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The roles of protein in bodybuilding and the regulation of biological processes are important in 

sustaining life. A large amount of protein is required by both humans and animals and this cannot 

be supplied by only conventional sources. This is because of the rapid increase in world population. 

The present sources of protein will not meet global protein demand in years to come. Scientists 

explore the production of single-cell protein (SCP), as an alternative source of protein, through the 

utilization of wastes and low-value materials. SCP can supply high-quality protein containing both 

essential and non-essential amino acids that can be utilized by humans and animals. Protein from 

microbial biomass is cheaper than animal proteins because the substrates used in the production are 

generally cheaper and more readily available. Moreover, the production process does not require 

arable land and the entire process can be completed within a short time. This article reviewed the 

process of SCP production. Different raw materials used in the production and variations in growth 

media preparation methods were discussed. Various sources of fermentation microorganisms and 

their potential substrate were reviewed. Growth media enrichment using different carbon, nitrogen, 

and mineral sources was also discussed. 
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Introduction 

Proteins are the building blocks of the body and play 

essential roles in the regulation of biological processes 

including information processing (Shahi et al., 2017). 

Protein is used by humans and animals as a source of 

nitrogen and essential amino acids; for bodybuilding and 

repair, regulation of biochemical processes, and synthesis 

of energy under certain conditions (Ritala et al., 2017; 

Milala et al., 2018). The term Single Cell Protein (SCP) 

was first coined in 1966 by Carol Wilson to described 

protein from microbial biomass (Nasseri et al., 2011). SCP 

is a dead, dried microbial cell mass of bacteria, fungi, and 

algae (Nalage et al., 2016). It is also regarded as proteins 

extracted from only microorganisms (Shete and Raut, 

2018). 

Population growth, poverty, and starvation force 

humans to explore additional sources of food to meet-up 

with the accelerated population growth (Kapilan et al., 

2018; Reihani and Khosravi-Darani, 2019). By 2050 the 

world population will require 1,250 million tonnes of meat 

and dairy per year to meet global protein demand at present 

consumption levels. Achieving this will be very difficult 

without exploring other sources. The present trend in the 

production of protein is the cultivation of microbes and 

algae that can provide the required balance of essential 

amino acids and contain more than 30% protein in their 

biomass (Ritala et al., 2017). The potential of some 

bacterial and fungal species in the production of single-cell 

protein was discovered some twenty years ago (Reihani 

and Khosravi-Darani, 2019). The Conversion of food 

wastes into valuable products is fascinating and becoming 

more economically viable. It safeguards public health 

through useful and innovative recycling methods (Gervasi 

et al., 2018). Protein scarcity account for acceptance of 

SCP and its role in the provision of safe food and feed was 

reported by many (Reihani and Khosravi-Darani, 2019). 

Production of SCP is through fermentation, a 

biochemical process that breakdown complex substrates 

into simpler compounds by the action of microorganisms 

such as bacteria and fungi. Temperature, pH, nature, and 

composition of the medium, gas composition, and 

operational system affect the fermentation process 

(Mensah and Twumasi, 2017). SCP production was 

commercialized for decades, but research on fermentation 

optimization and study on potentials of many wastes and 
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low-value materials in the production of SCP is still 

interesting to many researchers (Reihani and Khosravi-

Darani, 2019).  

In the production of SCP, microorganisms utilize 

inexpensive feedstock or waste as carbon sources and grow 

into biomass rich in protein and amino acids (Nasseri et al., 

2011). Feedstock and waste used in the production are 

mostly from agricultural sources and the product can be 

used as a protein supplement in either food or feed (Mensah 

and Twumasi, 2017; Anichebe et al., 2019). Agricultural 

wastes are rich in cellulose which is a suitable carbon 

source for some microorganisms. Production of SCP using 

agricultural wastes through fermentation is one of the 

important approaches to curtail protein shortage. The 

efficient utilization of waste from food industries will also 

maximize production profit (Zhou et al., 2019). In addition, 

many harmful substances are neutralized and 

environmental pollutions are also reduced. The aim here is 

not only to save the environment but also to produce a 

substance that is economically valuable (Spalvins et al., 

2018a). 

The shorter generation time in microorganisms allows 

for easy transformation and substrate utilization. SCP 

production does not require agricultural land and cannot be 

affected by season or climate because the process can be 

controlled without many difficulties (Yunus et al., 2015; 

Suman et al., 2015). 

