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The detection of weeds with computer vision without the help of an expert is important for scientific 

studies and other purposes. The images used for the detection of weeds are recorded under 

controlled conditions and used in image processing-deep learning methods. In this study, the images 

of 3-4-leaf (true-leaf) periods of the wild mustard (Sinapis arvensis) plant, which is the critical 

process for chemical control, were recorded from its natural environment by a drone. The datasets 

were included 50-100-250-500 and 1 000 raw images and were augmented by image preprocessing 

methods. Totally 12 different augmentation methods used and datasets were examined for 

understand how to affects the numbers of images on training-validation performance. YOLOv5 was 

used as a deep learning method and results of the datasets were evaluated with the Confusion Matrix, 

Metrics-Precision, and Train-Object Loss. For results of Confusion Matrix where 1 000 images 

gave the highest results with TP (True Positive) 80% and FP (False Positive) 20%. The TP-FP ratios 

of 500, 250, 100 and 50 image numbers were respectively; 65%-35%, 43%-57%, 0%-100% and 

0%-100%. With 100 and 50 images, the system did not show any TP success. The highest metrics-

precision ratio was found 92.52% for 1 000 images set and for 500 and 250 image sets respectively; 

88.34% and 79.87%. The 100 and 50 images datasets did not show any metrics-precision ratio. The 

minimum object loss ratio was 5% at 50th epochs in the 100 images dataset. This dataset was 

followed by other 50, 250, 500, and 1 000 images respectively; 5.4%, 6.14%, 6.16%, and 8.07%. 
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Introduction 

There are many smart agriculture applications such as 

plant disease detection, crop yield estimation, plant species 

detection, weed detection, water, and soil protection are 

already performed with computer vision technology 

(Tian, et al., 2020) (Mavridou, et al., 2019) (Zhang, et al., 

2021). The control of weed assets is one of the important 

ways to increase agricultural production efficiency. Barberi 

has suggested sensitive variable spraying methods to avoid 

the problems caused by the overuse and residues of 

herbicides used in conventional spraying methods (Bàrberi, 

2002). To detect crop plants and weeds in real-time is an 

important problem to be able to apply the right amount of 

spraying to the right area. Guzel et al. carried out a study that 

detected Wild Mustard (Sinapis arvensis) by deep learning 

method for real-time detection of this weed (Güzel, et al., 

2021). The detection of plants and weeds by using computer 

vision technology can be done with traditional image 

processing and deep learning methods (Wu, et al., 2021). 

Since the weed detection is done with traditional image 

processing technology, features such as color, texture, and 

shape of the image are distinguished and combined with 

traditional machine learning methods such as Random 

Forest or Support Vector Machine (SVM) algorithm (Sabzi, 

et al., 2020). The features of plants appearances used in these 

methods need to be determined manually. The success rate 

in these methods depends on the image acquisition process, 

preprocessing methods, and feature extraction quality. With 

the improvement in computing power and increase in data 

volume, deep learning algorithms can extract multi-scale 

and multidimensional spatial semantic feature information 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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of weeds through Convolutional Neural Networks (CNNs) 

due to their enhanced data expression capabilities for 

images, avoiding the disadvantages of traditional methods. 

For this reason, deep learning methods attract the attention 

of researchers working on the detection of weeds. 

In the literature, there are several reviews on the 

application of machine learning in agriculture (Liakos, et 

al., 2018) and some studies presented on the use of deep 

learning methods to accomplish agricultural application 

(Kamilaris & Prenafeta-Boldu, 2018). A general 

compilation study of artificial intelligence methods applied 

by researchers in all areas of agricultural production 

(Weng, et al., 2019) and a review that compiles studies 

currently carried out on a specific type of technology for a 

specific task (Su, 2020). Koirala et al. conducted a study 

on the application of deep learning in product detection and 

yield estimation, problems that hinder the display of 

products and their solutions (Koirala, et al., 2019). 

However, this study focused only on crop detection and 

yield estimation, ignoring other agricultural tasks 

involving multiple objects such as weed detection. 

