Isolation of Anti-Escherichia coli O157:H7 Bacteriophages and Determination of Their Host Ranges

Zeliha Yıldırım*, Tuba Sakin, Fatma Çoban

Department of Food Engineering, Faculty of Engineering, Niğde Ömer Halisdemir University, 60250 Niğde, Turkey

ARTICLE INFO

Research Article

Received 04 May 2018
Accepted 12 July 2018

Keywords:
Escherichia coli O157:H7
Bacteriophage
Isolation
Host range
Biocontrol

The aim of this study was to isolate, purify and determine host ranges of bacteriophages infecting Escherichia coli O157:H7 from different environment such as river/stream water, sewage, raw food, animal troughs, wastewaters of food processing plants, slaughterhouse and fish farms. For screening of E. coli O157:H7 bacteriophages, 92 samples were used. It was found that in respect to anti-E. coli O157:H7 bacteriophages, food processing wastewaters, sewage and slaughterhouse wastewaters are the richest sources, and streams, troughs and fisheries wastewater are rich in the middle, and raw foods were the poorest source. A total of 37 phages were isolated and purified. The phages counts of the purified samples were changed among 30×10^2 - 34×10^8 PFU/mL. The isolated phages were generally infective against E. coli O157:H7 and E. coli strains and 81.08% of the phages (30 out of 37) formed clear plaques and were capable to lyse at least 1 out of 5 E. coli O157:H7 strains. In addition to E. coli, some phages were capable to infect some Salmonella enterica serovars. This results show that inhibitor spectra of the phages were wide.

Introduction

Escherichia coli belongs to the family Enterobacteriaceae, and is a Gram-negative, rod-shaped, motile, nonsporulating and facultative anaerobic bacterium. A majority of E. coli strains are nonpathogenic and exist harmlessly in the intestinal tract of humans and warm-blooded animals. They are routinely shed into the environment through feces and can contaminate water and soil, and, consequently fruits and vegetables (Bhunia, 2007; Ray, 2005).

Taxonomy of E. coli strains is based on specific virulence factors and phenotypic characters. Pathogenic E. coli strains are classified in six virotypes: enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteraggregative E. coli (EAEC) and diffusely adherent E. coli (DAEC). However, foodborne outbreaks have been particularly associated with EHEC and EAEC strains. EHEC or Shiga toxin-producing E. coli (STEC) strains that produce verocytotoxin or shiga-like toxin, the causative agent of diarrhea, hemorrhagic colitis, haemolytic-uremic syndrome and thrombotic thrombocytopenic purpura. Among the EHEC strains, E. coli O157:H7 has been widely recognized as the major cause of foodborne illness (Tarr et al., 2005; Wu et al., 2011). The outbreaks of E. coli O157:H7 have been linked to contaminated meat, meat products, unpasteurized milk and leafy green vegetables, radish sprouts and fruits fertilized with contaminated animal manure was the source of contamination (Sartz et al., 2008; CDC, 2011).

Bacteriophages (phages) are viruses that only infect and lyse specific bacterial hosts and do not infect human, animal or plant cells. Also, they generally do not cross bacterial species and consequently do not affect desirable microflora present in food (Carlton et al., 2005). Furthermore, the use of phages to control pathogenic bacteria has attracted considerable interest in recent years due to the emergence of antibiotic resistant foodborne pathogenic bacteria. In fact, early in this century, phages were used to treat bacterial infections before the advent of antibiotics. Virulent phages may provide a natural, nontoxic, feasible approach for controlling human foodborne pathogens (FDA, 2006; Hagens and Loessner, 2014; Tolba et al., 2014).

The aim of this study was to isolate phages infecting E. coli O157:H7 strains from environment and determine their host range and to have a collection of E. coli O157:H7 specific phages.
Materials and methods

Bacterial Strains and Culture Conditions

E. coli O157:H7 strains used in phages screening were E. coli O157:H7 NCTC 12900, E. coli O157:H7 ATCC 43888, E. coli O157:H7 ATCC 35150, E. coli O157:H7 RSKK, E. coli O157 Albü. The strains were kept at -80°C in brain heart infusion broth (BHI, Merck, Darmstadt, Germany) with 20% glycerol. Strains were obtained from our culture collection, culture collection of Biology Department of Ankara University and Veterinary Faculty of Kirikkale University.

