

Turkish Journal of Agriculture - Food Science and Technology

Available online, ISSN: 2148-127X | www.agrifoodscience.com | Turkish Science and Technology Publishing (TURSTEP)

The Solution of Multicollinearity Problem via Biased Regression Analysis in Southern Anatolian Red Cattle

Hatice Hızlı^{1,a,*}

¹Eastern Mediterranean Agricultural Research Institute 01375 Adana, Turkey *Corresponding author

ARTICLE INFO	ABSTRACT
Research Article	The aim of this study is to investigate the effectiveness of biased estimation methods, principal component regression (PC) and ridge regression (RR) methods, according to unbiased the least squares (LS) method, against the multiple linearity problem (multicollinearity) encountered in
Received : 14/06/2021 Accepted : 28/04/2022	regression methods. For this purpose to fit a model on account to predict body weight from some body measurements of 32 South Anatolian Red Kilis (SAR) cattle of different ages. R ² , RMSE, MSE, and CV were used as the goodness of fit criteria for the performance of the models. According to these criteria respectively, 0.9970, 0.0224, 0.0005, 0.0099 for LS; 0.9970, 0.0224, 0.0005, 0.0099 for PC; and 0.9876, 0.0455, 0.0021, 0.0201 of k=0.02 for RR gave the best fit values. According to
<i>Keywords:</i> Multicollinearity Statistical bias Ridge regression Principal component regression Least squares regressin	these results, LR and PC showed the best fit. But RR and PC techniques from biased prediction techniques provided more consistent, valid, stable, and theoretical expectations than LS technique, since LR did not provide the necessary assumptions.
a katicehizli@gmail.com	10 http://orcid.org/0000-0002-5451-1397

000

S This work is licensed under Creative Commons Attribution 4.0 International License

Introduction

Regression analysis is a statistical method that is used in estimating the relationships between the dependent variable and one or more independent variables, and develops models of these relationships (linear or unlinear) to determine the relationships between the variables and thanks to this usefulness is, frequently used in almost all branches of science. The purpose of regression analysis is to create the best model that can predict the dependent variable from the independent variables or to determine which independent variables are more affected by the dependent variable.

The least squares regression (LS) estimation technique allows the parameters in the model to be estimated so that the error sum of squares is minimal (Draper and Smith, 1981; Kleinbaum et al., 1988). According to LS technique in order to estimate the parameters for the multiple regression analysis to be applied some assumptions must be valid. Otherwise the predictions are biased and thus the relevant significance tests lose their validity (Orhunbilge, 2017; Topal et al., 2010). These assumptions; the expected value (mean) of the errors is zero E (e) = 0, the errors are independent of each other. That is, there is no order correlation between unit values (absence of serial correlation) Cov (e_i, e_j) = 0, the variance of errors is constant (no different variance), Var (e_i) = σ^2 , there is no correlation between errors (e_i) and dependent variable (Y) (absence of simultaneous equation bias), Cov (e_i, Y_i) = 0, errors and independent variables are independent of each other, Cov (e_i, X_i) = 0, between the independent variables no significant relationship (absence of multicolinearity), Cov (X_i, X_j) = 0 (Draper and Smith, 1981; Kleinbaum et al., 1988).

In the case of multicollinearity, parameter estimates made with the LS technique are unbiased, but the results are invalid because the assumptions cannot be met and so it is not reliable (Shrestha, 2020). In order to solve the multicollinearity problem, it may be suggested to add new independent variables to the existing data or to remove some of the related independent variables from the model. However, this causes information can lost in the model. Another suggestion is to use the biased estimation techniques ridge regression (RR) or principal component (PC) techniques instead of the LS technique.

