Areal Precipitation Estimation Using Satellite Derived Rainfall Data over an Irrigation Area

Mehmet Ali Akgül, Hakan Aksu


The average precipitation on the irrigation field can be estimated from the Meteorology Observation Stations by using spatial interpolation methods such as Thiessen polygon and isohyetal curves. However, the fact that precipitation doesn't occur homogenous in spatial scales, spatial interpolation methodologies need a large number of meteorology stations for more accurate results. In recent years, remote sensing methods have diversified to estimate precipitation. In this study, performance of the satellite-based precipitation data was assessed to determine areal precipitation over an irrigation area. This study was conducted over left bank irrigation area located in the Çukurova Plain of Turkey. Relationship between CHIRPS satellite based on monthly precipitation data and 4 meteorology stations’ data were analyzed. Determination coefficients (R2) of the stations were found between 0.64 and 0.77, for point based comparison, R2 was calculated as 0.84 with Thiessen polygon method. It is concluded that the precipitation amount in the irrigated area can be estimated as accurately as classical methods such as Thiessen polygon with satellite-based precipitation data.


Chirps; remote sensing; The lower Seyhan plain, Thiessen polygon

Full Text:



 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License

ISSN: 2148-127X

Turkish JAF Sci.Tech.

Turkish Journal of Agriculture - Food Science and Technology (TURJAF) is indexed by the following national and international scientific indexing services: