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Climate impact mitigation through improved agricultural practices is one means by which 

agricultural productivity increases to meet the growing food demands in the world. This study 

evaluated the impacts of climate-smart practices on rural households’ nutrition security. The study 

used both primary and secondary data sources. Primary data was collected from sample respondents 

in the 2020/21 production year. Descriptive statistics and econometric models were employed for 

data analysis. Multinomial logit result indicated that the probability of adopting climate-smart 

agricultural practices is influenced by the education level of the head, extension contact, livestock 

holding, membership coop, market information, advice on land management, climate change 

information, farmers training, climate change perception, and weather road distance. The result 

from Generalized propensity score (GPS) estimation indicated that adopting package one of 

climate-smart practices increases household nutritional status by16%. Likewise, adopting packages 

two and three of climate-smart practices increases the household level nutritional status by 37% and 

76% respectively over that of treatment level one of the climate-smart practices and is significant 

at a 1% statistical probability level. This study has found evidence that the adoption of climate-

smart on the households’ nutrition security status. Therefore, the result of this study would be 

expected to significantly contribute as policy and strategic inputs for policymakers in designing 

rural livelihood improvement policies and to the beneficiary in enhancing their welfare and living 

standard.  
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Introduction 

Background of the Study 

Agricultural business is difficult activity mostly for 

developing countries where producers are highly 

dependent on the climate, degraded soil, and has little 

access to improved inputs and markets (Kuhl, 2020; Sova 

et al., 2018). Agriculture is characterized by long droughts, 

pests, disease epidemics, long maturity time, flooding, and 

low productivity (Asfaw and Branca, 2018; Mensah et al., 

2020; Muchuru and Nhamo, 2019; Senyolo et al., 2021).  

 Nowadays there is a global interest for agriculture to 

increase food access through sustainable agricultural 

practices and adjusting natural and social capitals without 

affecting the farming environments (Pretty et al., 2018). 

Ethiopia has a population of 112 million where four out of 

five live in rural areas and have subsistence farming as 

source of livelihoods (World Bank, 2018).The proportion 

of households with insufficient calorie intake (<2550 Kcal 

per adult equivalent per day) accounts for 31%, with 24% 

located in urban areas and 33% in rural areas (FAO, 2019). 

Climate change causes a series of effect to the 

economic growth of developing countries including 

Ethiopia. Climate change also reduces crops and livestock 

yields, food security and the whole wellbeing of rural 

households of Ethiopia (Endalew et al., 2014; Campbell et 

al., 2016; Lewis, 2017). In addition lack of information, 

price systems, reduced yields, and food insecurity are 

identified as multiple factors affecting growth (Hansen et 

al., 2019; Etwire and Kuwornu, 2020).  

The study area Eastern Hararge, Oromia mostly 

affected by the climate change effects of land degradation, 

population pressure, loss topsoil, deforestation, poor 

afforestation, unsustainable agricultural practices, use of 
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manure and crop residues for fuel, and overgrazing (Tesfa 

and Mekuriaw, 2014; Abebe and Sewnet, 2018). Flooding 

and high erosion rate affect several regions of Ethiopia 

(Gessesse et al., 2015; Hurni et al., 2016; Asfaw and Neka, 

2017). Adoption and use of climate-smart agricultural 

practices are suggested mechanisms for increasing 

productivity, increasing the resilience capacity of crops 

and livestock to climate change, and reducing the emission 

of greenhouse gas (James et al., 2015; FAO, 2016; 

Teklewold et al., 2017).  

More of the last studies on the adoption of climate-

smart practices have focused on the adoption of single 

practices and their effect on food security status and not 

focused on multiple practices and their effect on nutrition 

security (Zeng et al., 2015, Makate et al., 2016). Therefore, 

there is a literature gap and growing demands in the 

literature on the adoption and impact of a combination of 

practices on household productivity and well-being 

(Makate et al., 2017, Wainaina et al., 2017, Teklewold et 

al., 2017, Tambo and Mockshell, 2018). Even in Ethiopia, 

the integrated use of fertilizers, improved seeds, and 

irrigation in agriculture are still below 1% (Bachewe et al., 

2018). Thus, this study evaluates the impact of climate-

change adoption practices on the nutrition security of rural 

households in Eastern Oromia, Ethiopia. 

 

The specific objectives of the study 

 Identify determinants of smallholder farmers’ 

adoption of climate-smart practices  

 Evaluate the impacts of the adoption of climate-smart 

practices on rural households’ nutrition security. 

 

Materials and Methods 

 

Description of the Study Area 

This study was conducted in the Girawa, Haramaya, 

and Meta districts of the east Hararghe zone of Oromia 

Regional State, Ethiopia. Its altitude ranges from 1200 to 

3405m above sea level with minimum and maximum 

rainfall of 400 and 1200 mm respectively. The total area 

covered by this zone is about 22,622.6 km2. The zone has 

three agro-ecological zones, highland (>2300), midland 

(1500–2300), and lowlands (<1500) meters (m.a.s.l.) 

(AEHZ, 2018). Girawa district has an estimated total 

population of 300,661 (CSA, 2019). The estimated total 

population of Haramaya is 352,031, out of which 172,495 

are females (HDAO, 2019). The total population of the 

Meta district is 318,458; of whom 160,334 were men and 

158,124 were women (MAO, 2019). 

 

Sources of Data and Methods of Data Collection  

The study used both primary and secondary sources of 

data. The primary data was collected by the trained 

enumerators. Three districts were selected purposively due 

to their potential area for cereal crops and problems of rural 

households’ nutrition security. From that three districts, 

eight kebeles were selected using simple random sampling. 

The sample size was determined through the application of 

the Kothari (2004) sample size determination formula and 

finally, a total of 461 sample households were interviewed. 

 

Methods of Data Analysis  

The study employed descriptive statistics and 

econometric models for data analysis.  

Measure of nutritional status 

Household Dietary diversity score was used to measure 

nutrition security status using the types of different food 

groups consumed by a given household over the last 

24hours. This is used as a measure of overall food access, 

including total dietary intakes as well as diet quality 

(Kennedy et al., 2010; Leroy et al., 2015). Dietary diversity 

scores are relatively inexpensive to obtain, and so can be 

collected over large populations to monitor the progress of 

intervention and measure disparities over time. Different 

measures often yield diversity scores that are highly 

correlated with each other and other measures of nutrition 

security (Kennedy et al., 2010; Lovon and Mathiassen, 

2014). As a crosscut the number of food groups or dietary 

diversity can be categorised as low dietary diversity (≤3 

food groups); medium dietary diversity (4 to 5 food 

groups) and high dietary diversity (≥6 food groups) for 

household level study (FAO, 2015). 

Multinomial logit selection model  

The study employed a multinomial logit selection 

model to measure the decision to adopt a combination of 

climate-smart agricultural practices as one of the random 

utility frameworks. Following Kassie et al.(2015,2018) 

consider the latent model ( 𝑈𝑗𝑖𝑡) below which describes the 

behavior of the i’th farmers in adopting multiple 

agricultural practices 𝑗(= 1,2,3,4) at time t over any 

alternative multiple agricultural practices combination m: 

 

Ujit=αjXjit+ωjXji+εjit   

 

With U= ∫ ….
1

J if ujit>maxm≠j(umit) or τjit<0

if Ujit>maxm≠1(umit) orτjit<0
 for all m≠j (1) 

 

Where 𝑋𝑗𝑖𝑡  is a vector of observed exogenous 

covariates that the households level characteristics, 𝛼𝑗and 

𝜔𝑗 are vectors of parameters to be estimated, and 𝜀𝑗𝑖𝑡 is the 

random error term. 