SCP is an important foodstuff, rich in protein, and also 

contains other vital nutrients such as lipids, carbohydrates, 

nucleic acids, non-protein nitrogenous compounds, 

vitamins, and inorganic substances (Suman et al., 2015; 

Nalage et al., 2016). Biomass of microbial protein contains 

both essential and nonessential amino acids and minerals 

such as phosphorus, potassium, sodium, calcium, etc. (Al-

Hadithi et al., 2018). High nucleic acid content and slow 

digestibility will limit the utilization of SCP as a replacer 

to conventional protein. The possibility of developing 

allergic reactions by some individuals is also alarming 

(Nasseri et al., 2011). 

 

Food Wastes as Substrates for Production of SCP 

 

Food processing and agricultural wastes are the main 

raw materials for the production of SCP; tons of wastes are 

generated from the consumption of oranges, bananas, 

pineapples, and watermelons (Oshoma et al., 2017). 

Lignocellulose wastes from millions of tons of wheat, rice, 

and corn processed globally are potential raw materials for 

SCP production (Said et al., 2019). It can be produced from 

wheat bran (Yunus et al., 2015), orange peel (Milala et al., 

2018; Zhou et al., 2019), banana peel (Jiru and Melku, 

2018; Oshoma et al., 2017), pineapple waste (Mensah and 

Twumasi, 2017; Anichebe et al., 2019), potato, paper, and 

corncob starch waste residue (Al-Hadithi et al., 2018), rice 

straw, bagasse, and coffee husk (Said et al., 2019), tofu and 

cheese wastes (Putri et al., 2018), bele's fruit peel (Haddish, 

2015), pulp, juice, and peel of lemon and orange (Mahan 

et al., 2018), potato wastewater and glycerol (Kurcz et al., 

2018), sugarcane bagasse  (Samadi et al., 2016), papaya 

(Rajendran et al., 2018), sugar beet pulp, cassava, coconut, 

grape and mango wastes (Suman et al., 2015). 

Liquid substrates reported are cheese whey (Yadav et 

al., 2015; Monkoondee et al., 2016), non-dairy creamer 

wastewater (Dewi et al., 2017), sugar refinery wastewater 

(Saejung and Salasook, 2020), pineapple peel juice, and 

rice washing water (Mujdalipah and Putri, 2020), latex 

rubber sheet wastewater (Kornochalert et al., 2014), 

dephenolized olive mill wastewater (Giavasis and Petrotos, 

2016), sugarcane molasses (Hansen and Cheong, 2019; 

Spalvins et al., 2018a), soybean molasses (Gao et al., 

2012), deproteinized leaf juice (Chanda and Chakrabarti, 

1996; Spalvins et al., 2018a), food waste-derived volatile 

fatty acids (Wainaina et al., 2020), waste milk (Myint et al., 

2020), municipal wastewater treatment effluent (Steinberg 

et al., 2017), food processing wastewater (Xu et al., 2020). 

Urban bio-waste is also a potential substrate for SCP 

production after anaerobic digestion; methane produce 

during digestion can serve as a carbon source in the 

production of SCP rich in essential amino acids 

(Khoshnevisan et al., 2019). The use of methane (from 

natural gas) as a sole source of carbon in the SCP 

production was reported by Ritala et al. (2017) and Shete 

and Raut (2018). 

Production of SCP from processing wastewater 

improves the wastewater quality by neutralizing materials 

that are harmful to the environment (Giavasis and Petrotos, 

2016; Spalvins et al., 2018a; Saejung and Salasook, 2020), 

also save the huge amounts required for their disposal 

(Kosseva, 2009). Substrates in liquid wastes are readily 

digestible and can easily be converted into biomass 

(Hülsen et al., 2019). 

 

SCP Production Process 

 

The production process of SCP varies according to the 

substrate. The operations involved in the production are 

media preparation, sterilization of the media, media 

enrichment, inoculum isolation and growing, inoculation 

and incubation, harvesting, and protein content 

determination. 

 

Media Preparation  

 

The primary raw materials used in the production of 

growth media for SCP production are fruits and vegetable 

wastes, lignocellulose materials, and liquid wastes. 

 

Media Preparation Using Fruit and Vegetable Wastes 

Dry, wet, and direct methods are used in the production 

of SCP growth media from fruits and vegetable wastes. In 

the dry method, the collected waste is thoroughly washed 

using sterile distilled water and dried, it is then crushed into 

a fine powder and blended with distilled water in a ratio of 

1:4. The blend is then passed through a muslin cloth to 

collect fruit waste broth to be use as a fermentation medium 

(Oshoma et al., 2017). The media is then heat-treated at 

160°C for 30 minutes (Jiru and Melku, 2018). 

