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The aim of this study is to investigate the effectiveness of biased estimation methods, principal 
component regression (PC) and ridge regression (RR) methods, according to unbiased the least 
squares (LS) method, against the multiple linearity problem (multicollinearity) encountered in 
regression methods. For this purpose to fit a model on account to predict body weight from some 
body measurements of 32 South Anatolian Red Kilis (SAR) cattle of different ages. R2, RMSE, 
MSE, and CV were used as the goodness of fit criteria for the performance of the models. According 
to these criteria respectively, 0.9970, 0.0224, 0.0005, 0.0099 for LS; 0.9970, 0.0224, 0.0005, 0.0099 
for PC; and 0.9876, 0.0455, 0.0021, 0.0201 of k=0.02 for RR gave the best fit values. According to 

these results, LR and PC showed the best fit. But RR and PC techniques from biased prediction 
techniques provided more consistent, valid, stable, and theoretical expectations than LS technique, 
since LR did not provide the necessary assumptions. 
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Introduction 

Regression analysis is a statistical method that is used 

in estimating the relationships between the dependent 

variable and one or more independent variables, and 

develops models of these relationships (linear or unlinear) 

to determine the relationships between the variables and 

thanks to this usefulness is, frequently used in almost all 

branches of science. The purpose of regression analysis is 

to create the best model that can predict the dependent 

variable from the independent variables or to determine 

which independent variables are more affected by the 
dependent variable. 

The least squares regression (LS) estimation technique 

allows the parameters in the model to be estimated so that 

the error sum of squares is minimal (Draper and Smith, 

1981; Kleinbaum et al., 1988). According to LS technique 

in order to estimate the parameters for the multiple 

regression analysis to be applied some assumptions must 

be valid. Otherwise the predictions are biased and thus the 

relevant significance tests lose their validity (Orhunbilge, 

2017; Topal et al., 2010). These assumptions; the expected 

value (mean) of the errors is zero E (e) = 0, the errors are 

independent of each other. That is, there is no order 

correlation between unit values (absence of serial 

correlation) Cov (ei, ej) = 0, the variance of errors is 

constant (no different variance), Var (ei) = σ2, there is no 

correlation between errors (ei) and dependent variable (Y) 

(absence of simultaneous equation bias), Cov (ei, Yi) = 0, 

errors and independent variables are independent of each 

other, Cov (ei, Xi) = 0, between the independent variables 

no significant relationship (absence of multicolinearity), 

Cov (Xi, Xj) = 0 (Draper and Smith, 1981; Kleinbaum et 

al., 1988).  
In the case of multicollinearity, parameter estimates 

made with the LS technique are unbiased, but the results 

are invalid because the assumptions cannot be met and so 

it is not reliable (Shrestha, 2020). In order to solve the 

multicollinearity problem, it may be suggested to add new 

independent variables to the existing data or to remove 

some of the related independent variables from the model. 

However, this causes information can lost in the model. 

Another suggestion is to use the biased estimation 

techniques ridge regression (RR) or principal component 

(PC) techniques instead of the LS technique. 

http://creativecommons.org/licenses/by-nc/4.0/
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By adding a small bias constant (k) with biased 

estimation techniques, standard error values become 

smaller due to the variances of the parameters and much 

more meaningful models can be obtained (P<0.05) 

(Büyükuysal and Öz, 2016; Hoerl and Kennard, 1970a,b; 

Kleinbaum et al., 1988; Orhunbilge, 2017). The 

assumptions of biased estimation techniques are the same 

as those of LS: linearity, covariance, and independence. 

However, since confidence intervals are not calculated in 

biased estimation techniques, normality assumption is not 

made (Rawlings, 1998). Larger samples are needed to 

obtain effective, valid and stable results with the LS 

technique in multicollinearity data (Maxwell, 2000). In 

such cases, biased estimation techniques yield more 

effective, valid and stable results by using smaller samples 

(Vinod, 1995). 

The aim of this study is to compare the relative 

predictive validity of LS and biased estimation techniques 

(RR and PC) in estimating the linear relationship between 

body weight and explanatory variables. Based on the high 

multicollinearity problem between the explanatory 

variables as withers height (WH), body length (BL), chest 

girth (CG), ankle girth (AG), rump width (RW), it was 

expected that RR and PC techniques would provide 

predictions with lower standard errors, and stationary and 

theoretical expectations than the LS technique. 

 

Material and Methods 

 

Materials  

This study was conducted using the data obtained from 

32 Southern Anatolian Red Kilis (SAR) cattle raised within 

the scope of the "National Project for Conservation of 

Local Genetic Resources in the Hands of the Public". The 

project was carried out by the Eastern Mediterranean 

Agricultural Research Institute in Hatay. WH, BL, CG, 

AG, RW, and BW measurements were taken with the cattle 

standing, using a measuring stick and tape measure in cm 

and a digital balance in kg, respectively. In the regression 

models, WH, BL, CG, AG, and RW body measurements 

were assigned as the independent variable and BW as the 

dependent variable. All statistical analysis was performed 

using the NCSS trial version (NCSS, 2021). Shapiro-

Wilk's test of normality was performed on all variables for 

statistical analysis. Since the normality test was found to 

be significant at P<0.05, first of all, all extreme 

observations were removed and statistical analyzes were 

conducted by performing Logarithmic transformation in all 

variables. Details of body measurements for descriptive 

statistics are given in Table 1. For clarity, Table 1 results 

were given real results by taking their anti-logarithms. 

Methods 

In this study was to investigate the effectiveness with 

principal component regression (PC) and ridge regression 

(RR) models of biased estimation techniques, according to 

unbiased the least squares regression (LS) technique, to 

against the multicollinearity encountered in regression 

methods. Regression analysis is a method that reveals the 

cause-effect relationship between a dependent and one or 

more independent variables, and the matrix notation of the 
estimation equation belonging to the multiple regression 

model with more than one independent variable is shown 

in equation (1) (NCSS Inc, 2001). 

 

𝑌 = 𝑋𝐵 + 𝑒       (1) 

 

where, 𝑌, the n×1 dimensional dependent variable 

vector; X, the n×(p+1) dimensional independent variable 

matrix; 𝐵, (p+1)×1 dimensional vector of the regression 

coefficients; 𝑒 denotes the n×1 error vector. 

The presence of a high level of the linear relationship 

between the independent variables in the multiple 

regression model is important as it may cause the problem 
of multicollinearity, since the variances get larger, the 

estimations may diverge from their true values. There are 

several approaches used to determine multicollinearity. 

These are simple correlation matrix, changes in R2 when 

new independent variables are added to the model, partial 

correlation coefficients, Variance Inflation Factor (VIF), 

Tolerance Value (TV), F values calculated using auxiliary 

regression equations, condition number (CN) and 

condition index (CI) are examined sequentially (Neter et 

al. 1990; Kim, 2019). 

 
Least Squares regression (LS) 

The least squares technique is a optimumm model that 

estimates the relationship between data points with the 

most appropriate linear line and minimizes the sum of 

squares of error terms, has homogeneous variance 

(Çankaya et al. 2019; Kayaalp et al. 2015; Şahinler, 2000). 

In the multiple regression analysis, equation (2) is shown 

for the estimation of the coefficients vector by the LS 

technique (NCSS Inc, 2001). 

 

𝐵̂ = (𝑋’𝑋)−1𝑋’𝑌    (2) 
 

In the equation;  𝐵̂, (p-1)×1 dimensional vector of 

regression coefficients;  X’X = R =  𝑟𝑋𝑋 , Correlation 

matrix of (p-1)×(p-1) dimensional independent variables; 

𝑋’𝑌 = 𝑟𝑌𝑋, it is the correlation vector between the (p-1)×1 

dimensional dependent 𝑌 variable and the independent X 

variables. 

 

Table 1. The data structure of the body measurements for SAR cattle 

Variable Count Mean Standard Deviation Minimum Maximum CV % 

Withers height  32 107.77 1.23 66.07 147.91 1.14 

Body length  32 115.06 1.29 64.57 173.78 1.12 

Chest girth  32 127.35 1.37 64.57 194.98 1.07 
Ankle girth  32 14.75 1.26 8.51 19.95 8.54 

Rump width  32 36.60 1.38 18.20 57.54 3.76 

Body weight  32 184.74 2.37 34.67 630.96 1.28 



Hızlı / Turkish Journal of Agriculture - Food Science and Technology, 10(4): 791-797, 202 

793 

 

Ridge regression (RR) 

In ridge regression technique, firstly, the dependent and 

independent variables are standardized by taking the 

difference from their mean and dividing them by their 

standard deviations. When the final regression coefficients 

are obtained, the coefficients are converted to the original 

measurement units. Since the variables are standardized 

and R shows the correlation matrix between the 

independent variables is 𝑋’𝑋 = 𝑅. These estimates are 
unbiased as the expected values of these estimates will be 

equal to the population values, it is shown in equation (3): 