By adding a small bias constant (k) with biased estimation techniques, standard error values become smaller due to the variances of the parameters and much more meaningful models can be obtained (P<0.05) (Büyükuysal and Öz, 2016; Hoerl and Kennard, 1970a,b; Kleinbaum et al., 1988; Orhunbilge, 2017). The assumptions of biased estimation techniques are the same as those of LS: linearity, covariance, and independence. However, since confidence intervals are not calculated in biased estimation techniques, normality assumption is not made (Rawlings, 1998). Larger samples are needed to obtain effective, valid and stable results with the LS technique in multicollinearity data (Maxwell, 2000). In such cases, biased estimation techniques yield more effective, valid and stable results by using smaller samples (Vinod, 1995).

The aim of this study is to compare the relative predictive validity of LS and biased estimation techniques (RR and PC) in estimating the linear relationship between body weight and explanatory variables. Based on the high multicollinearity problem between the explanatory variables as withers height (WH), body length (BL), chest girth (CG), ankle girth (AG), rump width (RW), it was expected that RR and PC techniques would provide predictions with lower standard errors, and stationary and theoretical expectations than the LS technique.

Material and Methods

Materials

This study was conducted using the data obtained from 32 Southern Anatolian Red Kilis (SAR) cattle raised within the scope of the "National Project for Conservation of Local Genetic Resources in the Hands of the Public". The project was carried out by the Eastern Mediterranean Agricultural Research Institute in Hatay. WH, BL, CG, AG, RW, and BW measurements were taken with the cattle standing, using a measuring stick and tape measure in cm and a digital balance in kg, respectively. In the regression models, WH, BL, CG, AG, and RW body measurements were assigned as the independent variable and BW as the dependent variable. All statistical analysis was performed using the NCSS trial version (NCSS, 2021). Shapiro-Wilk's test of normality was performed on all variables for statistical analysis. Since the normality test was found to be significant at P<0.05, first of all, all extreme observations were removed and statistical analyzes were conducted by performing Logarithmic transformation in all variables. Details of body measurements for descriptive statistics are given in Table 1. For clarity, Table 1 results were given real results by taking their anti-logarithms.

Methods

In this study was to investigate the effectiveness with principal component regression (PC) and ridge regression (RR) models of biased estimation techniques, according to unbiased the least squares regression (LS) technique, to against the multicollinearity encountered in regression methods. Regression analysis is a method that reveals the cause-effect relationship between a dependent and one or more independent variables, and the matrix notation of the estimation equation belonging to the multiple regression model with more than one independent variable is shown in equation (1) (NCSS Inc, 2001).

$$\underline{Y} = X\underline{B} + \underline{e} \tag{1}$$

where, \underline{Y} , the $n \times l$ dimensional dependent variable vector; X, the $n \times (p+1)$ dimensional independent variable matrix; \underline{B} , $(p+1) \times l$ dimensional vector of the regression coefficients; *e* denotes the $n \times l$ error vector.

The presence of a high level of the linear relationship between the independent variables in the multiple regression model is important as it may cause the problem of multicollinearity, since the variances get larger, the estimations may diverge from their true values. There are several approaches used to determine multicollinearity. These are simple correlation matrix, changes in R² when new independent variables are added to the model, partial correlation coefficients, Variance Inflation Factor (VIF), Tolerance Value (TV), F values calculated using auxiliary regression equations, condition number (CN) and condition index (CI) are examined sequentially (Neter et al. 1990; Kim, 2019).

Least Squares regression (LS)

The least squares technique is a optimumm model that estimates the relationship between data points with the most appropriate linear line and minimizes the sum of squares of error terms, has homogeneous variance (Çankaya et al. 2019; Kayaalp et al. 2015; Şahinler, 2000). In the multiple regression analysis, equation (2) is shown for the estimation of the coefficients vector by the LS technique (NCSS Inc, 2001).

$$\hat{B} = (X'X)^{-1}X'Y \tag{2}$$

In the equation; \hat{B} , $(p-1) \times 1$ dimensional vector of regression coefficients; $X'X = R = r_{XX}$, Correlation matrix of $(p-1) \times (p-1)$ dimensional independent variables; $X'Y = r_{YX}$, it is the correlation vector between the $(p-1) \times 1$ dimensional dependent *Y* variable and the independent *X* variables.