Kamilaris et al. presented a review compiling the 

application areas of deep learning methods in agriculture, 

including many studies in the fields of weed identification, 

land cover classification, plant identification, crop 

counting, and crop type classification (Kamilaris & 

Prenafeta-Boldu, 2018). Yuan et al. conducted a study 

describing the research progress in the field of weed 

detection at home and abroad and the advantages and 

disadvantages of various segmentation, extraction, and 

diagnostic methods (Yuan, et al., 2020). However, there 

are different studies for new proposals on the use of deep 

learning methods to solve the problem of weed detection. 

Hasan et al. has provided a comprehensive review of weed 

detection and classification research and focused on deep 

learning studies within these studies (Hasan, et al., 2021).  

When these studies are examined, there is no study on 

the importance of how the number of images used for weed 

detection affects the prediction rate and deep learning 

achievements. Therefore, different numbers of data sets 

were prepared in this study. These datasets have been 

tested on the same deep learning architecture (YOLOv5) 

and their results were evaluated. 

The Wild Mustard (Sinapis arvensis L.) was chosen to 

determine the effect of image numbers on deep learning 

predictions. Sinapis arvensis is an important weed that is a 

member of the Brassicaceae family. It is a plant that is 

especially rich in nutrients, like the basic character, 

hummus, and clay soils. Although it originates from 

Mediterranean countries, it is a plant that is reported to be 

frequently seen in fields, gardens, and pastures (Uygur, 

1986). The plant forms capsules after seed flower 

formation and the existing seeds are formed in these 

capsules. It is known that a healthy, properly grown plant 

gives approximately 1 200 seeds. If the seeds that have 

grown from the plant are not found in suitable conditions, 

they can remain without germination for a long time (up to 

about 35 years) (Uygur, 1986); (Şin, 2021). This plant is in 

the category of invasive plants seen in almost every part of 

the world. Although it is assumed that wild mustard came 

to North America from Europe in various studies 

(Mulligan, 1975) (Rollins, 1981), some archaeological 

excavations have encountered fossilized wild mustard 

seeds dating back to pre-Columbian times. Studies in 

Canada have determined that different wild mustard 

species are used as medicine and food by the indigenous 

people of Canada (Arnason, 1981). This plant can cause 

serious yield losses in field crops in Canadian meadows. A 

strong persistent seed bank, competitive growth habit, and 

high fertility all add to the nature of the weed and ensure 

that weed is an ongoing problem. Before the widespread 

use of phenoxy herbicides, S. Arvensis was the worst weed 

on grassland plantations (Mulligan, 1975).  

The Wild Mustard causes serious economic losses by 

being found in various cultivated plant growing areas. If an 

example is given for these losses; It has been determined 

that there is a product loss of 20% in canola cultivation 

areas if there are 10 plants per square meter, and 36% in 20 

plants m-2 (Thomas, 1984) (Blackshaw, 1987) (McMullan, 

1994). In wheat-growing areas, according to the 

researchers, if there are 11 wild mustards per square meter, 

it is stated that it causes a loss of 49.97%. In addition, 

various studies have reported that wild mustard 

populations have gained resistance to the herbicides used 

(Şin & Kadıoğlu, 2021). 

 

Material and Methods 

 
The application of herbicides against broad-leaved 

weeds, especially in the young period with 2-4 leaves (true 
leaves), is important for successful control. In this study, 
deep learning classification performance was evaluated with 
a different number of pictures in the 2-4 leaf period of Wild 
Mustard and it was coded as YH-2. Images of the natural 
environment of the Wild Mustard plant used in the study 
were obtained in the true leaf period. These images were 
obtained from the wheat field in the province of Tokat, 
which was reviewed for the year 2020. The locations of the 
plants, which were determined during the period of 
cotyledonous leaves, were marked with the Magellan 
eXplrosit 310 Handheld GPS (Figure 1-a) device with 1m 
sensitivity, and videos recorded by a drone (the DJI Mavic 2 
Pro (Figure 1-b) drone, which has a camera 4K: 3840×2160 
30 FPS resolution and quality) when the true leafy period of 
the plants. Videos of the plants were taken by flying 1 m 
above the ground. A desktop computer with 11 core Intel ® 
i7 11700 KF CPU, NVIDIA GeForce RTX 2080 Ti GPU, 
32 GB DDR4 3600 MHz RAM, 1 TB Samsung Pro 980 M.2 
hardware was used for further processing by transferring the 
recorded videos to the computer environment. 