Estimation of the multinomial logit selection model 

could be inconsistent due to the correlation of unobserved 

factors with explanatory variables. To overcome this we 

use Mundlak’s (1978) and Wooldridge’s (2010) approach 

where the means ( ̅𝑥𝑗𝑖) of all time-varying covariates are 

included as additional covariates in the multinomial logit 

selection model. Unlike the adoption decision which is 

observable, the utility derived from the adoption of 

multiple climate-smart practices is unobservable. 

Therefore, eq(1) entails that the i’th farmer will adopt a 

combination of multiple climate-smart practices to 

maximize expected benefits if the practice provides greater 

utility than an alternative combination m: e.g., if 

𝜏𝑗𝑖𝑡(𝑈𝑚𝑖𝑡 − 𝑈𝑗𝑖𝑡 )<0, assuming that are independent and 

identically Gumbel distributed (Bourguignon et al., 2007). 

As indicated by Mc-Fadden (1973), the probability that a 

farmer i will choose practice j can be expressed as a 

multinomial logit selection model with: 

 

𝑃𝑗𝑖𝑡 = (𝜏𝑗𝑖𝑡 < 0 𝑋𝑗𝑖𝑡) =
exp (𝛼𝑗𝑥𝑗𝑖𝑡+𝜔𝑗𝑥𝑗𝑖)

∑ 𝑒𝑥𝑝1
𝑚≠1 (𝛼𝑚𝑋𝑚𝑖𝑡+𝜔𝑚𝑋𝑚𝑖)

 (2) 
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Thus the multinomial logit selection model in the above 

equation is estimated using mlogit command in Stata 

statistical software (STATA 14.2) 

The Generalized Propensity Score Function 

In multiple treatment impact evaluation, the 

Generalized Propensity Score (GPS) method is a viable 

method for estimating the dose-response function (Herrano 

and Imbens, 2004). The method yields efficient and 

accurate results in the social studies research (Kloe et al., 

2012; Cassie et al., 2014; Liu and Floraux, 2014; Li and 

Fraser, 2015). A sample of a large population of random 

sample is shown by imaging and with the help of i = 1,…, 

N. The dose-response function, called Yi-T, T-T, is that for 

each component under the treatment level T. In the case of 

binary solutions, t = 0, 1. However, in the case of 

continuous treatment such as the numbers of adopted 

climate-smart practices, t is intermediate [t0, t1], t0> 0 

(Herrano and Imbens, 2004). Because the utility of GPS 

focuses on the effects of average dose-response and 

treatment for the households using agricultural practices 

and households that do not use climate-smart practices are 

not included in the study (Guardabascio and Ventura, 

2013). 

The goal is to estimate the average potential effect or 

dose-response, (t) = E[yi (t)], which represents the normal 

function of dietary diversity. Nutrition status is estimated 

to all possible practices of climate-smart farming, and to 

these (T) farming practices. Notable variables in the model 

are the vectors of the covariates Xi. The first step, as Dean 

and Imbans (2004) point out, is the general distribution of 

GPS of participants (t (r, r) = E [Y / T = t, r = r]). 

Agricultural practices parameters will be estimated using 

the maximum likelihood of the functions the, β0, β1 and δ2 

(conditional distribution of contributions) (3). 

 

𝑇𝑖|𝑋𝑖~𝑁[𝛽0 + 𝛽1𝑋𝑖,
𝛿2]    (3) 

 

As the main purpose for estimating the GPS is to ensure 

balancing of covariates across categories of practices, a test 

for sufficient covariate balancing property of the estimated 

GPS was conducted before proceeding to step two. 

Following the estimation of the parameters of the 

participation function in Eq. (3), GPS was estimated using 

Eq. (4). 

 

𝑅𝑖 =
1

√2𝜋𝛿2
𝑒𝑥𝑝[−

1

2𝛿2
(𝑇𝑖 − 𝛽0 − 𝛽0𝑋𝑖) 2]  (4) 

 

The second step involved modeling the conditional 

expectation of household nutrition security status (Yi) as a 

quadratic function of observed treatment (Ti), estimation of 

GPS (Ri), and analysis of the interaction between the two 

using Eq. (5). 

 

𝛽(𝑡, 𝑟) = 𝑔([𝑌𝑖|𝑇𝑖,𝑅𝑖]) = 𝛼0 + 𝛼1𝑇𝑖 + 𝛼2𝑇𝑖2 +

𝛼3𝑅𝑖 + 𝛼4𝑅𝑖2 + 𝛼5𝑇𝑖𝑅𝑖  (5) 
Since the outcome variable of the study is continuous, 

g was estimated using a normal regression model. Finally, 
the average dose-response function at a particular value of 
the treatment t was estimated by averaging the (estimated) 
conditional expectation μ(t) over the GPS at that level of 
climate-smart practices (μ(t) = E[β(t, r(t, X))], t ∀ Τ) using 
Eq. (6). 

 

𝜇(𝑡) = 𝐸[𝑌̇(𝑡)] =
1

𝑁

́
∑ 𝑔−1[𝛼0 + 𝛼1

𝑁
𝑖=1 . 𝑡 + 𝛼2𝑡2 +

𝛼3. 𝑟(𝑡, 𝑥𝑖) + 𝛼4. 𝑟(𝑡, 𝑥𝑖)2 + 𝛼5. 𝑡𝑟(𝑡, 𝑥𝑖)  (6) 
 
α is the vector of parameters estimated in step two and 

r(t, Xi) is the predicted value of r(t ,Xi) at level t of the 
treatment. The entire dose-response function was obtained 
by estimating this average potential outcome for each level 
of practice. 

Estimation of inverse probability weighting (IPW) 
If the generalized propensity score j sample farmers 

given as; 
 

ej(X)=Pr (Z X)    (7) 

 
The inverse probability weighting of the average 

treatment effect is given by; 
 

W(𝑋İ) … 𝑊𝐽(𝑋𝐽)= (
1

ej(Xi)

) ……. (
1

ej(Xi)

) .  (8) 

 

PjATEj=
∑ 1(Zi=j)Yi ej(Xi)

n
i=1

∑ 1(Zi=ji)ej(Xi)
n
1

-
∑ 1(Zi=j') YYi( ej' (Xi)

n
i=1

∑ 1(Zi=j')e' (Xi)
n
i=1

 (9) 

 
Where the inverse probability weighting for the 

average treatment effect on the treated sample is calculated 
following Morgan et al (2008); Austin (2011) as: 

 

𝑊𝐴𝑇𝑇 = 𝑍 + (
𝑒(1−𝑧)

1−𝑒
)     (10) 

 
Where P𝐴𝑇𝐸𝑗  Weighted average treatment effect, 𝑊𝐴𝑇𝑇  

is the weighted average treatment on treated.  
Definition of variables and hypothesis 
Dependent variables: The dependent variable is 

continuous in nature and measured as the number of 
adopted climate-smart agricultural practices.  

Outcome variables: Nutrition security are outcome 
variable in impact estimation. Table 1 below presents the 
detail of variables definitions, measurements, and 
hypotheses 

 
Results and Discussion 

 
Descriptive Statistical Results  
Descriptive statistics results of continuous variables 
Descriptive statistics results of continues variables 

among the different climate-smart adoption practices are 
presented in Table 2. The discussion about the descriptive 
statistics of each variable is presented below; 

Level of education: The total sample's average years of 

formal schooling were found to be 3.4 years. The average 

education level for less than one package-adopters, one 

package practice adopters, two package practices adopters, 

and all three packages of climate-smart agriculture 

practices adopters were found to be 1.74, 2.7, 4.1, and 4.8 

years respectively. The F-test results of groups mean 

difference comparison shows that there is a statistically 

significant mean difference among the four groups at 1% 

probability level. This shows that more educated 

household adopts more climate-smart agricultural practices 

than less educated household. 
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Extension contacts: Extension service refers to advice, 

training, demonstration, and input distribution to farmers. 

