outliers are given in Table 3. The 

average body weight of the Karayaka lambs is between 

15.08 - 17.72 kg while the chest girth measurements are 

ranged from 56.36 to 59.85 cm for the different sample 

size.  

Table 4 presents the results of regression analysis in 

which five estimation methods were used to predict best-

fitted model for relationship between CG and BW of 

Karayaka lambs with different sample size and 20% 

outliers. 

If 20% of the data set (BW variable) to be outliers, the 

model estimated by LTS estimation method was the best 

model for body weight due to maximum R
2
 and minimum 

MSE values for different sample size in this study (Table 

4).  

Discussion 

Sensitivity of established studies in the field of animal 

science is very important. Because, the pre-values were 

obtained, it could be to help breeding work in the future. 

So, the data to be reliable and records must be careful. 

But in animal science, depending on the care and feeding 

conditions excepted from measurement or recording 

errors can be outliers between the data sets. Previous 

studies indicated that the method of LS is not resistant to 

outliers. So, simple linear regression model was estimated 

with LS method.  For the whole situation of outliers, the 

LS method has low explanatory power. The results 

obtained from this study were similar to other studies. So, 

robust regression techniques (M-, S-, LTS- and MM-

estimation methods) which are more resistant to outliers 

were used for the simple linear regression estimation. 

According to the findings of the study, LTS-estimation 

method which has maximum R
2
 and minimum MSE 

values is the best method from the others. Therefore LTS-

estimation method has helped to estimate the best fitted 

model for different sample size and in the presence of 10-

20% outliers. The LTS estimation method is the best 

model which can explain relationship between CG and 

BW data. In second place, it was showed that the S-

estimation method was the best performance. Also, in 

previous studies based on regression analysis for 

estimating response variable from measurement/s or 

simulated data including outliers, M-estimation (McKean 

et al., 1993; Çankaya, 2009; Alma, 2011), S-estimation 

(Çankaya et al., 2011; Alma, 2011), LTS-estimation 

(Schumacker et al., 2002; Çankaya et al., 2006; Alma, 

2011) and MM estimation (Schumacker et al., 2002; 

Alma, 2011; Çankaya et al., 2011) methods have 

preferred to least squares method. Alma (2011) were 

similar findings for LTS estimation method in the 

multiple regression presence of 10% outlier 5% leverage 

points and 15% outlier and 5% leverage points. But all 

results for the research showed that S and M estimation 

methods perform better than LTS and MM estimation 

methods. 

 

 

Table 1 Mean body weight and chest girth of Karayaka lambs in the different sample and 10% outliers. 

Traits n Means Std. Deviation CV (%) P* 

BW 10 17.25 3.338 19.345 0.828 

CG 10 59.02 6.728 11.399 0.077 

BW 20 17.39 5.989 34.439 0.560 

CG 20 60.47 9.566 15.818 0.703 

BW 30 17.18 3.592 20.908 0.090 

CG 30 60.17 7.136 11.860 0.263 

BW 50 17.64 5.265 29.847 0.085 

CG 50 58.90 9.755 16.562 0.200 

BW 100 17.88 4.561 25.508 <0.001 

CG 100 60.12 8.615 14.329 0.182 

*: Sig. Values for Shapiro Wilk and Kolmogorow Smirnov normality test 
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Table 2 The results of regression analysis for different sample size and 10% outliers 

