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The effects of temperature and pressure processing on myrosinase extracted from fresh broccoli and 

brown mustard seed was studied. Brown mustard seeds had higher myrosinase activity (2.75 un/mL) 

than fresh broccoli (0.58 un/mL). The extent of enzyme inactivation increased with pressure (200-

800 MPa) and temperature (30-80°C) for both brown mustard seeds and fresh broccoli myrosinase. 

However, at combinations of lower pressures (200-400 MPa) and temperatures (30-80°C), there was 

less myrosinase inactivation. When processing at a pressure of 300 MPa with a temperature of 70°C 

for 10 minutes, there was 65% myrosinase activity for brown mustard while at 300 MPa and 60°C, 

activity retention in fresh broccoli was 30%. Whereas, the corresponding activity retentions when 

applying only heat (70°C for 10 minutes) was 35% for brown mustard myrosinase, while there was 

no measurable myrosinase activity for fresh broccoli (60°C, 10 minutes). Thus, application of 

moderate pressures (200-400 MPa) on brown mustard and fresh broccoli can potentially be used to 

retain myrosinase activity needed for subsequent glucosinolate hydrolysis.  
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Introduction 

Brassica vegetables (Broccoli, Brussels sprout, 

cauliflower, cabbage, kale and condiments like mustard 

and rapeseed) are globally consumed cruciferous plants 

from the order Brassicales and family Brassicaceae. They 

are rich in phytochemicals particularly glucosinolates, 

which are beneficial non-nutritive bioactive compounds 

(Fahey et al., 2001; Girgin and El Nehir, 2015). 

Glucosinolates are hydrolysed by myrosinase enzymes 

(which co-exist with glucosinolates in segregated 

compartments of the plant) to produce a variety of 

compounds dependent on the reaction condition, nature of 

glucosinolates and pH. These hydrolysis products have 

generated a lot of interest due to their toxicological and 

pharmacological potentials (anticarcinogenic and 

antimicrobial properties) and impact on sensory attributes 

of Brassicaceae and their products (taste, flavour and 

aroma) (Drewnowski and Gomez-Carneros, 2000; Johnson 

et al., 2010).  

Sulforaphane is an isothiocyanate, formed from 

hydrolysis of glucoraphanin (major glucosinolate in 

broccoli) whose anticarcinogenic potential is well 

documented in literature (Brooks et al., 2001; Fahey, 

Zhang and Talalay, 1997; Zhang, Li and Tang, 2005). 

However, rapeseeds (Brassica napus) form predominantly 

nitriles from these hydrolysis reaction (Lambrix et al., 

2001) implying that different products can be produced 

from the same glucosinolate, depending on the plant 

species and reaction conditions. Microflora in the human 

gut can hydrolyse glucosinolates into bioactive 

compounds, but the yield is much lower compared to that 

resulting from plant myrosinases (Conaway et al., 2000). 

Mustard, an annual plant has 3 known edible species; 

yellow mustard (Sinapis alba L) (referred to as white 

mustard in Britain and Europe), brown/oriental mustard 

(Brassica juncea) and black mustard (Brassica nigra). 

Mustard has a characteristic aroma, a hot spicy trait 

(pungency or the bite) and has been used as an important 

spice for decades. Mustard has a rich chemical 

composition. Brown/oriental mustard is the hot mustard 

and sinigrin is its predominant glucosinolate. Sinigrin 

releases volatile allyl isothiocyanate (AITC) which 

possesses a sharp sensation and pungent aroma that 
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permeates the sinuses (Abul-Fadl, El-Badry and Ammar, 

2011; Wanasundara, 2008).  

Broccoli (Brassica oleracea var. italica) is an edible 

green plant, its flower-head is eaten as a vegetable and is 

valued globally due to its flavour and its chemo-preventive 

effects, attributed to the degradation products of its main 

glucosinolate - glucoraphanin (present in harvested florets 

of broccoli) (Fahey et al., 2001). It has also been suggested 

that the hydrolysis products of other glucosinolates in 

broccoli (glucoiberin, sinigrin and progoitrin) have been 

identified as having the potential of protecting against 

human and animal carcinogenesis by either inducing Phase 

II detoxification enzymes or inhibiting phase I enzymes 

(Fahey et al., 1998; Farnham et al., 2004). 