According to the survey results, farmers have an average 

of 3.6 days of extension contact per year. The average 

extension contact for less than one package adopter, one 

package practice adopter, two package practices adopters, 

and three package practice adopters were found to be 3.2, 

3.3, 3.7, and 5.14 times per year respectively. The F-test 

results of groups mean difference comparison shows that 

there is a statistically significant mean difference among 

the four groups at a 1% probability level. A result further 

shows that households with more extension contact adopt 

more climate-smart agricultural practices others. 

Livestock holding: The sample households' mean 

livestock holding in Tropical Livestock Unit (TLU) was 

found to be 2.57. The average livestock holding for less 

than one package adopters, one package practice adopters, 

two package practices adopters, and all three package 

practice adopters were found to be 1.84, 2.57, 2.68, and 

3.07 years respectively. The F-test results of groups mean 

difference comparison shows that there is a statistically 

significant mean difference among the four groups at a 1% 

probability level. This showed that the sample households 

that did adopt more packages of the number of climate-

smart agriculture practices had significant mean 

differences in livestock holding (Table 2). 

Distance to weather road: Market access is a 

determinant of the profitability and sustainability of 

agricultural products, as well as a proxy for agricultural 

marketing services. The average weather road distance for 

less than one package adopter, one package practice 

adopter, two packages adopter and all three package 

practice adopter were found to be 36.86, 32.77, 29.4,5, and 

29.27 minutes respectively.  According to the F-test results 

of group mean difference comparison, there was a 

statistically significant mean difference between the four in 

terms of weather road distance at the 1% probability level.  

Total farm income: The average total farm income for 

the entire sample is 36395.04 Birr. The average livestock 

income for less than one package adopter, one package 

adopter, two packages adopter, and all three packages of 

practice adopters are found to be 22193, 33201.26, 

35841.5, and 56980.54 birrs respectively. The F-test results 

of group mean difference comparison shows that there was 

a statistically significant mean difference in farm income 

among the four treatment levels at the 1% probability level. 

This showed that the sample households that did adopt 

more packages of climate-smart agriculture practices had 

significant mean differences in total farm income. 

 

Characteristics of sample households (Dummy 

variables) 

Membership status: According to the survey results, 

48.6 percent of the total sample was found to be members 

of farmer groups and cooperatives, while the remaining 

51.4 percent did not participate. The comparison across 

different groups of climate-smart practices, about 6.3 %, 

14.1, 17.1, and 11.4 percepts of the households who did 

adopt less than one package, adopted one package, adopted 

two packages, and adopted all three packages of climate-

smart practices had participated in the memberships.  At a 

1% probability level, the chi-square test revealed a 

statistically significant mean difference between the four 

treatment levels in terms of the membership status of the 

household head. This demonstrated that participating 

households use more climate-smart practices than less 

participating households. 

 

Table 1. Definitions, measurements, and hypotheses of used variables  

Variables Measurement The expected effect 

Dependent variables    

Climate change adaptation practices Number of climate change adaptation practices used  

Outcome variables    

Dietary diversity  Numbers of food types consumed per day  

Independent variables    

Age  Age of head in years  +/- 

Gender  1 male headed, 0 female headed + 

Family size  Family size in numbers  + 

Land area  Cultivated land area in hectors  + 

Education  Education level of head grade completed  + 

Training  1 if trained 0 otherwise + 

Extension  Number of contact in cropping season  + 

 Distance to main road  Distance to the main road in kms - 

Climate information  1 if accessed 0 if not  + 

Perception climate change 1 if perceived 0 otherwise + 

Training on land mgt 1 if participated 0 otherwise + 

Livestock holding  Total livestock holding in TLU + 

Coop memberships  1 if member 0 if not + 

Market information  1 if accessed 0 if not + 

Soil fertility status  1 if fertile 0 otherwise - 

Non/off- farm income  1 if accessed 0 if not  + 

Access to credit 1 if accessed 0 if not  + 
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Table 2. Descriptive statistical results for sample households continues variables 

Variables 

Treatment 

level one 

Treatment 

level two 

Treatment 

level three 

Treatment 

level four 
All sample 

F- Value 

Mean Mean Mean Mean Mean 

Age  41 40 39.9 41 40.5 0.40 

Family size  6.4 6.1 6.13 6.3 6.2 .39 

Cultivated  0.614 0.451 .464 .521 0.4903 1.68 

Livestock  1.84 2.57 2.68 3.07 2.57 4.72*** 

Labor  206.4 212.46 205.95 225.53 211.71 1.25 

Extension  3.2 3.17 3.7 5.14 3.68 10.41*** 

Education  1.7 2.7 4.1 4.8 3.4 14.96*** 

Crop income 19537.7 29353.4 31005.45 51981.4 32218.2 5.26*** 

Lincome  2655.08 3845.87 4836.06 4999.46 4177.1 4.58*** 

Fincome 22193.5 33201.87 35841.6 56980.5 36395.37 5.92*** 

Kilocalories 1920.3 3088.13 5090.7 7971.2 4375.4 34.18*** 

Dietary div 4.05 4.5 4.98 5.75 4.8 12.14*** 

Weather road 36.86 32.77 29.45 29.27 31.74 4.95*** 
Source: Own computation results,** and *** means significant at 5% and 1% respectively 

 

Training: According to the study findings, 63.6 percent 

of the total sample households participated in farmer 

training, while the remaining 36.4 percent did not. The 

comparison across different groups of climate-smart 

practices, about 6.3, 21.5, 21.9, and 13.9% of the 

households who did adopt less than one package, adopted 

one package, adopted two packages, and adopted all three 

packages of practices had participated in the farmers 

training. This demonstrated that participating households 

use more climate-smart practices than less participating 

households (Table 3). 

Training on land management: According to the study 

findings, 49.2 percent of the total sample households 

received technical advice on sustainable land management, 

while the remaining 50.8 percent did not. The comparison 

across different groups of climate-smart practices, about 

5.4, 16.9, 16.9, and 10.4% of the households who did adopt 

less than one package, adopted one package, adopted two 

packages, and adopted all three packages of practices had 

received technical advice on land management. The chi-

square tests shows that there was a statistically significant 

mean difference in technical advice among the four 

treatment levels at the 1% probability level (Table 3).  

Non/off farm income: According to the findings of the 

study, 13.9 percent of the total sample household 

participated in non/off-farm income, while the remaining 

86.1 percent did not. The comparison across different 

groups of climate-smart practices, about 3.3, 6.1, 2.8 and 

1.7% percepts of the households who did adopt less than 

one package, adopted one package, adopted two packages 

and adopted all three packages of practices had participated 

in the non/off-farm income.  At the 5% probability level, 

the chi-square tests show that there is a statistically 

significant mean difference between the four treatment 

levels in terms of access to non/off farm income. 

Access to market information: According to the study 

findings, 61.8 percent of the total sample household 

accessed market information, while the remaining 38.2 

percent did not. The comparison across different groups of 

climate-smart practices, about 7.2, 22.1, 21.7, and 10.8% 

of the households who did adopt less than one package 

practices, adopted one package, adopted two packages of 

practices, and adopted all three packages of practices 

accessed market information. At a 5% probability level, the 

chi-square tests show that there is a statistically significant 

mean difference in market information among the four 

treatment levels. This indicates that households that had 

access to market information adopted more climate-smart 

practices than households that did not. 