Collection and Preparation of Samples for Bacteriophage Screening

The samples used in bacteriophage screening were taken from river/stream water, sewage water, raw foods (milk, fruit, vegetable and meat), wastewater from food processing plants, slaughterhouse, and fish farms, and water from troughs found in Niğde, Aksaray, Ankara and Kayseri provinces. Water samples were centrifuged (6,000 × g for 15 min) and then the supernatants were passed through sterile cellulose nitrate membrane filter (0.45 and 0.22 μm) (Sartorius, Germany). Milk samples were centrifuged (6,000 × g for 15 min) after addition of lactate acid (10%) to precipitate casein and then the supernatants were filtered sterilized (0.45 μm pore size). Other semi hard and solid food samples (about 25 g) were put in sterile stomacher bags and at that time 100 mL of SM buffer (50 mM Tris-Cl, pH 7.5, 99 mM NaCl, 8 mM MgSO4, 0.01% gelatin) were added. After homogenization in a stomacher for 2 min, the samples were centrifuged and the filtrate was passed through a 0.45 μm sterile membrane filter. All filtrate samples gotten from water and food samples were used for bacteriophages isolation. A total of 92 samples were analyzed.

Bacteriophages Isolation

For isolation of bacteriophages, direct isolation and enrichment method were used. In the direct isolation method, filtered supernatants were directly used for bacteriophage screening against the test bacteria by the double agar layer plate method (Adams, 1959). If the enrichment protocol, 20 mL of the filtered samples were separately inoculated with 2 mL of actively grown culture of E. coli O157:H7 NCTC 12900, E. coli O157:H7 ATCC 43888, E. coli O157:H7 ATCC 35150, E. coli O157:H7 RSKK, E. coli O157:H7 Albü in BHI broth and mixed with 3 mL of double strength BHI broth, and incubated at 35-37°C for 24 hours. Subsequently chloroform (50 μL/mL) was added into samples and vigorously mixed. After centrifugation (5,000 × g for 15 min), the supernatants were maintained at 5°C. The samples were tested by spot and double agar layer plaque assay against individual E. coli O157:H7 strains (Mclaughlin et al., 2006).

Spot Testing and Double Layer Agar Plaque Assay

Spot testing was used to determine the presence of bacteriophage. The host bacterial lawn was made by using soft BHI top agar (0.7 % agar) containing host bacterial suspensions and then overlaid on top of BHI agar (1.5 % agar) plates. When the agar overlays were solidified, the samples were spotted onto the lawns in plates. After incubation at 37°C for 24 h, all plates were observed for the clear zone formation.

The double-layer agar plaque method was used to determine the titer of phage as follow (Adams, 1959). One hundred micro liter of a dilution of the membrane filtered phage samples and 300 μL of the actively growing E. coli O157:H7 cultures (about 10^8 CFU/mL) were added into BHI soft agar (0.7% agar) at 45-50°C. After mixing, the contents of the tube were immediately poured onto BHI basal agar (1.5%) on Petri dishes and then the plates were incubated at 37°C for 24 h. At the end of incubation, phage numbers were counted (PFU/mL).

Purification of Bacteriophages

Bacteriophages are purified by removing a well isolated plaque using the wide end of a sterile Pasteur pipette and the phages were eluted with shaking for a minimum of 2 h in 100 μL SM buffer (50 mM Tris-Cl, pH 7.5, 99 mM NaCl, 8 mM MgSO4, 0.01% gelatin). After chloroform (50 μL/mL) extraction and centrifugation (9,000 × g, 20 min, 4°C), the supernatant was transferred to a new sterile tube. The prepared serial dilutions of the phage samples were inoculated into an early-log phase host culture, and the lysate was replated as described above. Bacteriophage purification process was repeated at least three times through plaque assay, reinfection, centrifugation and resuspension to ensure purity of the phage. To determine the number of phage in the each sample, the double layer agar method was used (Stenholm vd., 2008).