 Table 1. The data structure of the body measurements for SAR cattle

Variable	Count	Mean	Standard Deviation	Minimum	Maximum	CV %
Withers height	32	107.77	1.23	66.07	147.91	1.14
Body length	32	115.06	1.29	64.57	173.78	1.12
Chest girth	32	127.35	1.37	64.57	194.98	1.07
Ankle girth	32	14.75	1.26	8.51	19.95	8.54
Rump width	32	36.60	1.38	18.20	57.54	3.76
Body weight	32	184.74	2.37	34.67	630.96	1.28

Ridge regression (RR)

In ridge regression technique, firstly, the dependent and independent variables are standardized by taking the difference from their mean and dividing them by their standard deviations. When the final regression coefficients are obtained, the coefficients are converted to the original measurement units. Since the variables are standardized and R shows the correlation matrix between the independent variables is X'X = R. These estimates are unbiased as the expected values of these estimates will be equal to the population values, it is shown in equation (3):

$$E(\underline{\hat{B}}) = \underline{B} \tag{3}$$

Variance-covariance matrix of estimates is shown equation (4):

$$V(\widehat{B}) = \sigma^2 R^{-1} \tag{4}$$

Since the y's are standardized $\sigma^2 = 1$ and thus equality (5) is written:

$$V(\hat{b}_j) = r^{jj} = \frac{1}{1 - R_j^2} = VIF$$
(5)

In Ridge regression technique, by adding a small bias constant to the diagonal values of the correlation matrix, the biased standardized regression coefficients are calculated as follows:

$$\underline{\tilde{B}} = (X'X + kI)^{-1}X'Y \text{ or } \underline{\tilde{B}} = (R + kI)^{-1}X'Y \quad (6)$$

where k is a positive numerical value less than 1 (usually $k \le 3$). The expected value of the bias of this estimate is as follows equation (7).

$$E\left(\underline{\tilde{B}} - \underline{B}\right) = \left[(X'X + kI)^{-1}X'Y - I\right]\underline{B}$$
(7)

and the covariance matrix is obtained by the following equation (8):

$$V(\underline{\tilde{B}}) = (X'X + kI)^{-1}X'X(X'X + kI)^{-1}$$
(8)

In order to research for the optimumm k constant, a graph called Ridge Trace, which is calculated between biased standardized regression coefficients and k is used (Hoerl and Kennard, 1970a,b).

Principal Component regression (PC)

Independent variables are converted to principal components to perform PC regression technique (NCSS Inc., 2001). This is mathematically expressing the equation (2) as equation (9).

$$X'X = PDP' = Z'Z \tag{9}$$

where, *D* describing the PC model in the equation is the diagonal matrix of *X'X* eigenvalues; *P* is the *X'X* eigenvector matrix; and *Z* (similar to the *X* structure) is the data matrix. Since the principal components (*P*) are orthogonal, P'P=I.

Thus, there is no multicollinearity anymore in the model, where Y variable is dependent and Z components

are independent variables. The results are then converted back to the X scale to obtain estimates of B. These estimates will be biased. However, it is hoped that the magnitude of this bias will be offset by reducing the variance. In other words, the mean squares of error of the PC estimates are expected to be smaller than the LS estimates. Mathematically, due to the special nature of the prime components, the estimation of the regression coefficients is as follows (NCSS Inc., 2001):

$$\hat{A} = (Z'Z)^{-1}Z'Y = (D)^{-1}Z'Y$$
(10)

This equation is the LS regression applied on different independent variable set. Thus, the relationships between two sets of regression coefficients, A and B, are written as equation (11):

$$\underline{\hat{A}} = P'\underline{\hat{B}} \text{ and } \underline{\hat{B}} = P'\underline{\hat{A}}$$
 (11)

Principal components (Z) are obtained by applying PC analysis for the X matrix. In contrast to the uncertainty experienced in the selection of the k-bias constant in the RR technique, the number of principal components to be eliminated in the PC analysis is relatively certain (NCSS Inc., 2001).