Methods n  Coef. Lower Bound Upper Bound Sig. Levels (P values) MSE R2 

LS 

10 

Constant 2.250 -18.204 23.345 0.783 
9.380 0.140 

CG 0.249 -0.101 0.599 0.140 

S 
Constant -14.980 -26.744 -3.217 0.013 

2.313 0.650 
CG 0.527 0.333 0.722 <0.001 

M 
Constant -0.485 -18.204 17.234 0.957 

3.447 0.277 
CG 0.298 -0.0006 0.569 0.050 

LTS 
Constant -14.698 -25.437 -3.959 0.007 

1.474 0.849 
CG 0.524 0.347 0.702 <0.001 

MM 
Constant -14.899 -26.536 -3.263 0.012 

2.355 0.511 
CG 0.526 0.334 0.719 <0.001 

LS 

20 

Constant -13.018 -24.323 -1.713 0.026 
13.445 0.645 

CG 0.503 0.318 0.688 <0.001 

S 
Constant -22.621 -25.863 -19.378 <0.001 

1.333 0.957 
CG 0.655 0.602 0.707 <0.001 

M 
Constant -22.570 -25.655 -19.486 <0.001 

0.956 0.722 
CG 0.654 0.603 0.704 <0.001 

LTS 
Constant -22.439 -25.256 -19.624 <0.001 

0.901 0.971 
CG 0.652 0.606 0.698 <0.001 

MM 
Constant -22.549 -25.682 -19.417 <0.001 

1.404 0.718 
CG 0.654 0.603 0.705 <0.001 

LS 

30 

Constant -4.195 -12.560 4.169 0.313 
6.710 0.498 

CG 0.355 0.217 0.493 <0.001 

S 
Constant -7.104 -18.253 4.045 0.212 

2.734 0.489 
CG 0.402 0.219 0.584 <0.001 

M 
Constant -4.621 -13.049 3.808 0.282 

3.201 0.465 
CG 0.362 0.223 0.501 <0.001 

LTS 
Constant -14.340 -22.373 -6.307 <0.001 

2.042 0.625 
CG 0.513 0.384 0.643 <0.001 

MM 
Constant -5.308 -14.682 4.065 0.267 

3.017 0.422 
CG 0.373 0.219 0.527 <0.001 

LS 

50 

Constant -5.662 -12.022 0.699 0.080 
13.096 0.537 

CG 0.396 0.289 0.502 <0.001 

S 
Constant -12.078 -18.949 -5.207 <0.001 

3.558 0.566 
CG 0.486 0.373 0.599 <0.001 

M 
Constant -6.231 -12.613 0.152 0.056 

3.484 0.469 
CG 0.400 0.293 0.507 <0.001 

LTS 
Constant -14.296 -19.696 -8.897 <0.001 

2.543 0.698 
CG 0.526 0.437 0.615 <0.001 

MM 
Constant -7.282 -14.159 -0.405 0.038 

3.707 0.422 
CG 0.414 0.299 0.528 <0.001 

LS 

100 

Constant -8.023 -11.767 -4.278 <0.001 
7.093 0.663 

CG 0.431 0.369 0.493 <0.001 

S 
Constant -17.890 -21.502 -14.278 <0.001 

2.343 0.765 
CG 0.582 0.524 0.641 <0.001 

M 
Constant -11.021 -14.459 -7.582 <0.001 

2.636 0.634 
CG 0.476 0.420 0.533 <0.001 

LTS 
Constant -18.579 -21.574 -15.584 <0.001 

1.675 0.829 
CG 0.593 0.545 0.642 <0.001 

MM 
Constant -15.476 -19.122 -11.831 <0.001 

2.409 0.577 
CG 0.545 0.486 0.604 <0.001 

 

Table 3 Mean body weight and chest girth of Karayaka lambs in the different sample and 20% outliers. 

Traits n Means Std. Deviation CV (%) P* 

BW 10 15.08 4.494 29.801 0.583 

CG 10 59.85 7.764 12.972 0.584 

BW 20 17.72 4.648 26.230 0.195 

CG 20 56.75 9.889 17.425 0.398 

BW 30 17.07 4.917 28.805 0.023 

CG 30 56.36 12.605 22.360 0.472 

BW 50 17.48 7.027 40.200 0.200 

CG 50 57.50 9.528 16.570 0.200 

BW 100 16.50 7.910 47.939 0.093 

CG 100 56.43 13.460 23.852 0.145 

*: Sig. Values for Shapiro Wilk and Kolmogorow Smirnov normality test 
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Table 4. The results of regression analysis for different sample size and 20% outliers 