Preparation of Phages Stocks

To prepare high titer phages stocks, 1 mL of overnight E. coli O157:H7 cultures at 37°C and 100 μL of the purified phage stock were put into 100 mL BHI broth and after mixing, they were incubated overnight at 37°C. After addition of chloroform (50 μL/mL) to lyse the bacterial cells, the amplified phages were centrifuged (9,000 × g for 13 min) and the supernatants were filtered with a disposable 0.45 or 0.22 μm pore size syringe membrane filter (Sartorius, Germany) (Kocharunchit et al., 2009). The titre of the phage stock was determined by the double-layer plaque titration method (Adam, 1959).

Investigation of Host Range of Bacteriophages

Various species or strains or serovars of E. coli, Salmonella, Shigella, Yersenia, Citrobacter, Enterobacter, Listeria, Staphylococcus, Bacillus and Enterococcus was used to determine host ranges of anti-E. coli O157:H7 bacteriophages (Table 1). To determine host ranges of bacteriophage samples, 300 μL of logarithmic phase (OD600=0.3) suspensions of host strains were put into BHI soft agar and then it was poured onto dried base plates. Subsequently, 10 μL of the 10^{-2}, 10^{-4}, 10^{-6} phage dilutions were spotted on the overlay. After incubation at 35-37°C for 24 h, the plates were examined for plaque formation.
Results and Discussion

Isolation of *E. coli* O157:H7 Specific Bacteriophages

In the present study, *E. coli* O157:H7 specific bacteriophages which were lytic and broad spectrum were isolated from natural sources and purified and developed a collection of phages to biocontrol foodborne pathogenic *E. coli* O157:H7. A total of 92 samples were used for the screening of bacteriophages. Of the 92 samples, 12 were taken from river/stream water, 13 from sewage, 10 from waste water of fish farms, 18 from raw foods (milk, fruit, vegetable and meat), 11 from wastewater of food processing plants, 13 from wastewater of slaughterhouse, and 8 from water of troughs. The results of phage screening were given in Table 2.

Table 1 Bacteria used to isolate *E. coli* O157:H7 specific bacteriophages and to determine their host ranges

<table>
<thead>
<tr>
<th>Sample</th>
<th>Name of phage</th>
<th>Host Serovar</th>
<th>Number of phage (PFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli O157:H7 NCTC 12900</td>
<td>S. Typhimurium MET-S1-625</td>
<td>S. Anatum DMC90</td>
<td></td>
</tr>
<tr>
<td>E. coli O157:H7 ATCC 43888</td>
<td>S. Typhimurium AIBU</td>
<td>S. Telav DMC62</td>
<td></td>
</tr>
<tr>
<td>E. coli O157:H7 ATCC 35150</td>
<td>S. Typhimurium ATCC 14028</td>
<td>S. Montavide DMC81</td>
<td></td>
</tr>
<tr>
<td>E. coli O157:H7 RSKK</td>
<td>S. Enteritidis DMC8</td>
<td>S. Kentucky DMC35</td>
<td></td>
</tr>
<tr>
<td>E. coli O157 AIBU</td>
<td>S. Enteritidis DMC22</td>
<td>S. Carvalis DMC86</td>
<td></td>
</tr>
<tr>
<td>E. coli DS6</td>
<td>S. Enteritidis ATCC 13075</td>
<td>Listeria monocytogenes ATCC19115</td>
<td></td>
</tr>
<tr>
<td>E. coli BL2</td>
<td>S. Enteritidis MET-S1-411</td>
<td>Staphylococcus aureus ATCC 25923</td>
<td></td>
</tr>
<tr>
<td>E. coli CFAI</td>
<td>S. Enteritidis MET-S1-512</td>
<td>Bacillus cereus ATCC 10875</td>
<td></td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>S. Enteritidis MET-S1-742</td>
<td>Yersinia enterocolitica O:9 AU</td>
<td></td>
</tr>
<tr>
<td>Salmonella Typhimurium LT2 SR II</td>
<td>Salmonella Virchow DMC8</td>
<td>Citrobacter freundii AU</td>
<td></td>
</tr>
<tr>
<td>S. Typhimurium Tr90</td>
<td>S. Infantis DMC7</td>
<td>Enterobacter aerogenes AU</td>
<td></td>
</tr>
<tr>
<td>S. Typhimurium Wild type 14028</td>
<td>S. Thompson DMC47</td>
<td>Enterococcus faecalis ATCC 29212</td>
<td></td>
</tr>
</tbody>
</table>