Comparison of LS, PC and RR

In order to compare the performance of predicted PC, RR and LS regression models, determination coefficient R^2 , root mean square error RMSE, mean squere error MSE and coefficient of variation CV of models were used as the goodness of fit criteria, and represented by Equations (12), (13), (14) and (15), respectively (Erzin and Cetin, 2017)

$$R^{2} = 1 - \left(\frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} \hat{Y}_{i}^{2}}\right)$$
(12)

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i\right)^2}$$
(13)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
(14)

$$CV = \left[\frac{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Y_i - \hat{Y}_i)^2}}{(\bar{Y}_i)}\right]. 100$$
(15)

where Y_i , \hat{Y}_i , \overline{Y}_i n is i.th measured, i.th predicted, the total number of the data, and the average of the data, respectively

Results and Discussion

The results of multiple regression analysis of the examined variables are given according to LS, RR, and PC techniques, respectively.

Least Squares regression (LS)

Table 2 shows that according to the LS analysis, the linear relationship between body weight and explanatory variables is 0.998%, and 0.997% of the changes in body weight are explained by the independent variables and the model is significant (P<0.001).

Table 2. LS ANOVA

Source	DF	If Term(s) Removed	Sum of Squares	Mean Square	F-Ratio	Prob Level
Regression	5	0.997	4.335726	0.867145	1734.862	0
Error	26	0.003	0.01299572	0.0005		
Total(Adjusted)	31		4.348722	0.140281		
R	\mathbb{R}^2	$\mathbf{R}^{2}_{\mathrm{adj}}$.	SE			
0.998	0.997	0.996	0.0005			

Table 3. Results of LS analysis

Indonandant	Regression	Standard	Standard-	T-Statistic	Prob	Lower 95.0%	Upper 95.0%
Independent Variable	Coefficient	Error	ized	to Test Level		Conf. Limit	Conf. Limit
	b(i)	Sb(i)	Coefficient	H0: β(i)=0	Level	of $\beta(i)$	of $\beta(i)$
Intercept	-2.89272	0.312669	0	-9.25169	0	-3.53542	-2.25002
WH	-0.70854	0.538444	-0.1723	-1.31591	0.1997	-1.81533	0.398246
BL	0.313219	0.520737	0.0933	0.601492	0.5527	-0.75717	1.38361
CG	2.45879	0.329459	0.8902	7.463118	0	1.781577	3.136002
AG	-0.10753	0.223373	-0.0288	-0.48138	0.6343	-0.56668	0.351624
RW	0.578075	0.376698	0.2142	1.534587	0.137	-0.19624	1.352388

Table 4. Multicollinearity Report. LS

Indon			Corrol	ation Matr			R ²	Tolerance	Diagonal
Indep. Var.			Conter	ation Mau	1X		Versus	Value	of X'X
vai.	WH	BL	CG	AG	RW	VIF	Other I.V.'s	TV	Inverse
WH	1.000					149.1851	$R_{1,2345}^2 = 0.9933$	0.0067	580.0354
BL	0.996	1.000				209.2321	$R_{2,1345}^2 = 0.9952$	0.0048	542.5133
CG	0.981	0.986	1.000			123.7799	$R_{3,1245}^2 = 0.9919$	0.0081	217.1577
AG	0.961	0.969	0.979	1.000		31.0803	$R_{4,1235}^2 = 0.9678$	0.0322	99.82425
RW	0.983	0.988	0.996	0.983	1.000	169.4634	$R_{5.1234}^2 = 0.9941$	0.0059	283.8955

Table 5. Eigenvalues of Correlations

No).	Eigenvalue	Incremental Percent	Cumulative Percent	Condition Number CN	Condition Index CI
1		4.929	98.580	98.580	1.000	1.000
2		0.047	0.950	99.530	103.970	10.197
3		0.017	0.340	99.860	293.840	17.142
4		0.004	0.080	99.940	1272.400	35.671
5		0.003	0.060	100.000	1694.040	41.159

Table 3 shows, the regression coefficients, standardized coefficients of the regression, standard errors, t-test, significance level, and confidence intervals of the independent variables, and only CG from the explanatory variables was found to be significant according to the t-test (P<0.05). If the R^2 value of the model is high, but none or very few of the independent variables are significant according to the partial t-test, it is an indication of the multicollinearity problem.