In the wet preparation method, the fresh fruit waste is 

thoroughly washed with clean water or 2% H2SO4 

solution, then with distilled water. The waste is then cut 

into small pieces and pulverized using a sterilized blender. 

The extract is then collected by filtration and use as a 

fermentation medium (Mensah and Twumasi, 2017; 

Anichebe et al., 2019; Rajendran et al., 2018) after 

sterilization at 121°C for 15 minutes (Mahan et al., 2018). 
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In the direct method, the collected fruit or vegetable 

wastes are thoroughly washed with clean water (Yousufi, 

2012). Acid hydrolyzed using 10% HCl performs (Ahuja 

and Kumari, 2019) to breakdown polysaccharides into 

monosaccharides if the microorganism is deficient in 

cellulase and/or amylases (Azam et al., 2014), this enriches 

the media with more readily available sugars (Mondal et 

al., 2012). pH adjustment to neutral before sterilization was 

reported by Mahan et al. (2018) while preparing fresh 

oranges and lemon peels. The prepared media is then 

sterilized at 121°C for 15 minutes before inoculation 

(Yousufi, 2012; Mahan et al., 2018), a longer heating time 

(45 minutes) was reported by Khan et al. (2010), this was 

possibly done to thermally breakdown the polysaccharides 

into simple sugars as reported by (Jiru and Melku, 2018). 

 

Media Preparation Using Lignocellulose Wastes 

Lignocellulose materials are thoroughly washed with 

distilled water, oven-dried, crushed into powder, and sifted 

through a fine mesh (Samadi et al., 2016; Said et al., 2019). 

Acid and bio-digestion are employed to breakdown complex 

polysaccharides in lignocellulose materials. A thermal pre-

treatment is achieved by autoclaving at 121°C for 60 minutes 

(Said et al., 2019). Acid digestion n using HCl at 75°C is 

employed particularly when the culture organism lack 

enzymes responsible for breaking down cellulose materials 

(Haddish, 2015). Bio-digestion (bio-pulping) using fungi is 

also employ to breakdown woody substrates (Khoshnevisan 

et al., 2019). The pre-treated materials are then washed with 

distilled water and oven-dried (Said et al., 2019). The powder 

is then blended with distilled water in the ratio 1:4 before 

autoclaving (Oshoma et al., 2017). The summary of growth 

media preparation methods using different solid substrates is 

presented in Figure 1. 

Media preparation using liquid waste 

Liquid wastes used as a substrate for SCP production 

are either pasteurized or sterilized and inoculated with the 

culture organism (Kurcz et al., 2018; Putri et al., 2018). 

Anaerobic digestion is used as a preparatory operation in 

liquid substrates such as urban bio-waste (Khoshnevisan et 

al., 2019). pH adjustment using acidic effluent was the only 

preparatory operation reported by Monkoondee et al. 

(2016) in cheese whey. Xu et al. (2020) combine 

sterilization and pH adjustment in acid wastewater from 

food processing. Similar pre-treatment was also reported 

by Saejung and Salasook (2020) in the production of 

biomass using sugarcane processing wastewater. Filtration 

and sterilization were reported by Mujdalipah and Putri 

(2020) in pineapple peel juice and rice washing water. 

Giavasis and Petrotos (2016) reported dephenolized by 

microfiltration and condensation by reverse osmosis as 

pre-treatment operations for olive mill wastewater. 

 

Enrichment of the Media 

 

SCP yield depends on the type of substrates and the 

composition of the growth medium (Haddish, 2015). The 

media are enriched with different materials to serve as 

either carbon, nitrogen, or mineral source. Materials used 

as carbon source include sucrose, fructose, lactose, starch, 

mannose, maltose, cellulose, and galactose (Anichebe et 

al., 2019), potato starch (Zhou et al., 2019), glycerol 

(Kurcz et al., 2018), glucose (Ardestani and Alishahi, 

2015). Nitrogen sources are sodium nitrate, potassium 

nitrate, ammonium nitrate (Anichebe et al., 2019), soybean 

cake (Rajendran et al., 2018; Zhou et al., 2019), 

diammonium phosphate (Yunus et al., 2015), Urea, 

Ammonium Sulphate, NPK (Said et al., 2019), seawater 

(Putri et al., 2018).  