MET, Middle East Technical University; AIBU, Abant Izzet Baysal University; AU, Ankara University

Table 2 Isolated bacteriophages infecting *E. coli* O157:H7 serovars

<table>
<thead>
<tr>
<th>Sample</th>
<th>Name of phage</th>
<th>Host Serovar</th>
<th>Number of phage (PFU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers/streams</td>
<td>Eco-Phage-1</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>22.1×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-2</td>
<td>E. coli O157:H7 RSKK</td>
<td>34.0×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-3</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>36.0×10^4</td>
</tr>
<tr>
<td>Sewage</td>
<td>Eco-Phage-4</td>
<td>E. coli O157:H7 RSKK</td>
<td>44.0×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-5</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>3.1×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-6</td>
<td>E. coli O157:H7 ATCC 43888</td>
<td>4.7×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-7</td>
<td>E. coli O157:H7 RSKK</td>
<td>5.2×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-8</td>
<td>E. coli O157:H7 ATCC 35150</td>
<td>8.0×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-9</td>
<td>E. coli O157:H7 RSKK</td>
<td>8.0×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-10</td>
<td>E. coli O157:H7 AIBU</td>
<td>1.2×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-11</td>
<td>E. coli O157:H7 ATCC 35150</td>
<td>1.5×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-12</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>2.1×10^4</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-13</td>
<td>E. coli O157:H7 ATCC 43888</td>
<td>3.4×10^4</td>
</tr>
<tr>
<td>Fisheries wastewater</td>
<td>Eco-Phage-14</td>
<td>E. coli O157:H7 RSKK</td>
<td>1.6×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-15</td>
<td>E. coli O157:H7 RSKK</td>
<td>7.0×10^5</td>
</tr>
<tr>
<td>Food processing</td>
<td>Eco-Phage-16</td>
<td>E. coli O157:H7 ATCC 35150</td>
<td>3.8×10^4</td>
</tr>
<tr>
<td>wastewater</td>
<td>Eco-Phage-17</td>
<td>E. coli O157:H7 RSKK</td>
<td>2.4×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-18</td>
<td>E. coli O157:H7 ATCC 35150</td>
<td>1.2×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-19</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>2.8×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-20</td>
<td>E. coli O157:H7 RSKK</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-21</td>
<td>E. coli O157:H7 ATCC 35150</td>
<td>2.2×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-22</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>6.1×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-23</td>
<td>E. coli O157:H7 ATCC 43888</td>
<td>2.3×10^7</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-24</td>
<td>E. coli O157:H7 NCTC 12900</td>
<td>8.9×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-25</td>
<td>E. coli O157:H7 RSKK</td>
<td>3.0×10^8</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-26</td>
<td>E. coli O157:H7 ATCC 43888</td>
<td>8.2×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-27</td>
<td>E. coli O157:H7 AIBU</td>
<td>4.9×10^6</td>
</tr>
<tr>
<td>Slaughterhouse</td>
<td>Eco-Phage-28</td>
<td>E. coli O157:H7 RSKK</td>
<td>3.7×10^5</td>
</tr>
<tr>
<td>wastewater</td>
<td>Eco-Phage-29</td>
<td>E. coli O157:H7 AIBU</td>
<td>3.0×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-30</td>
<td>E. coli O157:H7 RSKK</td>
<td>5.4×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-31</td>
<td>E. coli O157:H7 AIBU</td>
<td>1.2×10^6</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-32</td>
<td>E. coli O157:H7 ATCC 35150</td>
<td>2.8×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-33</td>
<td>E. coli O157:H7 AIBU</td>
<td>3.7×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-34</td>
<td>E. coli O157:H7 RSKK</td>
<td>6.6×10^6</td>
</tr>
<tr>
<td>Trough</td>
<td>Eco-Phage-35</td>
<td>E. coli O157:H7 RSKK</td>
<td>2.4×10^5</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-36</td>
<td>E. coli O157:H7 AIBU</td>
<td>1.3×10^4</td>
</tr>
<tr>
<td></td>
<td>Eco-Phage-37</td>
<td>E. coli O157:H7 ATCC 43888</td>
<td>3.7×10^7</td>
</tr>
</tbody>
</table>
As seen Table 2, food processing waste waters, sewage and slaughterhouse wastewaters are the richest sources in respect to anti-\textit{E. coli} O157:H7 bacteriophages. Conversely, streams, troughs and fisheries waste water were found to be quite poor. In addition, \textit{E. coli} O157:H7 bacteriophages were not detected in milk, meat, fruits and vegetables. Thirty seven \textit{E. coli} O157:H7 specific bacteriophages were isolated. Some isolated phages were given in Fig. 1.