In Table 4, there is a positive correlation between the body weight of the SAR cattle and the examined body characteristics, all correlations are over 95% and significant, while the highest correlation is found between BL and WH (r=0.996, P<0.01), the lowest correlation was found between AG and WH (r=0.961, P<0.01). If the correlation coefficients between the examined independent variables are close to 1, it can be mentioned that there is a multicollinearity problem. The fact that VIF values are greater than 10 in all variables indicates the existence of multicollinearity problem. When each of the independent variables is taken as a dependent variable and the relationships between the remaining independent variables are examined, it is seen that these relationships are greater than 0.90 ($R_{1.2345}^2$, $R_{2.1345}^2$, $R_{3.1245}^2$, $R_{2.1235}^2$, $R_{5.1234}^2$) (Table

4). In addition, the number of conditions number and condition index (CN=1694.040, CI=41.159) in Table 5 is greater than the critical value (1000 and 30). All of the statistics given in Table 4 and Table 5 show that there is a very strong linear connection problem in the data.

Ridge regression (RR)

Table 6 shows the k bias estimator and the VIF selection table. It is determined as the selection value for the k constant, in which the regression coefficients standardized for the determination of the k constant in the RR technique become stationary and the VIF values of these coefficients approach 1. As a result of the analysis, k=0.02 was determined.

In Table 7, at a value of k=0.02, it is seen that the multicollinearity problem between body measurements used for BW estimation is eliminated by the RR technique.

Looking at the graph Figure 1 the bias constant (k) and the biased standardized regression coefficients, it is seen that the regression coefficients become stationary after a very small bias constant (k=0.02) (Hastie, 2020).

As a result of the multicollinearity problem in the study, it is seen that the standard errors of the estimators are high and the sign of the coefficient of the WH and AG variables contradicts the theoretical and empirical expectations. In addition, the magnitudes of the regression coefficients are negatively affected by multicollinearity. Iterations are started by choosing an approximate k value in the region where the biased regression coefficients become stationary and the VIF values of these coefficients approach 1 together by using VIF and ridge graphs in order to search for the optimum bias constant. As a result of the iterations, the sign of the coefficient of the WH and AG variables changes and the standard errors of the estimators decrease in the results obtained with the optimum k=0.02 bias constant chosen for RR.