Irrespective of processing methods used, the 

phytochemicals present in Brassicas end up getting 

affected (Conaway et al., 2000; Jones et al., 2010; Rosa et 

al., 1997) and this has a huge impact on the production of 

beneficial hydrolysis products. Blanching, canning, as well 

as domestic cooking, affect myrosinase in Brassicaceae 

(Ludikhuyze et al., 1999; Van Eylen et al., 2007). It is 

therefore imperative to optimize processing to ensure that 

more glucosinolates are converted to nutritionally 

beneficial isothiocyanates. It was recently suggested that 

the use of low pressure combined with temperature 

processing of Brassicaceae might be more helpful in the 

delivery of beneficial glucosinolate-myrosinase hydrolysis 

products (Okunade et al., 2015). This work studied 

myrosinase activity and its inactivation in brown mustard 

seed and fresh broccoli under temperature and pressure 

processing conditions, with a view to ascertaining the 

nature of the enzyme under domestic processing and its 

subsequent ability for re-initiating further glucosinolates 

hydrolysis. 

 

Materials and Methods 

 

Sample Preparation 

Brown mustard: Brown mustard seeds (Brassica 

juncea L. Czern. var. juncea) were obtained from the I.P.K 

Gene bank (Gatersleben, Germany). 10 g mustard seed was 

placed in flexible polyethylene bags (low density 

polyethylene, LDPE) and it was vacuum sealed.  

Broccoli: Freshly harvested and mature broccoli 

(Brassica oleracea Var. italica) was obtained from 

Produce World Marshalls (Boston, U.K). The broccoli 

heads were cut approximately 4 cm from the top and 

thoroughly mixed together. 10 g broccoli portion was 

placed in flexible polyethylene bags (LDPE) and vacuum 

sealed. The packaged broccoli florets were stored at 4°C 

and used no later than 5 hours after storage. 

 

Myrosinase Extraction and Assay 

Myrosinase extraction was done as described by Ghawi 

et al. (2012) and adapted by Okunade et al. (2015). Buffer 

solution (10 mL of Tris HCl 0.2 M, pH 7.5 containing 

EDTA 0.5 mM, dithiothreitol 1.5 mM and 0.15 g (0.4 g for 

mustard). Polyvinyl poly pyrrolidone was added to 0.1 g 

lyophilized powdered broccoli (0.5 g mustard powder), 

followed by centrifugation at 4°C. The protein was 

precipitated from the filtered supernatant using ammonium 

sulfate. The mixture was then re-centrifuged and the pellet 

obtained was suspended in 2 mL (6.5 mL for mustard) of 

10 mM Tris HCl buffer, pH 7.5. The mix was extensively 

dialysed at low temperature (4°C) for 24 hours to remove 

excess ammonium and sulphate ions and centrifuged 

(11,738 × g) at 4°C for 15 minutes to remove insoluble 

materials. Finally, the supernatant was frozen (-80°C) and 

then lyophilised, the resulting powder was stored at -20°C 

until further analysis. 

Myrosinase activity was measured according to the 

coupled enzymatic procedure with some modifications 

(Ghawi et al., 2012). A D-glucose determination kit was 

used (R-Biopharm Rhone, Heidelberg, Germany). The 

reaction mixture and 50 µL sample (25 mg lyophilised 

powder/mL de-ionised water) was allowed to equilibrate 

for 5 minutes and 50 µL sinigrin solution (0.6 M) was 

added. The change in absorbance due to the formation of 

NADP was measured at 340 nm. Myrosinase activity was 

determined from a calibration curve for standard 

myrosinase enzyme (Sigma Aldrich, UK). One unit (un) of 

myrosinase was defined as the amount of enzyme that 

produces 1 µmol of glucose per minute at 25°C and pH 7.5. 

 

Heat Treatment 

Thermal inactivation was done under isothermal 

conditions at different temperatures, between 10-80°C 

(Ghawi et al., 2012; 2013) for 10 minutes using a water 

bath fitted with a thermometer. After each temperature 

treatment, the samples (in the vacuum sealed LDPE bags) 

were removed and quickly immersed in an ice bath, frozen 

at -80°C, and lyophilised. The lyophilised powder was 

finely ground using a coffee grinder and sieved (30 µ mesh, 

Endecotts Ltd, London). The powdered samples were then 

stored at -20°C until further analysis. Treatments were 

done in triplicate. 