Climate change information: According to the study 

findings, 66.6 percent of the total sample household 

accessed climate change information, while the remaining 

33.4 percent did not. The comparison across different 

groups of climate-smart practices, about 6.3, 22.1, 24.1, 

and 14.1% of the households who did adopt less than one 

package, adopted one package, adopted two packages, and 

adopted all three packages of practices accessed market 

information. At the 1% probability level, the chi-square 

tests show that there was a statistically significant mean 

difference between the four treatment levels in terms of 

climate change information. This shows that households 

that accessed climate change information adopted more 

climate-smart practices than households that did not. 

Perception about climate change: According to the 

study's findings, 64.4 percent of the total sample 

households accessed market information, while the 

remaining 35.6 percent did not. The result of the 

comparison across different groups of climate-smart 

practices indicated that about 7.2, 21, 23.6, and 12.6% of 

the households who did adopt less than one package 

practices, adopted one package practices, adopted two 

package practice and adopted all three package practices 

perceived existence of climate change. The chi-square tests 

show that there was a statistically significant mean 

difference in climate change perception among the four 

treatment levels at the 1% probability level. This shows 

that households that perceived climate change adopted 

more climate-smart practices than households that did not 

perceive climate change. 

 

Econometric Results  

Adoption decision of climate-smart agricultural 

practices  

The multinomial logit model result indicated that the 

probability of adopting the packages of climate-smart 

agricultural practices was significantly influenced by the 

following eleven explanatory variables.  
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Table 3. Descriptive statistical results for sample households’ categorical variables  

Variables 

Treatment 
level one 

Treatment 
level two 

Treatment 
level three 

Treatment 
level four 

Total 
X2 value 

Num % Num % num % Nu % Num % 

Coop 
Memberships 

No  41 8.9 101 21.9 68 14.8 27 5.9 237 51.4 
17.7*** Yes  29 6.3 65 14.1 79 17.1 51 11.1 224 48.6 

Total  70 15.2 166 36 147 31.9 78 16.9 461 100 

Advise on 
land mgt 

No  45 9.8 88 19.1 69 15 32 6.9 234 50.8 
9.28*** Yes  25 5.4 78 16.9 78 16.9 46 10 227 49.2 

Total  70 15.2 166 36 147 31.9 78 16.9 461 100 

Training on 
irrigation 

No  46 10 73 15.8 58 12.6 36 7.8 213 46.2 
13.7*** Yes  24 5.2 93 20.2 89 19.3 42 9.1 248 53.8 

Total  70 15 166 36 147 31.9 78 16.9 461 100 

Access to 
training  

No  41 8.9 67 14.5 46 10 14 3 168 36.4 
29.1*** Yes  29 6.3 99 21.5 101 21.9 64 13.9 293 63.6 

Total  70 15 166 36 147 31.9 78 16.9 461 100 

Access to 
n/of income  

No  55 11.9 138 29.9 134 29.1 70 15.2 397 86.1 
8.551** Yes  15 3.3 28 6.1 13 2.8 8 1.7 64 13.9 

Total  70 15.2 166 36 147 31.9 78 16.9 461 100 

Access to 
market info 

No  37 8 64 13.9 47 10.2 28 6.1 176 38.2 
8.983** Yes  33 7.2 102 22.1 100 21.7 50 10.8 285 61.8 

Total  70 15.2 166 36 147 31.9 78 16.9 461 100 

Social status 
No  48 10.4 94 20.4 77 16.7 36 7.8 255 55.3 

8.253** Yes  22 4.8 72 15.6 70 15.2 42 9.1 206 44.7 
Total  70 15.2 166 36 147 31.9 78 16.9 461 100 

Access to 
climate 
change info 

No  41 8.9 64 13.9 36 7.8 13 2.8 154 33.4 
36.9*** Yes  29 6.3 102 22.1 111 24.1 65 14.1 307 66.6 

Total  70 15.2 166 36 147 31.9 78 16.9 461 100 

Climate 
change 
perception  

No  37 8 69 15 38 8.2 20 4.3 164 35.6 
21.9*** Yes  33 7.2 97 21 109 23.6 58 12.6 297 4.4 

Total  70 15.2 166 36 147 31.9 78 16.9 461 100 
Sources: Own survey result, 2021. ** and *** means significant at 5% and 1% % respectively 

 

Education of household head: At the 1% probability 

level, the education level of household heads was found to 

have a significant and positive effect on the probability of 

adopting two and three packages of climate-smart 

practices, respectively. The marginal effects of 0.024 and 

0.014 for education level indicated that, after controlling 

for other variables, the probability of adopting two and 

three packages of climate-smart practices increased by 2.4 

and 1.4 percent, respectively, as the education level of the 

household head increased by one year. According to Daniel 

and Muluget (2017) and Workneh (2015), education 

allows farmers to perceive, interpret, and respond to new 

information much faster than farmers with lower education 

levels. This finding was consistent with the findings of 

Ademe et al. (2019), Etim et al. (2019), and Luu et al. 

(2020).  

Extension Contact: At 1% probability, extension 

contact was found to have a significant and positive effect 

on the probability of adopting one or three packages of 

climate-smart practices. The marginal effects of 0.032 and 

0.027 for extension contact indicated that, while other 

factors remained constant, the likelihood of adopting one 

and three packages of climate-smart practices increased by 

3.2 and 2.7 percent as extension contact increased by one 

advisory contact, respectively. Access to extension agents' 

services will raise farmers' awareness and provide them 

with more information about the importance of technology 

adoption (Akpan et al., 2012, Martey et al., 2014). This 

finding supports the findings of Teklewold et al. (2017), 

who discovered that it is the quality of the extension 

workers, not the extension contact that influences the 

adoption decision. This result was also consistent with the 

findings of Nhat et al. (2019), Etim et al. (2019), and 

Tekeste (2021). 

Access to farmers’ training: At a 1% probability level, 

this variable has a positive and significant relationship with 

the likelihood of implementing three packages of climate-

smart practices. Keeping other factors constant, the 

marginal effects of 0.102 for extension contact indicated 

that the probability of adopting the three packages of 

climate-smart practices increased by 10.2 percent as the 

household accessed farmers training. Farmers who have 

access to training are more likely to obtain technological 

and climate-related information about crop and livestock 

production. This finding was consistent with those of 

Tesfaye (2017) and Zakarias et al (2020). 

Training on land management: At a 1% probability 

level, this variable has a positive and significant 

relationship with the likelihood of adopting two packages 

of climate-smart practices. The marginal effects of 0.172 

for access to training on land management practices 

indicated that, after controlling for other factors, the 

probability of adopting the two packages of climate-smart 

practices increased by 17.2 percent as the household 

accessed training on land management practices. This is 

because of technical knowledge and the advantages of land 

management practices for crop and livestock production. 

This finding was consistent with the findings of Tesfaye 

(2017) and Zakarias et al (2020) 
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Livestock holdings: At a 5% probability level, this variable 

has a positive and significant relationship with the likelihood 

of adopting all three packages of climate-smart practices. The 

marginal effects of 0.019 for livestock holding indicated that, 

when all other factors were held constant, the likelihood of 

adopting the three packages of climate-smart practices 

increased by 1.9 percent as household livestock holding 

increased by one tropical livestock unit. The presence of 

livestock in rural families reduces the amount of time, energy, 

and money spent on composting. This finding was consistent 

with the findings of (Ademe et al., (2019), Etim et al. (2019), 

and Luu et al. (2020).  