 

 
Figure 1. Production of growth media using different solid substrate (Oshoma et al., 2017; Mensah and Twumasi, 2017; 

Anichebe et al., 2019; Rajendran et al., 2018; Ahuja and Kumari, 2019; Jiru and Melku, 2018; Mahan et al., 2018) 

 



Abdullahi et al. / Turkish Journal of Agriculture - Food Science and Technology, 9(6): 968-974, 2021 

971 

 

Protein yield in many microbial species was reported to 

be increased by mineral supplementation. The performance 

yield of A. niger was improved in a growth medium 

supplemented with minerals (Oshoma et al., 2017). Protein 

yield improved in Saccharomyces cerevisiae cell in a 

growth medium supplemented with MgSO4, NaCl, CaCl2 

and KH2PO4 (Haddish, 2015; Kapilan et al., 2018), and that 

of Rhodococcus opacus in a medium supplemented with 

K2HPO4, FeCl3, MnSO4·H2O, CuSO4·5H2O, 

ZnSO4·7H2O, KCl, H3BO3 (Mahan et al., 2018). The 

combined use of glucose, MgSO4, and KH2PO4 increases 

protein yield in Aspergillus niger PTCC5012 (Ardestani 

and Alishahi, 2015). Too much supplementation can affect 

microbial growth; Mensah and Twumasi (2017) reported a 

decrease in the growth of Saccharomyces cerevisiae in 

pineapple waste medium containing a higher amount of 

sugar. The high concentration of sugar causes osmotic 

dehydration and prevent cell division. 

 

Sterilization of Growth Media  

 

Growth media are autoclaved at 121°C for 15 minutes 

before inoculation (Kapilan et al., 2018; Mahan et al., 

2018). Sterilization of prepared media can improve the 

growth of the chosen microorganism but can be optional, 

according to Gervasi et al. (2018) who reported successful 

production of biomass in a medium consist mixture of food 

wastes without any (thermal and/or chemical) pre-

treatment. 

 

Inoculum Isolation and Growing 

 

Most of the inoculums used in SCP production are 

isolated from food and the environment.  Oshoma et al. 

(2017) isolated Aspergillus niger from an onion bulb 

spoiled at ambient conditions. Saccharomyces cerevisiae 

which is the most common organism used in SCP 

production can be isolated from palm wine (Mensah and 

Twumasi, 2017), rotten tomato (Milala et al., 2018). 

Saccharomyces cerevisiae isolated from bread produced 

biomass rich in essential amino acids (Ahuja and Kumari, 

2019). The laboratory grew Saccharomyces cerevisiae 

used in a beles' fruit peel (Haddish, 2015) and sugarcane 

bagasse (Samadi et al., 2016). Trichoderma viride can be 

isolated from soil (Anichebe et al., 2019), also Candida 

lusitaniae (Shete and Raut, 2018), and Raoutella 

ornithinolytica (Al-Hadithi et al., 2018). Torula yeast 

(Cyberlindnera sp) isolated from sawdust performed well 

in banana peel medium supplemented with (NH4)2SO4 as 

nitrogen (Jiru and Melku, 2018). Pure culture of inoculum 

used by some researchers. Pure culture of Aspergillus 

oryzae, Trichoderma koningii, and Candida tropicalis 

were used by Zhou et al. (2019) in the production of SCP 

from orange waste. Pure culture of bakers' yeast 

(Saccharomyces cerevisiae) was reported to be efficient in 

the production of SCP from banana (Kapilan et al., 2018). 

Inoculums are multiplied by growing on general- 

purpose growth media such as Nutrient agar or potato 

dextrose agar before inoculation into the prepared medium 

(Samadi et al., 2016; Ahuja and Kumari, 2019). Synergy 

and antagonism between fermentation organisms affect 

SCP quality (Zhou et al., 2019). Inoculum size and age, 

incubation period and temperature, and moisture to 

substrate ratio affect SCP production (Yunus et al., 2015). 

 

Inoculation and Incubation   

 

After autoclaving and enrichment (if required), the 

growth medium is inoculated with the microbial colony 

that will grow into biomass. Optimum fermentation 

temperatures range from 28 to 37°C, and incubation time 

is 48 hours and above depending on the organism 

(Rajendran et al., 2018; Milala et al., 2018; Ahuja and 

Kumari, 2019).  

Inoculum levels influence the growth of 

microorganisms (Koutsoumanis and Sofos, 2005; Xu et al., 

2020) by affecting reference time to detection (Bidlas et al., 

2008), lag time (Robinson et al., 2001), and microbial 

enzymes production (Dinarvand et al., 2017; Ilgın et al., 

2020). The lower the inoculum level the higher the pH and 

aw levels for optimum growth (Skandamis et al., 2007).  