Methods n  Coef. Lower Bound Upper Bound Sig. Levels (P values) MSE R2 

LS 

10 

Constant -8.544 -29.360 12.272 0.072 
12.157 0.465 

CG 0.395 0.050 0.740 0.030 

S 
Constant -11.303 -29.592 6.987 0.226 

3.598 0.513 
CG 0.453 0.146 0.760 0.004 

M 
Constant -14.993 -25.547 -4.438 0.005 

1.751 0.471 
CG 0.527 0.352 0.702 <0.001 

LTS 
Constant -14.886 -21.660 -8.113 <0.001 

1.223 0.847 
CG 0.526 0.412 0.641 <0.001 

MM 
Constant -9.740 -28.182 8.701 0.301 

3.772 0.438 
CG 0.421 0.113 0.729 0.007 

LS 

20 

Constant 2.089 -8.767 12.945 0.691 
14.975 0.344 

CG 0.276 0.087 0.464 0.007 

S Constant -15.505 -23.781 -7.229 <0.001 
3.139 0.590 

CG 0.557 0.419 0.695 <0.001 

M Constant -13.708 -20.140 -7.277 <0.001 
2.479 0.404 

CG 0.529 0.417 0.641 <0.001 

LTS Constant -22.243 -27.181 -17.305 <0.001 
1.174 0.835 

CG 0.663 0.582 0.744 <0.001 

MM Constant -13.724 -21.874 -5.574 0.001 
3.363 0.392 

CG 0.529 0.393 0.666 <0.001 

LS 

30 

Constant 2.822 -3.814 9.457 0.391 
14.521 0.420 

CG 0.253 0.138 0.368 <0.001 

S 
Constant -2.211 -9.372 4.950 0.545 

3.504 0.555 
CG 0.332 0.211 0.453 <0.001 

M 
Constant -0.264 -6.132 5.604 0.929 

3.719 0.437 
CG 0.302 0.200 0.403 <0.001 

LTS 
Constant -18.056 -23.071 -13.042 <0.001 

1.532 0.817 
CG 0.579 0.498 0.661 <0.001 

MM 
Constant -1.286 -7.517 4.946 0.686 

4.343 0.444 
CG 0.317 0.212 0.423 <0.001 

LS 

50 

Constant 5.912 -6.086 17.910 0.327 
46.657 0.074 

CG 0.201 -0.005 0.407 0.055 

S 
Constant -2.274 -14.742 10.194 0.721 

6.977 0.079 
CG 0.369 0.147 0.591 0.001 

M 
Constant 4.643 -8.192 17.478 0.478 

5.467 0.062 
CG 0.227 0.007 0.447 0.043 

LTS 
Constant -14.720 -20.794 -8.646 <0.001 

3.009 0.646 
CG 0.622 0.513 0.731 <0.001 

MM 
Constant 4.585 -8.223 17.393 0.483 

7.381 0.060 
CG 0.228 0.004 0.453 0.045 

LS 

100 

Constant 1.920 -4.212 8.051 0.536 
50.957 0.194 

CG 0.259 0.153 0.364 <0.001 

S Constant -2.293 -5.957 1.372 0.220 
6.398 0.422 

CG 0.375 0.309 0.439 <0.001 

M Constant -0.663 -6.057 4.731 0.809 
5.334 0.251 

CG 0.326 0.233 0.418 <0.001 

LTS Constant -2.493 -4.872 -0.115 0.039 
2.716 0.787 

CG 0.388 0.346 0.430 <0.001 

MM Constant -1.447 -6.086 3.191 0.541 
6.474 0.276 

CG 0.347 0.266 0.429 <0.001 

 

Çankaya et al. (2011) recommend that S estimation 

method was the best performance than the others (MM- 

Theil estimation). These findings were similar for our 

study except LTS estimation method. Schumacher et al. 

(2002) compared OLS, LTS and MM estimation methods. 

They recommended MM estimation method for the 

multiple regression but others not recommended the use. 

Çankaya (2009)
 
different robust techniques (Theil, M, 

LAD) compared for different sample sizes (n=10, 20, 30 

and 50) but LTS- estimation method did not evaluated in 

his study. M- estimation method was proposed method 

against outliers. But in our study established that S 

estimation method is more resistant other methods except 

LTS- estimation method. MM estimation method is the 

worst performance in robust techniques. So, studies 

determined that a linear relationship between the 

variables, not recommended for use. 

In conclusion, observation values obtained from 

research should be re-examined, in the presence of 

outliers. However, if there is a real outlier representing 
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information, the use of robust techniques will be useful. 

Among these techniques, LTS- estimation method, as an 

alternative to the method of least squares, may increase 

the degree of accuracy of the model estimates. 

Furthermore, studies might compare the performance of 

LTS- estimation method against other robust methods 

unused in our study under both simple and multiple linear 

regressions. 
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