 

Pressure Treatment 

Pressure treatments were performed between 100-900 

MPa using a high pressure unit (37 mm by 246 mm Food 

Lab 300 Stansted Fluid Power, Stansted, UK). 1, 2 - 

Propanediol (30%) (Sigma-Aldrich, Poole, U.K) was used 

as the pressure transmitting fluid (Ghawi et al, 2012). The 

processing temperature was controlled by liquid 

circulation in the outer jacket of the high pressure vessel. 

The weighed portion of the sample in the LDPE bags was 

used. Pressure treatment at different levels for pre-set time 

of 10 minutes was applied with temperature controlled at 

15°C.  Samples were removed from the vessel and rapidly 

cooled in an ice bath and the enzyme activity was measured 

not later than an hour post pressure treatment. 

Combined pressure and temperature treatments were 

performed using low pressure (200- 400 MPa) with 

temperature (30-80°C) for pre-set time of 10 minutes. 

About 3-5 minutes was needed to reach equilibrium 

(desired temperature and pressure) and this was added to 

the holding time. All treatments were done in triplicate. 

 

Statistical Analysis 

The statistical differences between the values obtained 

under different experimental conditions were established 

by undertaking ANOVA followed by Tukey’s HSD 

multiple pairwise comparison test using SPSS software 

(PASW Statistics 17.0, IBM, UK). Differences were 

considered significant at P<0.05.  
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Results and Discussion 

 

Effect of Temperature on Myrosinase of Fresh Broccoli 

Florets and Brown Mustard Seed  

Figure 1 depicts relative temperature inactivation of 

myrosinase extracted from fresh broccoli florets and brown 

mustard seed. It was observed that the extent of myrosinase 

inactivation gradually increased with rise in temperature. 

This same trend had earlier been reported for mustard seeds 

(Van Eylen et al., 2008; Okunade et al., 2015). At 

temperatures below 30°C, broccoli myrosinase was stable, 

while brown mustard myrosinase was predominantly 

stable up to 50°C. However at 50°C, there was about 40% 

loss in activity for broccoli myrosinase and at 60°C, there 

was no measurable activity, implying that the enzyme was 

completely inactivated at this processing condition and 

glucosinolates hydrolysis is likely to be greatly inhibited 

when broccoli is processed at this temperature.  

At 60°C, 20% loss in myrosinase activity of brown 

mustard was observed and at 70°C, 65% loss in myrosinase 

activity was the case, while there was no measurable 

enzyme activity at 80°C, indicating complete inactivation 

at this temperature. Plant myrosinase is essential for the 

conversion of glucosinolates to beneficial isothiocyanates. 

Although, human gut microflora can hydrolyse 

glucosinolates, the yield of hydrolysis products is much 

more smaller (1:3) compared to that from plant myrosinase 

(Conaway et al., 2000). 

 

Pressure Inactivation of Myrosinase From Fresh 

Broccoli Florets and Brown Mustard Seed 

Figure 2 shows the pressure inactivation of fresh 

broccoli florets and brown mustard seed myrosinase. A 

similar trend observed for temperature processing of these 

enzymes was also noticeable during pressure processing. 

Broccoli and brown mustard myrosinases were stable 

below 300 and 500 MPa respectively. However, at 500 

MPa, there was no measurable myrosinase activity in fresh 

broccoli florets, while at 800 MPa, brown mustard had 

minimal enzyme activity (less than 2%). Mustard seed 

species have been reported as being more pressure stable 

and more robust compared to some other Brassicaceae 

(Van Eylen et al., 2009; Ghawi et al., 2012; Okunade et al., 

2015). The result of this study is in agreement with these 

previous studies. The effect of pressure processing on 

myrosinase from different Brassica sources is well 

documented and varies from one Brassica source to 

another (Kozlowska et al., 1983; Ludikhuyze et al., 1999; 

Yen & Wei, 1993).   

Table 1 shows the relative activity of myrosinase 

enzymes in fresh broccoli florets and brown mustard seed 

after pressure processing for 10 minutes at various 

temperatures. In some previous studies, it was suggested 

that processing Brassicas at low pressure with temperature 

enhanced myrosinase activity and stability (Okunade et al., 

2015; Van Eylen et al., 2007; Verkerk & Dekker, 2004; 

Volden et al., 2008). It was also suggested that combined 

low pressure with temperature processing may either have 

a synergistic (in which low pressure has no protective 

effect on thermal inactivation) (Ghawi et al., 2012) or 

antagonistic effect (low pressure has a protective effect on 

thermal inactivation) (Van Eylen et al., 2006; Okunade et 

al., 2015). There was reduced loss in myrosinase activity 

when broccoli florets and brown mustard was processed 

under low pressure with different temperatures implying 

that low pressure processing combined with temperature 

has an antagonistic effect on both broccoli and brown 

mustard seed myrosinase. 