Inoculum size and age affect the fermentation process and 

protein content of SCP (Reihani and Khosravi-Darani, 

2019). Excessive inoculation above optimum does not 

increase the protein content of biomass. The report of 

Hongpattarakere and H-Kittikun (1995) indicated that 

increasing inoculum size above 5% has no effects on the 

protein content of Schwunniomyces castellii B5285 

biomass grown in cassava starch. Patthawaro and Saejung 

(2019) also reported no significant difference in the 

Rhodopseudomonas faecalis biomass produced at 20 and 

30% inoculum levels. 

Yunus et al. (2015) reported maximum protein yield in 

Candida utilis and Rhizopus oligosporus biomass grown in 

wheat bran at 10% (v/w) inoculum size using 48 hours old 

culture. Inoculum size of 4% (v/v) was found to be suitable 

for optimum protein production in Candida utilis grown in 

fruit waste extract in submerged fermentation (Munawar et 

al., 2010). Maximum production of Rhizopus oligosporus 

mycelium with higher protein content was achieved at 

7.5% (v/v) inoculum size (Mahat and MacRae, 1992). A 

higher optimum inoculum level (20%) was reported by Xu 

et al. (2020) in acid tolerance Methylocapsa acidiphila. In 

addition to protein yield, inoculum size significantly 

affects microbial enzyme synthesis during solid-state 

fermentation (Kosseva, 2013). The rate of cellulase 

enzyme production by Trichoderma harzianum grown in 

wastewater was found to be ideal at 2% (v/w) inoculum 

size (Alam et al., 2008). 

 

Harvesting and Protein Content Determination 

 

After incubation, the fermented broth is subjected to a 

high-speed centrifuge (4000-6000 rpm) for 20 minutes. 

Sediments are collected and dried before crude protein 

content determination (Samadi et al., 2016; Kapilan et al., 

2018). Much advancement is achieved in SCP production 

but harvesting and purification after production remain a 

problem (Valverde-Pérez et al., 2020). The Possibility of 

harvesting methanotrophic biomass by dewatering using 

forward osmosis was reported by Valverde-Pérez et al. 

(2020). The Protein content of the harvested biomass is 

determined using micro Kjeldahl method (Milala et al., 

2018; Jiru and Melku, 2018; Rajendran et al., 2018) or 

Lowry's method (Ahuja and Kumari, 2019) 
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Potential Organisms for the Production of SCP 

Microorganisms occupied an essential position in the 
history of the human diet, their roles in early processing 
operations were recognized in the production of fermented 
food (Nalage et al., 2016). The most used organism in the 
production of SCP is Saccharomyces cerevisiae. The 
organism can grow well in different media with or without 
supplementation and biomass from this organism can 
contain up to 64% protein in supplemented medium 
(Haddish, 2015). Trichoderma reesei produced 22% crude 
protein in solid-state fermentation using rice straw as a 
substrate (Said et al., 2019). Candida lusitaniae 
characterized with higher protein content and less nucleic 
acid content, the protein produced by this organism will be 
good for food and feed production (Shete and Raut, 2018). 
Rhizopus oligosporus and Candida utilis were used in the 
production of SCP using wheat bran (Yunus et al., 2015). 
Biomass of protein can be produced from Rhodococcus 
opacus using pulp, juice, and peel of orange and lemon 
extracts as growing media (Mahan et al., 2018). More than 
50% of the protein was realized from Chlorella sp. biomass 
using tofu waste as a growing medium (Putri et al., 2018). 
Anichebe et al. (2019) reported an increase in growth and 
protein yield in Trichoderma viride cultured in pineapple 
and banana peel extracts. Higher biomass content was 
observed in both banana and pineapple medium when 
cellulose was used as a carbon source. Protein-rich biomass 
could be produced using municipal wastewater by growing 
Rhodopseudomonas sp. CSK01 under neutral pH (Saejung 
and Thammaratana, 2016). Biomass of Candida utilis 
ATCC 9950 was produced in medium of potato wastewater 
enriched with glycerol as carbon source (Kurcz et al., 
2018) 

 

Conclusion  
 
SCP as an alternative to animal protein can supply 

adequate quality protein at an affordable cost. Many 
microorganisms were reported to grow well in many low 
value substrates and wastes. Saccharomyces cerevisiae is 
the most reported organism used in the production of SCP. 
The biomass of this organism can contain more than 60% 
protein and other important nutrients such as 
carbohydrates, fat, and minerals including essential ones. 
Higher nucleic acid content and slow digestibility after 
consumption can limit the utilization of SCP. Moreover, 
the possibility of developing allergic reactions by some 
individuals can also minimize it’s consumption. Another 
serious challenge that was not reported by researchers in 
this field is the tendency of spore formation by some 
persistent microorganisms during drying of the harvested 
biomass. 
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