 

𝐸(𝐵̂) = 𝐵     (3) 

 
Variance-covariance matrix of estimates is shown 

equation (4): 

 

𝑉(B̂) = 𝜎2R−1    (4) 

 

Since the y's are standardized 𝜎2 = 1 and thus equality 
(5) is written: 

 

𝑉(𝑏̂𝑗) = 𝑟𝑗𝑗 =
1

1−R𝑗
2 = 𝑉𝐼𝐹   (5) 

 

In Ridge regression technique, by adding a small bias 

constant to the diagonal values of the correlation matrix, 
the biased standardized regression coefficients are 

calculated as follows: 

 

𝐵̃ = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑌 or 𝐵̃ = (𝑅 + 𝑘𝐼)−1𝑋′𝑌 (6) 

 

where k is a positive numerical value less than 1 

(usually k≤ 3). The expected value of the bias of this 

estimate is as follows equation (7). 

 

𝐸(𝐵̃ − 𝐵) = [(𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑌 − 𝐼]𝐵  (7) 

 

and the covariance matrix is obtained by the following 

equation (8): 

 

𝑉(𝐵̃) = (𝑋′𝑋 + 𝑘𝐼)−1𝑋′𝑋(𝑋′𝑋 + 𝑘𝐼)−1      (8) 

 

In order to research for the optimumm k constant, a 

graph called Ridge Trace, which is calculated between 

biased standardized regression coefficients and k is used 

(Hoerl and Kennard, 1970a,b). 

Principal Component regression (PC) 

Independent variables are converted to principal 

components to perform PC regression technique (NCSS 

Inc., 2001). This is mathematically expressing the equation 

(2) as equation (9). 
 

𝑋′𝑋 = 𝑃𝐷𝑃′ = 𝑍′𝑍    (9) 

 

where, D describing the PC model in the equation is the 

diagonal matrix of X'X eigenvalues; P is the X'X 

eigenvector matrix; and Z (similar to the X structure) is the 

data matrix. Since the principal components (P) are 

orthogonal, P'P=I. 

Thus, there is no multicollinearity anymore in the 

model, where Y variable is dependent and Z components 

are independent variables. The results are then converted 

back to the X scale to obtain estimates of B. These 

estimates will be biased. However, it is hoped that the 

magnitude of this bias will be offset by reducing the 

variance. In other words, the mean squares of error of the 

PC estimates are expected to be smaller than the LS 

estimates. Mathematically, due to the special nature of the 

prime components, the estimation of the regression 

coefficients is as follows (NCSS Inc., 2001): 
 

𝐴̂ = (𝑍′𝑍)−1𝑍′𝑌 = (𝐷)−1𝑍′𝑌   (10) 

 

This equation is the LS regression applied on different 

independent variable set. Thus, the relationships between 

two sets of regression coefficients, A and B, are written as 

equation (11): 

 

𝐴̂ = 𝑃′𝐵̂ and 𝐵̂ = 𝑃′𝐴̂    (11) 

 

Principal components (Z) are obtained by applying PC 
analysis for the X matrix. In contrast to the uncertainty 

experienced in the selection of the k-bias constant in the 

RR technique, the number of principal components to be 

eliminated in the PC analysis is relatively certain (NCSS 

Inc., 2001). 

Comparison of LS, PC and RR 

In order to compare the performance of predicted PC, 

RR and LS regression models, determination coefficient 

R2, root mean square error RMSE, mean squere error MSE 

and coefficient of variation CV of models were used as the 

goodness of fit criteria, and represented by Equations (12), 
(13), (14) and (15), respectively (Erzin and Cetin, 2017) 

 

𝑅2 = 1 − (
∑ (𝑌𝑖−𝑌̂𝑖)2𝑛

𝑖=1

∑ 𝑌̂𝑖
2𝑛

𝑖=1

)   (12) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1    (13) 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1     (14) 

 

𝐶𝑉 =  [
√

1

𝑛
∑ (𝑌𝑖−𝑌̂𝑖)2𝑛

𝑖=1

(𝑌̅𝑖)
] . 100    (15)  

 

where 𝑌𝑖, 𝑌̂𝑖 , 𝑌̅𝑖 n is i.th measured, i.th predicted, the 
total number of the data, and the average of the data, 

respectively 

 

Results and Discussion 

 

The results of multiple regression analysis of the 

examined variables are given according to LS, RR, and PC 
techniques, respectively. 