Table 6. Ridge Regression, VIF and k Analysis Section

k		Variance Inflation Factor Section					k Analysis Section				
K	WH	BL	CG	AG	RW	R2	Sigma	B'B	Ave VIF	Max VIF	
0	149.185	209.232	123.780	31.080	169.463	0.997	0.022	0.878	136.548	209.232	
0.0001	140.146	196.009	118.463	30.633	161.407	0.997	0.023	0.864	129.332	196.009	
0.0002	131.957	184.031	113.527	30.207	153.932	0.997	0.023	0.851	122.731	184.031	
0.0003	124.514	173.146	108.935	29.800	146.985	0.997	0.023	0.838	116.676	173.146	
0.0004	117.727	163.223	104.654	29.411	140.515	0.997	0.024	0.826	111.106	163.223	
0.0005	111.521	154.154	100.655	29.037	134.481	0.997	0.024	0.815	105.969	154.154	
0.0006	105.832	145.841	96.913	28.677	128.842	0.997	0.024	0.804	101.221	145.841	
0.0007	100.603	138.203	93.407	28.330	123.565	0.996	0.024	0.794	96.822	138.203	
0.0008	95.784	131.168	90.114	27.996	118.620	0.996	0.025	0.784	92.737	131.168	
0.0009	91.334	124.675	87.019	27.673	113.979	0.996	0.025	0.774	88.936	124.675	
0.001	87.216	118.668	84.104	27.361	109.616	0.996	0.025	0.765	85.393	118.668	
0.002	58.677	77.168	62.307	24.687	77.361	0.996	0.028	0.687	60.040	77.361	
0.003	43.082	54.682	48.809	22.576	57.910	0.995	0.030	0.629	45.412	57.910	
0.004	33.552	41.097	39.735	20.826	45.225	0.994	0.031	0.583	36.087	45.225	
0.005	27.252	32.238	33.261	19.335	36.458	0.994	0.033	0.545	29.709	36.458	
0.006	22.834	26.122	28.431	18.040	30.125	0.993	0.034	0.513	25.110	30.125	
0.007	19.592	21.710	24.700	16.900	25.385	0.993	0.035	0.486	21.657	25.385	
0.008	17.124	18.412	21.738	15.887	21.735	0.992	0.036	0.463	18.979	21.738	
0.009	15.191	15.877	19.334	14.980	18.858	0.992	0.037	0.442	16.848	19.334	
0.01	13.638	13.880	17.347	14.161	16.545	0.991	0.038	0.424	15.114	17.347	
0.02	6.628	5.590	7.789	8.915	6.458	0.988	0.046	0.319	7.076	8.915	
0.02	6.628	5.590	7.789	8.915	6.458	0.988	0.046	0.319	7.076	8.915	

Table 7.	Ridge	Regression	Coefficient	Section	for $k = 0.02$	į
						-

Independent Variable	Regression Coefficient	Standard Error	Standardized Regression Coefficient	VIF
Intercept	-3.061			
WH	0.118	0.231	0.029	6.628
BL	0.336	0.173	0.100	5.590
CG	1.254	0.168	0.454	7.789
AG	0.425	0.243	0.114	8.915
RW	0.804	0.150	0.298	6.458

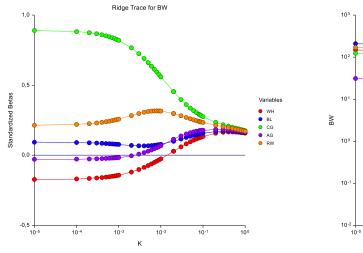


Figure 1. RR graphic

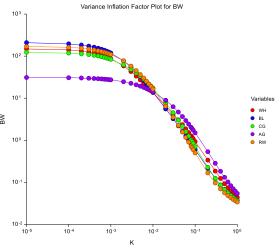


Figure 2. VIF graphic

Principal Component regression (PC)

The results of PC analysis of some body features of the SAR are shown in Tables 8 and 9 respectively. When Table 8 is examined, the eigenvalues of the 5 basic components are seen. VIF values according to PC analysis results are given in Table 9. It is seen that the multicollinearity problem and multiple correlations are detected between them, are resolved.

Comparison of LS, PC and RR

In Table 10 shows comparison of PC, RR, and LS regression models, by the goodness of fit criteria R2, RMSE, MSE and CV, respectively. According to these results, LR and PC showed the best perpormance whit

critical values R2=0.9970, RMSE=0.0224, MSE=0.0005, and CV=0.0099. But RR and PC techniques from biased prediction techniques provided more consistent, valid, stable, and theoretical expectations than LS technique, since LR did not provide the necessary assumptions. Many researchers on different subjects, Topal, et al. (2010) in carp fish, Shafey et al. (2015) and Akçay and Sarıözkan (2015) in chickens, Çiftsüren and Akkol (2018) in eggs, Çelik Ş et al. (2018) in white turkeys and Yılmaz et al. (2020), Tırınk et al (2020) Saanen kids, compared LS with RR and PC and other unbiased techniques against multicollinearity problem in and suggested biased estimation methods.