Memberships of Coop: Participation of household 

heads in cooperatives was found to have a significant and 

positive effect on the probability of adopting two and three 

packages of climate-smart practices at the 1% probability 

level. The marginal effects of 0.147 and 0.097 for 

memberships indicated that, after controlling for other 

factors, the likelihood of adopting two and three packages 

of climate-smart practices increased by 14.7 and 9.7 

percent, respectively, as the household participated in 

cooperative memberships. Being membership in at least 

one agricultural group, and trusting in fellow community 

members had a positive effect on the choice of climate-

smart agricultural practices (Hailemariam et al., 2019). 

(Hailemariam et al., 2019). This finding was consistent 

with those of Etim et al. (2019) and Tekeste (2021).  

Climate change information: At the 1% probability 

level, this variable was found to be positively related to the 

likelihood of adopting two and three packages of climate-

smart practices, respectively. The marginal effects of 0.132, 

0.175, and 0.073 for climate change information indicated 

that, while other factors remained constant, the probability 

of adopting one, two, or three packages of climate-smart 

practices increased by 13.2, 17.5, and 7.3 percent as the 

household accessed climate change information, 

respectively. This result agrees with the findings of (Nhat et 

al., 2019 and Ademe et al., 2019). Mulwa et al. (2017) and 

Issahaku and Abdulai (2019) discovered that exposing 

farmers to climate information increases their knowledge 

and awareness of climate change, as well as their climate-

smart agriculture skills and practices. 

Perception of climate change: At 5% and 1% 

probability levels, this variable has a positive and 

significant relationship with the likelihood of adopting one 

or two packages of climate-smart practices. The marginal 

effects of 0.130 and 0.167 for climate change perception 

indicated that, while other factors remained constant, the 

likelihood of adopting one and two packages of climate-

smart practices decreased and increased by 13 and 16.7 

percent, respectively, as the households perceived climate 

change. Farmers who are aware of climate change are more 

likely to adopt climate-friendly practices. The findings 

were consistent with those of Nyang'au et al (2021). 

Market information: This variable has a positive and 

statistically significant relationship with the likelihood of 

implementing the two packages of climate-smart practices. 

Keeping other factors constant, the marginal effects of 

0.093 for market information indicated that as the 

household head accessed market information, the 

probability of adopting the two packages of climate-smart 

practices increased by 9.3 percent. Farmers can obtain 

relevant information about climate-smart practices through 

market information. This result was consistent with the 

findings of Ademe et al. (2019), Etim et al. (2019), and Luu 

et al. (2020).  

Distance to weather road: At a 5% probability level, 

this variable was found to be negatively and statistically 

significant with the probability of adopting the packages of 

climate-smart practices. The marginal effects of -0.004 and 

-0.002 for weather road distance imply that all else being 

equal, the likelihood of adopting two and three packages of 

climate-smart practices decreases by 0.4 and 0.2 percent as 

the distance to the weather road increases by one unit. This 

finding was consistent with those of Tekeste (2021), Nhat 

et al. (2019), Hailemariam et al. (2019), and Aryal et al. 

(2018). (2018). 

 

Impact Evaluation Results 

Impacts of the adoption of climate-smart practices 

Current works of literature indicate that assessing the 

impact of climate-smart practices on nutrition security by 

taking climate-smart practices as a binary treatment is not 

enough in a context where there are heterogeneous 

adoption practices at the household level due to different 

factors. Hence, this study estimates the impact of climate-

smart practices on-farm households’ nutrition security. The 

GPS model (dose-response function) is estimated for 

climate-smart practices as a continuous dependent variable 

– which takes 1, 2, 3, and 4 values.  

GPS is a non-parametric method used to correct for 

selection bias in a continuous treatment setting by 

comparing units that are similar in terms of their 

observable determinants of extents of time spent. Hence, it 

does not require control groups (Magrini et al., 2014). The 

intensity of adopted climate-smart practices which is the 

"number of practices" that indicates a probability of 

adoption, which ranges from 0 to 1, was captured by 

dividing the number of adopted climate-smart practices of 

each household by the maximum number of adopted 

practices. Here missing important variables may create 

mismatching and biased estimators because the GPS does 

not directly account for the unobservable variables that 

may affect both households’ nutrition security and the 

number of adopted climate-smart practices. Alike to PSM 

analysis, GPS focuses on the estimation of nutrition 

security impacts by using household households’ dietary 

diversity scores.  

Before estimating the generalized propensity score, it is 

required to group the numbers of adopted climate-smart 

practices into four clusters at 25%, 50%, and 75% 

following the procedure suggested by Kluve et al (2007). 

Four groups of comparable size were formed on the basis 

of the proportion of the numbers of adopted practices, i.e. 

group one (less than 0.25); group two (greater than 0.26 

and less than 0.50), and group three (greater than 0.51 to 

0.75) and group four (greater than 0.76 to 1). Group one 

presents the households with the relatively a lower number 

of adopted practices that consisting of 70 households; the 

second group indicates the household with medium 

numbers of adopted practices which contain 166 

households and the third group indicates relatively high 

numbers of adopted practices that consists of 142 sample 

households and group four indicates relatively higher 

numbers of adopted practices that consists of 77 sample 

households.  
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Table 4. Determinants of the adoption of climate-smart agricultural practices 

Variables 
One package Adopters of two packages Adopters of all three packages 

ME SE ME SE ME SE 

Family size -0.016 0.011 0.006 0.010 0.010 0.006 

Gender  -0.139** 0.066 0.066 0.060 0.034 0.035 

Age  0.001 0.002 -0.002 0.002 0.001 0.001 

Of/n income 0.130* 0.077 -0.108 0.068 -0.042 0.041 

Education  -0.026*** 0.008 0.024*** 0.007 0.014*** 0.004 

Extension  -0.032*** 0.011 0.011 0.010 0.027*** 0.006 

Membership -0.221*** 0.051 0.147*** 0.049 0.097*** 0.032 

Social status -0.013 0.055 0.039 0.051 0.042 0.032 

Training  -0.057 0.056 0.026 0.053 0.102*** 0.031 

Water train -0.063 0.054 0.172*** 0.049 0.001 0.031 

Livestock  0.003 0.014 -0.004 0.013 0.019** 0.008 

C.change ino -0.132** 0.056 0.175*** 0.050 0.073** 0.031 

Mkt info -0.057 0.055 0.093* 0.051 0.027 0.031 

Perception  -0.130** 0.055 0.167*** 0.050 0.016 0.032 

W.road dist 0.004* 0.002 -0.004** 0.002 -0.002* 0.001 

Land area -0.018 0.084 0.004 0.081 0.058 0.038 
LR chi2(48) = 245.99; Number of obs = 461; Prob > chi2 = 0.0000; Log likelihood = -481.69957; Pseudo R2 = 0.2034; Sources: Own survey result, 2022. *** , **and 

* means significant at 1%,5% and 10% probability levels respectively 

 

Table 5. Distribution of estimated generalized propensity score  

Variable Mean Std. Dev. Min Max 

All sample  .2821324 .2024226 .0045064 .7307587 

25% .2821324 .2024226 .0045064 .7307587 

50& .5882531 .1603005 .0775026 .739016 

75% .5848511 .1702425 .0478257 .7390129 

100% .4624792 .200764 .0455838 .7372773 
Sources: Own survey result, 2022. 