 

Least Squares regression (LS) 
Table 2 shows that according to the LS analysis, the 

linear relationship between body weight and explanatory 

variables is 0.998%, and 0.997% of the changes in body 

weight are explained by the independent variables and the 

model is significant (P<0.001).  



Hızlı / Turkish Journal of Agriculture - Food Science and Technology, 10(4): 791-797, 202 

794 

 

Table 2. LS ANOVA 

Source DF If Term(s) Removed Sum of Squares Mean Square F-Ratio Prob Level 

Regression 5 0.997 4.335726 0.867145 1734.862 0 

Error 26 0.003 0.01299572 0.0005   

Total(Adjusted) 31  4.348722 0.140281   

R R2 R2
adj. SE    

0.998 0.997 0.996 0.0005    

 

Table 3. Results of LS analysis 

Independent 

Variable 

Regression 

Coefficient 

b(i) 

Standard 

Error 

Sb(i) 

Standard- 

ized 

Coefficient 

T-Statistic 

to Test 

H0: β(i)=0 

Prob 

Level 

Lower 95.0% Upper 95.0% 

Conf. Limit Conf. Limit 

of β(i) of β(i) 

Intercept -2.89272 0.312669 0 -9.25169 0 -3.53542 -2.25002 

WH -0.70854 0.538444 -0.1723 -1.31591 0.1997 -1.81533 0.398246 

BL 0.313219 0.520737 0.0933 0.601492 0.5527 -0.75717 1.38361 

CG 2.45879 0.329459 0.8902 7.463118 0 1.781577 3.136002 

AG -0.10753 0.223373 -0.0288 -0.48138 0.6343 -0.56668 0.351624 

RW 0.578075 0.376698 0.2142 1.534587 0.137 -0.19624 1.352388 

 

Table 4. Multicollinearity Report. LS 

Indep. 

Var. 

Correlation Matrix 
R² 

Versus 

Other I.V.'s 

Tolerance Diagonal 

Value of X'X 

WH BL CG AG RW VIF TV Inverse 

WH 1.000     149.1851 R1.2345
2 =0.9933 0.0067 580.0354 

BL 0.996 1.000    209.2321 R2.1345
2 =0.9952 0.0048 542.5133 

CG 0.981 0.986 1.000   123.7799 R3.1245
2 =0.9919 0.0081 217.1577 

AG 0.961 0.969 0.979 1.000  31.0803 R4.1235
2 =0.9678 0.0322 99.82425 

RW 0.983 0.988 0.996 0.983 1.000 169.4634 R5.1234
2 =0.9941 0.0059 283.8955 

 

Table 5. Eigenvalues of Correlations 

No. Eigenvalue Incremental Percent Cumulative Percent Condition Number CN Condition Index CI 

1 4.929 98.580 98.580 1.000 1.000 

2 0.047 0.950 99.530 103.970 10.197 

3 0.017 0.340 99.860 293.840 17.142 
4 0.004 0.080 99.940 1272.400 35.671 

5 0.003 0.060 100.000 1694.040 41.159 

 
Table 3 shows, the regression coefficients, standardized 

coefficients of the regression, standard errors, t-test, 

significance level, and confidence intervals of the 

independent variables, and only CG from the explanatory 

variables was found to be significant according to the t-test 

(P<0.05). If the R2 value of the model is high, but none or 

very few of the independent variables are significant 

according to the partial t-test, it is an indication of the 

multicollinearity problem. 

In Table 4, there is a positive correlation between the 

body weight of the SAR cattle and the examined body 
characteristics, all correlations are over 95% and 

significant, while the highest correlation is found between 

BL and WH (r=0.996, P<0.01), the lowest correlation was 

found between AG and WH (r=0.961, P<0.01). If the 

correlation coefficients between the examined independent 

variables are close to 1, it can be mentioned that there is a 

multicollinearity problem. The fact that VIF values are 

greater than 10 in all variables indicates the existence of 

multicollinearity problem. When each of the independent 

variables is taken as a dependent variable and the 

relationships between the remaining independent variables 

are examined, it is seen that these relationships are greater 

than 0.90 (𝑅1.2345
2 , 𝑅2.1345

2 , 𝑅3.1245
2 , 𝑅4.1235

2 , 𝑅5.1234
2 ) (Table 

4). In addition, the number of conditions number and 

condition index (CN=1694.040, CI=41.159) in Table 5 is 

greater than the critical value (1000 and 30). All of the 

statistics given in Table 4 and Table 5 show that there is a 

very strong linear connection problem in the data. 