To make photo frames from these captured videos and 
tagged them to create the data set, random photo frames must 
be extracted from the videos. Some distortions or loss of 
detail occur in the photo frames extracted from the videos 
because of the movements of the drone during the video 
recording, the shaking of the plants due to the naturally 
occurring wind events, and the air pressure created by the 
drone propellers. The photos should be having as possible as 
the highest resolution because the deep learning method 
automatically finds the attributes (edge, color, area, texture, 
etc.). To minimize these losses and make the images clearer, 
FrameGui program was used to improve the FPS (Frame per 
Second) feature of the videos. The frame rate of the videos 
recorded with the drone has been increased from 30 FPS to 
60 FPS. The detail-quality difference between the photo 
frames taken from the improved videos is given in Figure 2. 
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a b 

Figure 1. (a) 1m precision Handheld GPS device 

Magellan eXplorist 310 (b) DJI Mavic 2 Pro Drone 

 

  
a b 

Figure 2. (a) Random image in motion at 30fps, (b) 

Random image from 60 FPS enhanced video 

 

 
Figure 3. YOLOv5 (PP-YOLOv(ours)) Comparison of 

Deep Learning Architecture with Other Architectures 

 

 
Figure 4. Comparison of YOLOv5 Libraries with Other 

YOLO Versions 

 
Python 3.9 was used to collect random photo frames 

from videos with increased frames per second (DeepLabel) 
to label Wild Mustard (Sinapis arvensis L.) images on the 
obtained photos (LabelImageMaster), and to create training-
validation sets. With this data set, the YOLO-v5 library, 

which has instant object detection, was evaluated. The 
advantages of the YOLO-v5 library over other deep learning 
architectures used in the literature are given in Figure 3 and 
Figure 4 (Nepal & Eslamiat, 2022). 

Datasets consisting of 50-100-250-500-1 000 raw 
images were prepared to evaluate the effects of the number 
of images in the dataset on the correct detection and 
prediction rates. These datasets were then preprocessed with 
data augmentation methods, each of which was increased to 
12 folds. The image reproduction methods applied are given 
in Table 1. 

The created 5 different data sets (1 000, 500, 250, 100, 
50 pieces) were evaluated by subjecting them to training and 
validation practices in the YOLOv5 library. To train the 
system with these datasets, the images in the datasets were 
randomly distributed as 90% training and 10% validation. 
For training, the batch size was 12, the number of epochs 
chosen as 50, YOLOv5s.pt picked for weight, and 
YOLOv5s.yaml deep learning algorithm were used. 

 
Results and Discussion 

 
To compare the correct estimation and detection rates of 

the created data sets; The results of the Confusion Matrix 
(Figure 5), Metrics-Precision (Figure 6), and Train-Object 
Loss (Figure 7) were compared. For the Confusion Matrix, 
the success indicators are True Positive; which correctly 
classifies the given object, and False Positive means that the 
object that needs to be detected (YH-2) is estimated as one 
of the other plants existing in the background. 

According to Figure 5, neural networks trained with 1 
000 images gave the highest results with TP 80% FP 20%. 
The TP-FP ratios of 500, 250, 100 and 50 image numbers 
were respectively; 65%-35%, 43%-57%, 0%-100% and 0%-
100%. With 100 and 50 images, the system did not show any 
TP success. 

The test results of the datasets trained with different 
numbers of images on the validation dataset are given in 
Figure 6. Accordingly, the highest metrics-precision ratio 
was 92.52% for 1 000 image sets, while it was 88.34% and 
79.87% for 500 and 250 image sets, respectively. Datasets 
containing 100 and 50 photos could not make any correct 
predictions and remained at 0%. 

In Figure 7, different datasets were utilized from the 
training-not-evaluated object. Object loss during training 
was 5% at step 50 in the dataset with at least 100 images. 
This dataset was followed by others 50, 250, 500, and 1000 
images respectively; 5.4%, 6.14%, 6.16%, and 8.07%. 