 
Figure 1. Kernel density of GPS-score with common (off) support regions 

Sources: Own computational result, 2022. 
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The common support region is the area that contains the 

minimum and maximum propensity scores of groups one, 

two, three, and four households, respectively. It requires 

deleting all observations whose propensity scores are 

smaller than the minimum and larger than the maximum of 

all groups, respectively (Caliendo and Kopeinig, 2005).  

Consequently, the common support region would then 

lie between 0.0478257 and 0.7307587 by discarding 9 

households from below and 53 households from above, and 

a total of 399 households were found on the common 

support region for GPS estimation. Figure 1 below portrays 

the distribution of the treated households with respect to 

the estimated GPS scores and the household on the 

common support. The kernel distribution shows that most 

of the households are found on the left side of the 

distribution, which suggests a lower proportion of 

probability of adopting climate-smart practices. 

 

Test for covariate balance  

The main purpose of estimating the GP score is to 

check the balancing of the covariates and not to obtain a 

precise prediction of determinants of the f probability of 

adopting climate-smart practices. Accordingly, testing of 

balancing property by comparing the covariates across 

groups with and without GPS correction was done. Finally, 

strong evidence was found that showed the satisfaction of 

the balancing property at a level lower than 1% statistical 

error after GPS adjustment. 

Tables 6 and 7 present the result of the standard two-

sided t-test of covariate balance for each group before and 

after GPS adjustment. The results point out that the 

covariate balance has improved by making the adjustment 

for the GPS. The equality of mean across groups without 

GPS adjustment indicated as there were five covariates 

with a significant mean difference, whereas after GPS 

correction it was reduced to two significant mean 

difference variables. 

 

Table 6. Test for covariate balance before GPS adjustment 

Variable 
[<0.25 ] [0.26, 0.50] [0.51, 0.75] [0.76, 1] 

MD SD t-value MD SD t-value MD SD t-value MD SD t-value 

Famsize 0.12 0.44 0.26 0.15 0.25 0.60 0.11 0.27 0.42 -0.20 0.41 -0.47 

GEND -0.05 0.07 -0.64 0.06 0.04 1.59 0.01 0.04 0.23 -0.07 0.07 -1.12 

age1 0.18 1.96 0.09 0.28 1.07 0.26 0.69 1.17 0.59 -1.87 1.79 -1.04 

OFIN 0.07 0.05 1.36 -0.02 0.03 -0.55 0.04 0.04 0.97 0.05 0.06 0.83 

edu1 -0.24 0.57 -0.41 0.20 0.30 0.68 -0.61 0.31 -2.00 0.25 0.48 0.53 

NEXT -0.15 0.46 -0.33 0.18 0.25 0.70 -0.14 0.28 -0.53 0.07 0.41 0.18 

SFS 0.14 0.09 1.63 -0.03 0.05 -0.62 0.00 0.05 0.08 -0.02 0.08 -0.31 

SSH 0.02 0.09 0.23 -0.03 0.05 -0.63 0.02 0.05 0.43 -0.10 0.08 -1.32 

TLU 4.23 13.47 0.31 -2.85 7.28 -0.39 9.55 7.77 1.23 -2.14 11.68 -0.18 

TRIN 0.06 0.07 .78 -0.05 0.04 -1.19 0.04 0.05 0.76 -0.10 0.08 -1.28 

DAIR 0.05 0.08 0.65 -0.01 0.05 -0.28 0.03 0.05 0.57 -0.07 0.08 -0.97 

LSHH 0.59 0.34 1.72 -0.32 0.19 -1.70 0.18 0.20 0.87 -0.34 0.30 -1.13 

CCINFO 0.07 0.06 1.17 0.01 0.04 0.37 -0.09 0.04 -2.11 -0.07 0.07 -1.00 

PCC -0.05 0.07 -0.68 0.05 0.04 1.25 -0.08 0.05 -1.65 0.00 0.08 0.02 

DWR 1.91 2.54 0.75 -1.32 1.43 -0.93 -1.71 1.54 -1.11 0.63 2.30 0.28 

Cultland -0.05 0.08 -0.55 0.08 0.05 1.54 0.04 0.06 0.75 0.01 0.09 0.15 

Source: Own computation results, 2022. 

 

Table 7. Balancing Test after Gps Adjustment  

Variable 
[<0.25 ] [0.26 0.50] [0.51 0.75] [0.76, 1] 

MD SD t-value MD SD t-value MD SD t-value MD SD t-value 

Famsize 0.16 0.45 0.35 0.19 0.25 0.74 0.06 0.27 0.23 -0.17 0.41 -0.41 

GEND -0.05 0.07 -0.66 0.05 0.04 1.32 0.02 0.04 0.40 -0.07 0.07 -0.98 

age1 0.85 1.98 0.43 0.22 1.11 0.19 0.65 1.18 0.55 -1.63 1.79 -0.91 

OFIN 0.07 0.06 1.18 -0.03 0.03 -1.00 0.05 0.04 1.23 0.05 0.06 0.82 

edu1 0.08 0.59 0.14 0.22 0.31 0.70 -0.65 0.32 -2.03 0.34 0.48 0.71 

NEXT -0.24 0.48 -0.49 0.26 0.27 0.96 -0.21 0.27 -0.78 0.16 0.41 0.39 

SFS 0.13 0.09 1.55 -0.03 0.05 -0.68 0.01 0.05 0.14 -0.01 0.08 -0.16 

SSH 0.03 0.09 0.38 -0.04 0.05 -0.83 0.02 0.05 0.38 -0.10 0.08 -1.32 

TLU 6.39 13.85 0.46 -2.20 7.60 -0.29 9.10 7.83 1.16 -1.64 11.75 -0.14 

TRIN 0.10 0.08 1.30 -0.05 0.04 -1.12 0.03 0.05 0.71 -0.09 0.08 -1.21 

DAIR 0.05 0.09 0.64 0.01 0.05 0.20 0.00 0.05 0.06 -0.08 0.08 -1.09 

LSHH 0.64 0.35 1.55 -0.36 0.19 -1.57 0.14 0.20 0.71 -0.32 0.30 -1.05 

CCINFO 0.07 0.06 1.16 0.01 0.04 0.24 -0.08 0.04 -1.92 -0.08 0.07 -1.02 

PCC -0.03 0.07 -0.41 0.05 0.04 1.21 -0.07 0.05 -1.52 0.00 0.08 -0.04 

DWR 1.77 2.61 0.68 -1.52 1.47 -1.04 -1.56 1.56 -1.00 0.45 2.32 0.19 

Cultland -0.03 0.08 -0.38 0.08 0.05 1.54 0.04 0.06 0.74 0.01 0.09 0.13 
Source: Own computation results, 2022. 
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Table 8. Impacts of climate-smart practices on household level nutrition quality 

Treatment level Dose response Robust S.E Treatment effect Robust S.E 

0.50 .1253034 .0849779 0.1551987** 0.0767776 

0.75 .3273202*** .0942655 0.3711003*** 0.0894554 

1 .6162376*** .1188418 0.6937098*** 0.1289761 
Source: own survey result, 2022 *** means significant at 1% probability levels 

 

 
Figure 2. Dose-response and treatment effect of climate-smart practices on nutrition quality 

 

 

Results of the Dose-Response Function 

The final step of GPS, estimating the GPS-adjusted 

dose-response function was undertaken to evaluate the 

impact of climate-smart practices on household nutrition 

status. Here the estimated GPS was adjusted by inverse 

probability weight to reduce the selection bias. The study 

used household dietary diversity consumed over the last 

24hours to measure nutritional status. 