Table 8. PC Regression Analaysis. Descriptive statistics

Principal Component	PC Coefficient	Individual R-Squared	Eigenvalue
PC1	-0.168	0.987	4.929
PC2	0.060	0.001	0.047
PC3	0.264	0.008	0.017
PC4	0.145	0.001	0.004
PC5	-0.027	0.000	0.003

Table 9. PC regression analysis results

	ression analysis results		DID		
PC's	\mathbb{R}^2	SSE	B'B	Ave VIF	Max VIF
1	0.987	0.047	0.200	0.041	0.041
2	0.988	0.045	0.226	4.259	10.840
3	0.996	0.025	0.723	16.182	27.434
4	0.997	0.022	0.872	67.811	167.488
5	0.997	0.022	0.878	136.548	209.232

Table 10.	Comparison	of PC, RR, a	and LS re	gression	models,	by the	goodness	of fit	criteria
				8		-)	8		

Goodness of fit criteria	LS	RR, k=0.02	PC
R ²	0.9970	0.9876	0.9970
RMSE	0.0224	0.0455	0.0224
MSE	0.0005	0.0021	0.0005
CV	0.0099	0.0201	0.0099

R2: Coefficient of determination; RMSE: Root Mean Square Error; MSE: Mean Square Error; CV: Coefficient of Variation

Conclusion

In this study, LS, RR and PC techniques were used for body weight estimation in SAR cattle. Problems related to multicollinearity of the investigated independent variables (features) were identified. For the solution of the problem, RR and PC techniques have been used since they provide more stable and theoretical (or empirical) results compared to the LS technique. Although the choice of LS and one of the biased estimation techniques (RR and PC) implies the choice of either biased or unbiased estimators, in reality this is not the case. As is known, in practical terms, LS estimators are unbiased only if the model is defined without error. For this reason, it is generally accepted that LS estimators will be biased in practice. In short, explanatory variables that are in a meaningful relationship with each other can be analyzed together in order to reduce the multicollinearity problem with biased estimation techniques.

As a result, since there is a multicollinearity between the independent variables explaining body weight, the RR technique, which is one of the biased estimation techniques, is more consistent, valid, stable and in line with the theoretical expectations than the LS technique, and also the PC technique gives the closest estimates to the LS technique with a smaller standard error. Thus, since there is a multicollinearity between the variables explaining body weight, the RR and PC techniques, which is one of the biased estimation techniques, provided more consistent, valid, stable and theoretical expectations than the LS technique.

Author contributions

Hatice Hızlı performed project administration, supervision, conceptualization, dataset curation, formal analysis, methodology, writing original draft, review and editing, read and approved the final article.

Conflict of Interest

The authors declared that there is no conflict of interest.