Many researchers reported that the presence of bacteriophages is strictly associated with their natural host bacterial cells. \textit{E. coli} O157:H7 is a natural inhabitant of the gastrointestinal tract of animals and human, and abundant in feces. As a result, they are natural members of the microbial ecosystem and therefore they are easily transmitted to sewage, waste water, soil and food. Consequently, various waste effluents such as sewage, naturally provide the best source for isolation of phage infecting \textit{E. coli} O157:H7 (Oot et al., 2007; Synnott et al., 2009; Viazis et al., 2011). Similar to our results a number of researchers isolated phages specific for \textit{E. coli} O157:H7 have previously been isolated from natural and their host environments (Kudva et al., 1999; Morita et al., 2002; Oot et al., 2007; Synnott et al., 2009; Niu et al. 2009b; Viazis et al., 2011; Raya et al., 2011; Litt and Jaroni, 2017).

It was found that for isolation of bacteriophages, the enrichment method was better than direct method since the number of phages in the samples examined by the enrichment process increased considerably compared to the direct method. This increase was especially pronounced in case where the count of phages was low (e.g. river/stream waters) (Fig. 2). Some researchers also reported that the phage titer of the sample isolated were increased by using enrichment method (McLaughlin et al., 2006; Oot et al. 2007; Viazis et al. 2011; Akhtar et al., 2014).

Fig 1 Some of isolated \textit{E. coli} O157:H7 specific bacteriophages. Bacteriophage from food processing wastewaters (a), (b) and (c); bacteriophages from sewages (d), (e) and (f); bacteriophages from slaughterhouse wastewaters (g), (h) and (i).
Purification of Phage and Preparation of Phage Stocks

A single plaque method was used to purify isolated phages (Adam, 1958). In purification procedure, a single plaque was taken from Petri plate containing maximum of 4-5 phage plaques and this process was repeated at least 3 times (Fig. 3). The purified bacteriophages were stored at -80°C in SM buffer with 20% glycerol. It was determined that the bacteriophage titer of the sample stocks were between 30×10^3 - 44×10^8 PFU/mL. The isolation environment of 37 purified phages and their naming was summarized in Table 2.