 

Impact of climate-smart practices on-farm household 

nutritional status 

As Table 8 illustrates, as the adopted number of 

climate-smart practices increased from a treatment level of 

25% to 50% the farm households’ nutritional status 

increased by 16%. Similarly, as the number of adopted 

practices increases further to treatment levels of 75% and 

100% the farm household nutritional status also increases 

by 37% and 69% over that less number of adopter 

households and is significant at a 1% statistical probability 

level. Similarly, Figure 2 confirms the positive relation of 

climate-smart practices with the average effect (dose-

response) on the farm households’ nutritional status of the 

farm households of eastern Oromia, Ethiopia. 

Conclusion and Recommendations 

 

Conclusion  

This study was carried out to examine the impact of 

climate-smart agricultural practices on-farm households’ 

nutrition security in the districts of East Hararghe Zone 

Oromia, Ethiopia. For this study, both primary and 

secondary data were used. The primary data source was 

gathered from 461 sample households using semi-

structured questionnaires. In doing so, generalized 

propensity score matching was used. The multinomial logit 

model was employed to model climate-smart practices. 

The GPS model was estimated for climate-smart practices 

as a continuous dependent variable to estimate the impacts 

of continuous outcome variables.  

The estimated results of a multinomial logit model 

show that the probability of adopting climate-smart 

agricultural practices was significantly influenced by the 

head's education level, extension contact, livestock 

holding, cooperative membership, market information, 

traniing on land management, climate change information, 

access to training, climate change perception, and weather 

road distance. 
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According to the impact evaluation results, 

implementing one package of climate-smart practices 

improves household nutritional status by 16%. Similarly, 

adopting two and three packages of climate-smart practices 

improves household nutritional status by 37% and 76%, 

respectively, compared to less than one package adopter 

households, and this difference is statistically significant at 

the 1% statistical probability level.  

 

Recommendations  
The large packages of climate-smart management 

practices had the greatest impact on food security. Policy 

interventions to increase agricultural productivity and 

reduce farmers risk exposure should consider alleviating 

farmers' difficulties in adopting packages crops and 

livestock practices. Enhancing quality climate change 

information accessible to smallholder farmers will increase 

their adoption of integrated practices. In fact that effective 

adoption of climate-smart practices requires some 

knowledge and skills, improving farmers' education, 

training and accessing extension services should be some 

of the policy measures that will facilitate adoption. The 

study also suggest enhancing smallholder farmers 

awareness on climate change and land degradation and 

expansion of rural social capitals like farmers’ cooperative, 

farmer groups. Improving the smallholder farmers’ 

accessibility to information systems both on climate 

change and markets suggested. Therefore this is an 

encouraging policy implication for policymakers to give 

due attention to the identified variables.  

 

Conflicts of Interest  

 

There are no conflicts of interest related to the 

authorship and publication of this research manuscript. 

 

References 
 

Abebe S, Sewnet A. 2020. Rural land-use problems and 

management options in Debre Tsyon Kebele, Ethiopia. 

GeoJournal 85, 145–157 

Ademe Mihiretu, Eric Ndemo Okoyo and Tesfaye Lemma. 2019. 

Determinants of adaptation choices to climate change in agro-

pastoral drylands of Nrtheastern Amhara, Ethiopia, Cogent 

Environmental Science, 5:1, 1636548, DOI: 

10.1080/23311843.2019.1636548 

Aryal J P, Jat M, Sapkota T B, Khatri-Chhetri A, Kassie M, Rahut 

D B, and Maharjan S. 2018. Adoption of multiple climate-

smart agricultural practices in the Gangetic plains of Bihar, 

India. International Journal of Climate Change Strategies and 

Management, 10(3), 407-427. 

Asfaw D, Neka M .2017. Factors affecting adoption of soil and 

water conservation practices: the case of Wereillu Woreda 

(District), South Wollo Zone, Amhara Region, Ethiopia. Int 

Soil Water Conserv Res 5:273–279.  

Bachewe F. 2018. Agricultural Transformation in Africa? 

Assessing the Evidence in Ethiopia. World Development, 

105, 286-29. doi.org /10.1016/j.worlddev.2017.05.041. 

CSA (Central Statistical Agency). 2019. Agricultural Sample 

Survey, Volume I: Report on Area and Production of Major 

Crops (Private peasant holdings, Meher season). Statistical 

Bulletin 589, Addis Ababa, 54 p. 2019. 

Campbell, R. M, Venn, T J., and Anderson, N.M. 2018. 

Heterogeneity in preferences for woody biomass energy in 

the US Mountain West. Ecological Economics, 145, 27–37. 

doi:10.1016/j.ecolecon.2017.08.018 

Daniel Asfaw and Mulugeta Neka. 2017. Factors affecting 
adoption of soil and water conservation practices: The case of 
Wereillu Woreda (District), South Wollo Zone, Amhara 
Region, Ethiopia. International Soil and Water Conservation 
Research 5:273–279. DOI: 10.1016/J.ISWCR.2017.10.002 

Deressa, TT, Hassan RM, Ringler C, Alemu, T and Yusuf M. 
2009. Determinants of farmers’ choice of adaptation methods 
to climate change in Nile Basin of Ethiopia. Global 
Environmental Change 19, 248-255 

Etim NAA, Etim, NN and Udoh EJ. 2019. Climate-smart 
agriculture practices by rural women in Akwa Ibom State, 
Nigeria: Adoption choice using Multinomial Logit Approach. 
Makerere University Journal of Agricultural and 
Environmental Sciences Vol. 8.1 – 19. 

Fraser AMK, Wohlgenant S, Cates X, Chen, LA, Jaykus, Y Li 
and B Chapman. 2015. An Observational Study of Frequency 
of Provider Hand Contacts in Child-Care Facilities in North 
Carolina and South Carolina. American Journal of Infection 

Control 43(2):107-111 
FAO. 2016. Ethiopia Climate-smart Agriculture Scoping Study, 

by M. Jirata, S. Grey, and E. Kilawe. Addis Ababa, Ethiopia: 
Food and Agriculture Organization 

FAO. 2019. Crop Prospects and Food Situation. Issue No. 4. 
December 2019 

FAO, IFAD, UNICEF, WFP and WHO. 2018. The State of Food 
Security and Nutrition in the World 2018. Building climate 
resilience for food security and nutrition. Rome, FAO. 
www.fao.org/3/ca5162en/ca5162en.pdf 

Greene W H. 2012. Econometric Analysis, (7th Edition). New 
Jersey: Pearson Hall, USA.  

Gessesse B, Bewket W, Bräuning A. 2015. Model-based 
characterization and monitoring of runoff and soil erosion in 
response to land use/land cover changes in the Modjo 
Watershed, Ethiopia. L Degrad Dev 26:711–724.  

Hirano K, and Imbens GW. 2004. The propensity score with 
continuous treatments. Applied Bayesian modeling and 
causal inference from incomplete-data perspectives. 
Chichester: John Wiley & Sons, Ltd,2004, pp.73–84. 

Hansen J, Hellin J, Rosenstock T, Fisher E, Cairns J, Stirling C, 
Lamanna C, van Etten J, Rose A, and Campbell, B. 2018. 
Climate risk management and rural poverty reduction. 
Agricultural Systems 

Herrero M, Thornton P K, Power B, Bogard J R, Remans R, and 
Fritz S. 2017. Farming and the geography of nutrient 
production for human use: a transdisciplinary analysis. 
Lancet Planet. Health 1, e33–e42.  