References

- Akçay A, Sariözkan S. 2015. Yumurta tavukçuluğunda gelirin ridge regresyon analizi ile tahmini. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 62, 69-74.
- Büyükuysal MÇ, Öz İİ. 2016. Çoklu doğrusal bağıntı varlığında en küçük kareler alternatif yaklaşım: Ridge regresyonu. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 6(2), 110-114.
- Çankaya S, Eker S, Abacı SH. 2019. Comparison of Least Squares, Ridge Regression and Principal Component Approaches in the Presence of Multicollinearity in Regression Analysis. Turkish Journal of Agriculture-Food Science and Technology, 7(8), 1166-1172.
- Çelik Ş, Şengül T, Söğüt B, İnci H, Şengül AY, Kayaokay A, Ayaşan T. 2018. Analysis of variables affecting carcass weight of white turkeys by regression analysis based on factor analysis scores and ridge regression. Brazilian Journal Poultry Science, 273-280.
- Çiftsüren MN, Akkol S. 2018. Prediction of internal egg quality characteristics and variable selection using regularization methods: Ridge, LASSO and Elastic Net. Arch. Anim. Breed, 61, 279-284.
- Draper NR., and Smith H. 1981. Applied Regression Analysis, John Willey, NY.
- Erzin Y, Çetin T. 2017. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions, Computers & Geosciences, 51:305-313, 2017geliştirilmiş 3. Basım, VIII, 386 S, ISBN:978-605-320-644-6, İstanbul.
- Hastie T. 2020. Ridge Regularizaton: an Essential Concept in Data Science, https://arxiv.org/pdf/2006.00371.pdf
- Hoerl AE. and Kennard RW.1970a. Ridge regression: biased estimation for nonortogonal problems. Technometrics, 12(1), 55-56.
- Hoerl AE, Kennard RW. 1970b. Ridge regression: applications to nonortogonal problems, Technometrics, 12(1), 69-82.
- Kayaalp GT, Güney O, Çelik M, Cebeci Z. 2015. Çoklu doğrusal regresyon modelinde değişken seçiminin zootekniye uygulanışı. Çukurova Üniv. Zir. Fak. Der., 30(1), 1-8.
- Kim J. H. 2019. Multicollinearity and misleading statistical results. Korean journal of anesthesiology, 72(6): 558–569. https://doi.org/10.4097/kja.19087

- Kleinbaum DG, Lawrence L, Kupper and Keith E. Muller 1988. Applied Regression Analysis and Other Multivariable Methods, Duxbury Press, New Jersey.
- Maxwell, Scott E. 2000. Sample Size in Multiple Regression Analysis, Psychological Methods, Vol. 5, No: 4, s. 435-458.
- NCSS 2021 Statistical Software 2021. NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss.
- NCSS Inc. 2001. NCSS User Guide 2001, Kaysville, NCSS Inc.
- Neter J, Wasserman W, Kunter M. 1990. Applied Linear Statistical Models, 3rd Ed., New Jersey.
- Orhunbilge N. 2017. Uygulamalı regresyon ve korelasyon analizi. Nobel Yayınevi, gözden gözden geçirilmiş 3. Basım, VIII, 386 S, ISBN:978-605-320-644-6, İstanbul.
- Rawlings JO. 1998. Applied Regression Analysis: A Research Tool, California.
- Shafey TM, Hussein ES, Mahmoud AH, Abouheif MA, Al-Batshan HA. 2015. Managing collinearity in modeling the effect of age in the prediction of egg components of laying hens using stepwise and ridge regression analysis. Brazilian Journal Poultry Science, 473-482.
- Shrestha N. 2020. Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statistics, vol. 8(2):39-42. https://doi:10.12691/ajams-8-2-1
- Şahinler S. 2000. En Küçük Kareler Yöntemi ile Doğrusal Regresyon Modeli Oluşturmanın Temel Prensipleri. MKÜ. Ziraat Fakültesi Dergisi 5 (1-2). Hatay, 57–73.
- TITINK C, Abaci Sh, Önder H. 2020. Comparison of Ridge Regression and Least Squares Methods in the Presence of Multicollinearity for Body Measurements in Saanen Kids, Journal of the Institute of Science and Technology, 10(2): 1429-1437, https://DOI:10.21597/jist.671662
- Topal M, Eyduran E, Yağanoğlu AM, Sönmez A, Keskin S. 2010. Çoklu Doğrusal Bağlantı Durumunda Ridge ve Temel Bileşenler Regresyon Analiz Yöntemlerinin Kullanımı. Atatürk Üniversitesi, Ziraat Fakültesi Dergisi, 41(1): 53-57.
- Vinod HD. 1995. Double Bootstrap for Shrinkage Estimators, Journal of Econometrics.
- Yılmaz F, Bayyurt L, Abacı SH, Tahtalı Y. 2020. Comparison of Least Squares and Some Bias Estimators in Multicollinearity, Turkish Journal of Agriculture-Food Science and Technology, 8(3): 793-799, DOI: https://doi.org/10.24925/ turjaf.v8i3.793-799.3405