The difference between the training and validation sets 
of the data sets whose training has been completed is given 
as an example in Figure 8, with 2 identical photo sets (a) that 
are tagged and uploaded to the system for validation and that 
is (b) requested to be labeled automatically by the trained 
system. 

In this study, the results were evaluated by using data sets 
containing different image numbers, the same deep learning 
architecture and algorithm, and a computer with the same 
hardware features. The highest correct prediction rate among 
the datasets and the success of correctly classifying these 
predictions belonged to the 1 000 raw image datasets. When 
compared with other datasets, as the number and diversity of 
images in the dataset increases, although the data loss rate is 
higher during the validation phase, the highest and most 
accurate prediction number was obtained from the dataset 
containing the highest number of images. 
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Figure 5. The Confusion Matrix Ratios of Data Sets Containing Different Image Numbers 

 

 
Figure 6. Metrics-Precision Rates of Datasets Containing Different Image Numbers 

 

 
Figure 7. Train-Object Loss Rates of Datasets Containing Different Image Elements 
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a 

 
b 

Figure 8. (a) Ground Truth labeled Wild Mustard plants sample, (b) Predicted boxes around Wild Mustard plants and 

confidence scores generated by model on the same images in (a). 

 

Table 1. Data augmentation methods and explanations used 

Data Augmentation Methods Description 

hsv_h: 0.015 image HSV-Hue augmentation (fraction) 

hsv_s: 0.7 image HSV-Saturation augmentation (fraction) 

hsv_v: 0.4 image HSV-Value augmentation (fraction) 

degrees: 0.0 image rotation (+/- deg) 

translate: 0.1 image translation (+/- fraction) 

scale: 0.5 image scale (+/- gain) 

shear: 0.0 image shear (+/- deg) 

perspective: 0.0 range 0-0.001 image perspective (+/- fraction), range 0-0.001 

flipud: 0.0 image flip up-down (probability) 

fliplr: 0.5 image flip left-right (probability) 

mosaic: 1.0 image mosaic (probability) 

mixup: 0.0 image mixup (probability) 

 



Mustafa et al. / Turkish Journal of Agriculture - Food Science and Technology, 10(8): 1441-1446, 2022 

1446 

 

While the datasets consisted of raw 1 000, 500, 250, 100, 

and 50 labeled images, the number of images has increased 

to 12 000, 6 000, 3 000, 1 200, and 600 using data replication 

methods. With the increase in the number of images in the 

data set, each repetitive training epoch of the system has 

taken longer than the dataset with fewer images. The training 

time was for the datasets of 1 000, 500, 250, 100, and 50 has 

took for each epoch 18.6, 13.4, 8.2, 5.1 and 2.7 mins 

respectively. 90% of the CPU and GPU capacities used in 

the study were used and thus the number of images (batch 

size) examined at once was 48. Since the training times per 

epoch are inversely proportional to the batch size, weights 

with faster and higher prediction rates for larger image sets 

obtained naturally and/or by data replication methods, on an 

equipped computer with a higher-capacity graphics card and 

processor can create.  

A significant correlation was found between the increase 

in the number of images in the datasets and the increase in 

the prediction precision and correct classification rates of the 

generated neural networks. The satisfying point of the 

system should be examined with different numbers of 

images, epochs, and batches at the training stage reach. To 

carry out this analysis, datasets containing more images 

should be obtained and tested on computers with higher 

capabilities. In this way, the optimum number of raw-

amplified images will be known by other researchers at the 

ten study and planning stages to perform the best estimation 

process of deep learning applications, which are increasingly 

used in agricultural areas. To realize the correct and clear use 

of artificial intelligence algorithms in agricultural areas, the 

features that reveal the differences can show great changes 

depending on the climate and environmental conditions, the 

natural growth periods of the plant, or the occurrence of 

weather events where image acquisition becomes 

impossible and may prevent the system from being properly 

trained. For this reason, it is an important issue for the health 

of the studies to be taken before the laboratory studies, on 

time and in the correct number. Studies such as this study 

will reveal the relationship between the number of images in 

the data set and the result should be tried on different objects, 

as they may differ according to the variety of the item used. 
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