Host Ranges of Bacteriophages

To examine their host ranges, the isolated E. coli O157:H7 phages were tested against 5 different E. coli O157:H7 strains, 4 other E. coli strains, 6 S. Typhimurium, 6 S. Enteritidis serovars, 8 other Salmonella enterica serovars, and 7 different Gram-negative and Gram-positive species (Table 3 and 4). All 37 isolated anti-E. coli O157:H7 phages were capable of lysing their host strains throughout the purification procedure and they were generally infective against E. coli O157:H7 and E. coli strains. 81.08% of isolated phages (30 out of 37) formed clear plaques and were capable to lyse at least 1 out of 5 E. coli O157:H7 strains. It was observed that 18.92% of the phages (Eco-phage 2, 10, 14, 20, 28, 35 and 36) were lysogenic and did not form clear zone against their host cells. The isolated phages were able to lyse minimum 1 to maximum 8 of 36 strains tested with highly variable host ranges. Host ranges of some phages, Eco-Phage-7, 11, 13, 17, 21, 23, 24 30, 34 and 35 were wide and effective against 4 to 8 strains tested, but the remaining phages have narrow inhibitory spectrum, being just able to 1 to 3 strains tested (Table 3). Eco-phage-13, 17, 24 and 34 lysed 80 % of the E. coli O157:H7 (4 out of 5 different strains) and 12 Eco-phage were able to lyse 60% of the E. coli O157:H7 strains tested (3 out of 5 different strains) (Table 3).

It was observed that E. coli O157:H7 specific phages do not have strain specificity. The isolated total 37 phages were infective against at least one of the E. coli O157:H7 strains tested and 14 of 37 Eco-phages were highly infective against strains of E. coli O157:H7 NTCT 12900, ATTC 4388 and ATCC 35150 strains. Furthermore, 15 out of 37 Eco-phages (40.54%) were infective against other E. coli strains tested besides E. coli O157:H7 strains (Table 3).

Double layer agar testing against 20 strains of different serovars of Salmonella was used to investigate the cross-species infectivity of each phage. Phage lysis of Salmonella ranged from 0 to 50% of the 20 strains tested (Table 3 and 4). Eco-phage-12 and 23 were effective against two different Salmonella Enteritidis strains (Table 3), Eco-phage-13 was effective against one Salmonella Typhimurium strain (Table 4), and Eco-phage-11, 13,17, 21, 23, 30 and 34 effective against different other Salmonella enterica serovars (Table 4). None of the isolated Eco-phages were found to be infective against Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Yersinia enterocolitica, Citrobacter freundii, Enterobacter aerogenes and Enterococcus faecalis.
Wide host range phages specific to \textit{E. coli} O157:H7 strains with clear plaques were predominantly isolated from wastewater from food processing and slaughterhouse, sewage and troughs. Eco-phage-13 had the broadest host range, with lytic ability against 8 different bacterial strains (lysed 22.22\% of the strains tested), 4 of them from \textit{E. coli} O157:H7. 1 from \textit{Salmonella} Enteritidis (Table 3), 1 from \textit{Salmonella} Typhimurium, and 2 from other \textit{Salmonella} serovars (Table 4). This was followed by Eco-phage-23, 7, 34, 11, and 21, being infective against 4 to 6 different bacterial strains (Table 3 and 4).

Host specificity is a common property of bacteriophages, but, it is a restrictive factor in their usage in food industry to prevent and/or inhibit the growth of foodborne pathogenic bacteria (Bielke et al., 2007). In our study, many isolated Eco-phages showed wide host ranges, being infective against at least 3 different \textit{E. coli} O157:H7 strains tested.

Viazis et al. (2011) informed that lytic ability of 70 EHEC bacteriophages ranged from 5.3 to 31.6\% and 8 out of 70 phages (38, 39, 41, AR1, 42, CEV2, ECB7 and ECA1) lysed from 94 to 98\% of the \textit{E. coli} O157:H7 strains screened using spot testing. The same researchers also determined the cross-genus activity of the EHEC phages against the 27 strains of different serovars of Salmonella and they found that phage ECB7 lysed 48.2\% of the \textit{Salmonella} strains, while the rest of the phage lysed from none to 22.2\% of the strains of this pathogen. Villegas et al. (2009) reported that although the EHEC O157:H7-specific bacteriophage wV8 had genome characteristics very similar to the Salmonella specific phage Felix O1, it could not lyse any strains from 12 \textit{Salmonella} serovars through spot testing.