 

Ridge regression (RR) 

Table 6 shows the k bias estimator and the VIF 

selection table. It is determined as the selection value for 

the k constant, in which the regression coefficients 

standardized for the determination of the k constant in the 
RR technique become stationary and the VIF values of 

these coefficients approach 1. As a result of the analysis, 

k=0.02 was determined. 

In Table 7, at a value of k=0.02, it is seen that the 

multicollinearity problem between body measurements 

used for BW estimation is eliminated by the RR technique. 

Looking at the graph Figure 1 the bias constant (k) and 

the biased standardized regression coefficients, it is seen 

that the regression coefficients become stationary after a 

very small bias constant (k=0.02) (Hastie, 2020).  

As a result of the multicollinearity problem in the study, 

it is seen that the standard errors of the estimators are high 
and the sign of the coefficient of the WH and AG variables 
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contradicts the theoretical and empirical expectations. In 

addition, the magnitudes of the regression coefficients are 

negatively affected by multicollinearity. Iterations are 

started by choosing an approximate k value in the region 

where the biased regression coefficients become stationary 

and the VIF values of these coefficients approach 1 

together by using VIF and ridge graphs in order to search 

for the optimum bias constant. As a result of the iterations, 

the sign of the coefficient of the WH and AG variables 

changes and the standard errors of the estimators decrease 

in the results obtained with the optimum k=0.02 bias 

constant chosen for RR. 

 

Table 6. Ridge Regression, VIF and k Analysis Section 

k 
Variance Inflation Factor Section k Analysis Section 

WH BL CG AG RW R2 Sigma B'B Ave VIF Max VIF 

0 149.185 209.232 123.780 31.080 169.463 0.997 0.022 0.878 136.548 209.232 

0.0001 140.146 196.009 118.463 30.633 161.407 0.997 0.023 0.864 129.332 196.009 

0.0002 131.957 184.031 113.527 30.207 153.932 0.997 0.023 0.851 122.731 184.031 

0.0003 124.514 173.146 108.935 29.800 146.985 0.997 0.023 0.838 116.676 173.146 
0.0004 117.727 163.223 104.654 29.411 140.515 0.997 0.024 0.826 111.106 163.223 

0.0005 111.521 154.154 100.655 29.037 134.481 0.997 0.024 0.815 105.969 154.154 

0.0006 105.832 145.841 96.913 28.677 128.842 0.997 0.024 0.804 101.221 145.841 

0.0007 100.603 138.203 93.407 28.330 123.565 0.996 0.024 0.794 96.822 138.203 

0.0008 95.784 131.168 90.114 27.996 118.620 0.996 0.025 0.784 92.737 131.168 

0.0009 91.334 124.675 87.019 27.673 113.979 0.996 0.025 0.774 88.936 124.675 

0.001 87.216 118.668 84.104 27.361 109.616 0.996 0.025 0.765 85.393 118.668 

0.002 58.677 77.168 62.307 24.687 77.361 0.996 0.028 0.687 60.040 77.361 

0.003 43.082 54.682 48.809 22.576 57.910 0.995 0.030 0.629 45.412 57.910 

0.004 33.552 41.097 39.735 20.826 45.225 0.994 0.031 0.583 36.087 45.225 

0.005 27.252 32.238 33.261 19.335 36.458 0.994 0.033 0.545 29.709 36.458 
0.006 22.834 26.122 28.431 18.040 30.125 0.993 0.034 0.513 25.110 30.125 

0.007 19.592 21.710 24.700 16.900 25.385 0.993 0.035 0.486 21.657 25.385 

0.008 17.124 18.412 21.738 15.887 21.735 0.992 0.036 0.463 18.979 21.738 

0.009 15.191 15.877 19.334 14.980 18.858 0.992 0.037 0.442 16.848 19.334 

0.01 13.638 13.880 17.347 14.161 16.545 0.991 0.038 0.424 15.114 17.347 

0.02 6.628 5.590 7.789 8.915 6.458 0.988 0.046 0.319 7.076 8.915 

0.02 6.628 5.590 7.789 8.915 6.458 0.988 0.046 0.319 7.076 8.915 

 