Issahaku G, and Abdulai A. 2020. Can Farm Households Improve 
Food and Nutrition Security through Adoption of Climate‐
smart Practices? Empirical Evidence from Northern Ghana. 
Applied Economic P. https://doi.org/10.1093/aepp/ppz002 

Kothari CR, 2004. Research Methodology: Methods and 
Techniques. 2nd Edition, New Age International Publishers, 
New Delhi 

Kassie M, Marenya P, Tessema Y, Jaleta M, Zeng D, Erenstein 
O, Rahut D. 2018. Measuring farm and market-level 
economic impacts of improved maize production 
technologies in Ethiopia: Evidence from panel data. J. of 
Agric. Econ. 69(1), 76–95. 

Kassie M, Teklewold H, Marenya P, Jaleta M, Erenstein O. 2015. 
Production risks and food security under alternative 
technology choices in Malawi: Application of a multinomial 
endogenous switching regression. J. of Agric. Econ. 66(3), 
640–659 

Kluve J, Schneider H, Uhlendorff A, and Zhao Z. 2007. 
Evaluating Continuous Training Programs Using the 
Generalized Propensity Score. The Institute for the Study of 
Labor(IZA) Discussion Paper No. 3255, Bonn, Germany 

Khanal UC, Wilson B L, Lee, and VN Hoang. 2018. Climate 
Change Adaptation Strategies and Food Productivity in 
Nepal: A Counterfactual Analysis.” Climatic Change 148 (4): 
575 –590. 



Yuya et al. / Turkish Journal of Agriculture - Food Science and Technology, 10(12):2377-2388, 2022 

2388 

 

Kuhl L. 2020. Technology transfer and adoption for smallholder 

climate change adaptation: Opportunities and challenges. 

Climate and Development, 12(4), 353–368. 

doi:10.1080/17565529.2019.1630349 

Lewis K. 2017. Understanding climate as a driver of food 

insecurity in Ethiopia. Climate Change 144 (2), 317–328. 

Martey E, Etwire P M, and Abdoulaye T. 2020. Welfare impacts 

of climate-smart agriculture in Ghana: Does row planting and 

drought-tolerant maize varieties matter? Land Use Policy, 95, 

104622. https://doi. org/10.1016/j.landusepol.2020.104622 

Muchuru S, and Nhamo G. 2019. A review of climate change 

adaptation measures in the African crop sector. Climate and 

Development, 11(10), 873–885. 

doi:10.1080/17565529.2019.1585319  

McCarthy N, Lipper L, and Zilberman D. 2018. Economics of 

Climate-Smart Agriculture: An Overview. Climate-Smart 

Agriculture Springer, Cham, pp. 31–47.  

Meryl R, Aslihan A, Romina C, and Todd R. 2019. Climate 

change mitigation potential of agricultural practices 

supported by IFAD investments An ex-ante analysis 

Makate C, Makate M, and N Mango. 2017. Sustainable 

agriculture practices and livelihoods in pro-poor smallholder 

farming systems in southern Africa. African Journal of 

Science, Technology, Innovation, and Development, 9 (2017), 

pp. 269-279 

Mulwa C, Paswel M, Dil Bahadur R, and Menale K. 2017. 

Response to climate risks among smallholder farmers in 

Malawi: A multivariate probit assessment of the role of 

information, household demographics, and farm 

characteristics. Climate risk management  

Mundlak Y. 1978. On the pooling of time series and cross-section 

data. Econometrica 46, 69–85. 

Nyang'au A, Jema H, Nelson Mango and Makate C. 2021. 

Smallholder farmers’ perception of climate change and 

adoption of climate-smart agriculture practices in Masaba 

South Sub-county, Kisii, Kenya. 

http://dx.doi.org/10.1016/j.heliyon.2021.e06789 

Paulos Asrat. 2018. Land management decision in a changing 

climate: Exploring climate-smart agricultural practices, land 

productivity and livelihood impacts in the Dabus sub-basin of 

the Blue Nile river. Ph.D. dissertation, Addis Ababa 

University. localhost/xmlui/handle/123456789/15603 

Senyolo MP, Long T B, and Omta O. 2021. Enhancing the 

adoption of climate-smart technologies using public-private 

partnerships: Lessons from the WEMA case in South Africa. 

International Food and Agribusiness Management Review, 

24(5), 755-776. https://doi.org/10.22434/IFAMR2019.0197 

Sova, C A, Grosjean G, Baedeker T, Nguyen T N, Wallner M, 

Jarvis A, Nowak A, Corner-Dolloff, C, Girvetz E, Laderach 

P, and Lizarazo M. 2018. Ringing the concept of climate-

smart agriculture to life: Insights from CSA country profiles 

across Africa, Asia, and Latin America. World Bank, and the 

International Centre for Tropical Agriculture. 

 

Tambo JA, and Mockshell J. 2018. Differential impacts of 

conservation agriculture technology options on household 

income in Sub-Saharan Africa. Ecological Economics, 151, 

95-105 

Teklewold H A, Mekonnen G, Kohlin S, and Di Falco.2017. Does 

the adoption of multiple climate-smart practices improve the 

climate resilience of farmers? Empirical evidence from the 

Nile Basin of Ethiopia Climate Change Economics. 

Tekeste Kifle. 2021. Climate-Smart Agricultural practices and its 

implications to food security in Siyadebrina Wayu District, 

Ethiopia. African Journal of Agricultural Research Vol. 

17(1), pp. 92-103. doi.org/10.5897/AJAR2020.15100 

Teklewold H, Tagel G, and Mintewab B. 2019. Climate-smart 

agricultural practices and gender-differentiated nutrition 

outcome: An empirical evidence from Ethiopia. World 

development 122, 38-53. 

doi.org/10.1016/j.worlddev.2019.05.010 

Tesfaye W, and Seifu L. 2016. Climate change perception and 

choice of adaptation strategies: Empirical evidence from 

smallholder farmers in eastern Ethiopia. International 

Journal of Climate Change Strategies and Management, 8(2), 

253–270.  

Tesfa W, Meshesha SK, and Tripathi. 2016. Farmer’s Perception 

on Soil Erosion and Land Degradation Problems and 

Management Practices in the Berryessa Watershed of 

Ethiopia, Journal of Water Resources and Ocean Science. 

Vol. 5, No. 5, 2016, pp. 64-72. DOI: 

10.11648/j.wros.20160505.11 

Tiruneh S, and Tegene F. 2018. Impacts of Climate Change on 

Livestock Production and Productivity and Different 

Adaptation Strategies in Ethiopia. Journal of Nutrition Health 

Science, 5(4): 401 

Wainaina P, Tongruksawattana S, and M. Qaim. 2017. Synergies 

between different types of agriculture technologies in the 

Kenyan small farm sector. The Journal of Development 

Studies  

Wang Y, Li X, and Zhang Q. 2018. Projections of future land-use 

changes: multiple scenarios-based impacts analysis on 

ecosystem services for Wuhan city, China. Ecological 

Indicators. 94, 430–445. 

World Bank. 2018. World Development Indicators: Country 

Profile. Available online: http://data.worldbank.org/ 

country/Ethiopia (accessed on 22 March 2021). 

Zakaria A, Azumah S B, Appiah-T M, and D. Gilbert. 2020. 

Adoption of climate-smart agricultural practices among farm 

households in Ghana: The role of farmer participation in 

training programs," Technology in Society, Elsevier, vol. 

63(C) 

Zeng DJ, Alwang G, Norton W, Shiferaw B, M Jaleta, and C. 

Yirga. 2015. Ex post impacts of improved maize varieties on 

poverty in rural Ethiopia. Agricultural Economics, 46, 515-

526 

  

 

 

 

 