Raya et al. (2006) reported that CEV1 phage was active against 17/19 \textit{E. coli} O157:H7 strains tested, but not active 9 strains from 4/5 phylogenetic groups of the \textit{E. coli} reference (ECOR) collection, lab strains B and K-12,

<table>
<thead>
<tr>
<th>EP</th>
<th>\textit{E. coli} O157:H7</th>
<th>\textit{E. coli}</th>
<th>Salmonella Enteritidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>12900</td>
<td>43888</td>
<td>35150</td>
<td>AIBU</td>
</tr>
<tr>
<td>1</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>6</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>7</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>12</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>13</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>17</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>22</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>23</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

EP: Eco-Phage. +++: 10^{-4}, 10^{-5} and 10^{-6} diluted phage samples were inhibitor positive; ++: 10^{-5} and 10^{-6} diluted phage samples were inhibitor positive but 10^{-4} dilution sample was inhibitor negative; +: 10^{-5} dilution sample was inhibitor positive, 10^{-6} and 10^{-7} dilution sample was inhibitor negative; +, 10^{-6} and 10^{-7} diluted phage samples were inhibitor negative.
and strains from serogroups O43, O126, O153, O158, and Salmonella enterica serovars tested. Conversely, Ibrahim (1969) found that E. coli phages were also effective against some Salmonella serovars besides their host cells.

Some researchers reported that phages specific to one E. coli O157:H7 strain can also infect other O157:H7 strains (Bach et al., 2003; Litt and Jaroni, 2017; Raya et al., 2006; Sheng et al., 2006; Viazis et al. 2011). Phage, specific for E. coli O157:H7, is O157 antigen-specific and therefore just only infect strains that have O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen (Lui and Breidh, 2015). Results from the present study are similar to these studies, revealing that isolated phages are virulent against other E. coli O157:H7 strains with high target specificity.

Table 4 Host ranges of E. coli O157:H7 specific phages on Salmonella Typhimurium and other Salmonella enterica serovars

<table>
<thead>
<tr>
<th>EP</th>
<th>S. Typhimurium</th>
<th>S. enterica serovars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LT-SRII</td>
<td>S. ski</td>
</tr>
<tr>
<td></td>
<td>Tr90</td>
<td>AIBU</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

EP: Eco-Phage, ++++, 10^7, 10^8 and 10^9 diluted phage samples were inhibitor positive; ++, 10^7; 10^8 diluted phage samples were inhibitor positive but 10^9 dilution sample was inhibitor negative; +, 10^8 dilution sample was inhibitor positive, 10^4 and 10^5 dilution sample was inhibitor negative; -, 10^7, 10^8 and 10^9 diluted phage samples were inhibitor negative

Conclusion

Thirty seven bacteriophages specific to E. coli O157:H7 were isolated from sewage and wastewaters of food processing, slaughterhouse and fisheries, stream and trough using spot agar test against 5 different E. coli O157:H7 strains. Phages specific to E. coli O157:H7 strains with wide host range and lytic activity were mainly isolated from wastewater from food processing and slaughterhouse, sewage and troughs. These E. coli O157:H7 specific phages have broad host ranges and were able to lyse 1 to 8 of 36 strains tested and 15 out of
37 Eco-phages (40.54%) were infective against other *Escherichia coli* strains tested. Additionally, 8 out of 37 isolated *Escherichia coli* O157:H7 specific phages were capable to lyse some *Salmonella enterica* serovars.

These *Escherichia coli* O157:H7 specific phages can be used as a possible alternative to chemical antimicrobials against foodborne pathogenic bacterium *Escherichia coli* O157:H7 and can be use as therapeutic agents against animal infections caused by *Escherichia coli* O157:H7.

Acknowledgments

This research was a part of project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 213O035).

References