Table 7. Ridge Regression Coefficient Section for k = 0.02 

Independent Variable Regression Coefficient Standard Error Standardized Regression Coefficient VIF 

Intercept -3.061    

WH 0.118 0.231 0.029 6.628 

BL 0.336 0.173 0.100 5.590 

CG 1.254 0.168 0.454 7.789 

AG 0.425 0.243 0.114 8.915 

RW 0.804 0.150 0.298 6.458 

 

 

  
Figure 1. RR graphic Figure 2. VIF graphic 
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Principal Component regression (PC) 

The results of PC analysis of some body features of the 

SAR are shown in Tables 8 and 9 respectively. When Table 

8 is examined, the eigenvalues of the 5 basic components 

are seen. VIF values according to PC analysis results are 

given in Table 9. It is seen that the multicollinearity 

problem and multiple correlations are detected between 

them, are resolved. 

 

Comparison of LS, PC and RR 

In Table 10 shows comparison of PC, RR, and LS 

regression models, by the goodness of fit criteria R2, 

RMSE, MSE and CV, respectively. According to these 

results, LR and PC showed the best perpormance whit 

critical values R2=0.9970, RMSE=0.0224, MSE=0.0005, 

and CV=0.0099. But RR and PC techniques from biased 

prediction techniques provided more consistent, valid, 

stable, and theoretical expectations than LS technique, 

since LR did not provide the necessary assumptions. Many 

researchers on different subjects, Topal, et al. (2010) in 

carp fish, Shafey et al. (2015) and Akçay and Sarıözkan 

(2015) in chickens, Çiftsüren and Akkol (2018) in eggs, 

Çelik Ş et al. (2018) in white turkeys and Yılmaz et al. 
(2020), Tırınk et al (2020) Saanen kids, compared LS with 

RR and PC and other unbiased techniques against 

multicollinearity problem in and suggested biased 

estimation methods. 

 

 

Table 8. PC Regression Analaysis. Descriptive statistics 

Principal Component PC Coefficient Individual R-Squared Eigenvalue 

PC1 -0.168 0.987 4.929 

PC2 0.060 0.001 0.047 

PC3 0.264 0.008 0.017 

PC4 0.145 0.001 0.004 

PC5 -0.027 0.000 0.003 

 

Table 9. PC regression analysis results 

PC's R2 SSE B'B Ave VIF Max VIF 

1 0.987 0.047 0.200 0.041 0.041 

2 0.988 0.045 0.226 4.259 10.840 

3 0.996 0.025 0.723 16.182 27.434 

4 0.997 0.022 0.872 67.811 167.488 

5 0.997 0.022 0.878 136.548 209.232 

 

Table 10. Comparison of PC, RR, and LS regression models, by the goodness of fit criteria 

Goodness of fit criteria LS RR, k=0.02 PC 

R² 0.9970 0.9876 0.9970 

RMSE 0.0224 0.0455 0.0224 

MSE 0.0005 0.0021 0.0005 

CV 0.0099 0.0201 0.0099 
R2: Coefficient of determination; RMSE: Root Mean Square Error; MSE:  Mean Square Error; CV: Coefficient of Variation 

 

Conclusion 

In this study, LS, RR and PC techniques were used for 

body weight estimation in SAR cattle. Problems related to 

multicollinearity of the investigated independent variables 

(features) were identified. For the solution of the problem, 

RR and PC techniques have been used since they provide 

more stable and theoretical (or empirical) results compared 
to the LS technique. Although the choice of LS and one of 

the biased estimation techniques (RR and PC) implies the 

choice of either biased or unbiased estimators, in reality 

this is not the case. As is known, in practical terms, LS 

estimators are unbiased only if the model is defined 

without error. For this reason, it is generally accepted that 

LS estimators will be biased in practice. In short, 

explanatory variables that are in a meaningful relationship 

with each other can be analyzed together in order to reduce 

the multicollinearity problem with biased estimation 

techniques. 
As a result, since there is a multicollinearity between 

the independent variables explaining body weight, the RR 

technique, which is one of the biased estimation 

techniques, is more consistent, valid, stable and in line with 

the theoretical expectations than the LS technique, and also 

the PC technique gives the closest estimates to the LS 

technique with a smaller standard error. Thus, since there 

is a multicollinearity between the variables explaining 

body weight, the RR and PC techniques, which is one of 
the biased estimation techniques, provided more 

consistent, valid, stable and theoretical expectations than 

the LS technique. 
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