Processing fresh broccoli florets and brown mustard 

seed at 200 MPa and 70°C for 10 minutes, activity 

retention was 70% respectively, when the temperature was 

further increased at this pressure, only brown mustard had 

40% myrosinase activity retention. Whereas when heat 

processing broccoli and brown mustard seed at 70°C alone 

without pressure, there was no measurable myrosinase 

activity for fresh broccoli florets and only 35% activity 

retention for brown mustard seed respectively. Even at 200 

MPa and 80°C, activity retention in brown mustard seed 

was 40% (at 80°C alone, there was no measurable 

myrosinase activity). A similar trend was also observed at 

300 MPa with temperature, however at 400 MPa with 

temperature broccoli had no measurable myrosinase 

activity whereas brown mustard myrosinase still retained 

20% activity at 80°C. 

 

  
Figure 1 Effect of thermal processing on relative 

myrosinase activity in fresh broccoli florets and brown 

mustard seed where temperature exposure time was 10 

minutes. ( ■- Broccoli florets, ▲- Brown mustard. A – 

enzyme activity after thermal treatment, Ao – Initial 

enzyme activity). Error bars represent standard error of the 

mean. 

Figure 2 Effect of pressure treatment on relative myrosinase 

activity in fresh broccoli florets and brown mustard seed. 

Pressure holding time was 10 minutes and processing 

temperature was controlled at 15 °C. ( ■- Broccoli florets, 

▲- Brown mustard. A – enzyme activity after pressure 

treatment, Ao – Initial enzyme activity). Error bars 

represent standard error of the mean. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 10 20 30 40 50 60 70 80 90

R
el

. 
 E

n
z.

  
A

ct
iv

it
y
 (

A
/A

o

Temperature  (°C)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 100 200 300 400 500 600 700 800 900 1000

R
el

. 
 E

n
z.

  
A

ct
iv

it
y
 (

A
/A

o
)

Pressure (MPa)



Adediran et al., / Turkish Journal of Agriculture - Food Science and Technology, 8(1): 64-68, 2020 

67 

 

Table 1 Relative activity of myrosinase enzymes in fresh broccoli florets and brown mustard seed after pressure 

processing for 10 minutes at various temperatures 

Pressure (MPa) Temperature (°C) 
Rel. Enz. Activity (un/ml) 

Broccoli 

Rel. Enz. Activity (un/ml) 

Brown mustard 

200 

30 1.0±0.00a  1.0±0.00a 

40 0.9±0.07a  1.0±0.00a 

50 0.9±0.07a  1.0±0.00a 

60 0.7 ±0.24b  0.7±0.07a  

70 - 0.7±0.00a  

80 - 0.4±0.00c  

300 

30 0.8±0.00a  1.0±0.00a 

40 0.7±0.17a  1.0±0.00a 

50 0.5±0.07b  1.0±0.00a 

60 0.3±0.02c  0.7±0.00a  

70 - 0.6±0.00b  

80 - 0.4±0.00c  

400 

30 - 1.0±0.00a 

40 - 1.0±0.00a 

50 - 1.0±0.00a 

60 - 0.6±0.00a  

70 - 0.6±0.03a  

80 - 0.2±0.03c  
*Values not sharing a common letter are significantly different at P<0.05. 

 

Conclusion 

 

Myrosinase isoenzymes in Brassicaceae have been 

reported to vary in terms of activity, temperature and 

pressure stability. Brown mustard myrosinase had higher 

myrosinase activity, and was more resistant to thermal and 

pressure treatment than fresh broccoli florets myrosinase. 

Processing broccoli florets and brown mustard seed at low 

pressure (200-400 MPa) with temperature led to higher 

myrosinase activity retention and increased inactivation 

temperature compared to thermal or pressure treatment. 

This difference in myrosinase stability could be utilized to 

control the hydrolysis level of glucosinolates leading to 

enhancement in the production of bioactive 

isothiocyanates from the Brassica. Also, the control of 

enzyme activity may be an important factor in regulating 

the sensory attributes of Brassica vegetable. 
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