

**Turkish Journal of Agriculture - Food Science and Technology** 

Available online, ISSN: 2148-127X | www.agrifoodscience.com | Turkish Science and Technology Publishing (TURSTEP)

# Morphological and Physiological Responses of Different Cotton Genotypes Primed with Salicylic Acid Under Salinity Conditions

Nimet Ozege<sup>1,a</sup>, Ilkay Yavas<sup>2,b,\*</sup>, Emre Ilker<sup>3,c</sup>

<sup>1</sup>Graduate School of Natural and Applied Science, Ege University, Izmir 35100, Türkiye

<sup>2</sup>Department of Plant and Animal Production, Vocational School of Kocarlı, Aydın Adnan Menderes University, Aydin 09100, Türkiye <sup>3</sup>Department of Field Crops, Faculty of Agriculture, Ege University, Izmir 35100, Türkiye \*Corresponding author

ARTICLE INFO ABSTRACT This study was conducted as both petri dishes and pot experiments on four different salt-sensitive Research Article cotton genotypes (Laser, May 505, May 455 and Selin) in order to investigate the role of exogenous salicylic acid applications in reducing the effects of salt stress. Six saline treatments; 0, 30, 60, 90, Received : 11.01.2024 120 mM NaCl were used. Each group divided into three sub-groups (hydo-primed control, 0.5 mM Accepted : 29.02.2024 and 1.0 mM SA) on the basis of seed priming treatments. They were applied in three replications according to the randomized block design. In all genotypes, 90 mM and 120 mM salt stress negatively affected germination and seedling development. In salt stress up to 60 mM, it was Keywords: recommended to May 505 and Selin genotypes with 0.5 mM salicylic acid pre-application to the Germination seeds. Gossypium hirsutum Salinity Seed priming SPAD (D) https://orcid.org/0000-0002-6863-9631 nimetozege09@gmail.com bttps://orcid.org/0000-0002-8476-8273 🔊 iyavas@adu.edu.tr 🔕 emre.ilker@ege.edu.tr bttps://orcid.org/0000-0002-4870-3907

This work is licensed under Creative Commons Attribution 4.0 International License

# Introduction

Cotton is considered a salt-tolerant crop after barley, with a salt stress threshold level of 7.7 dS  $m^{-1}$ , with moderate tolerance to salt stress (Alizade & Mammodova, 2023; Muhammad et al., 2023). The roots of the cotton are the first organs to be affected by salt and root development (Öz & Karasu, 2007), growth, yield and fiber quality are adversely affected.

Salt stress is the second most common abiotic stress after drought, negatively affecting plant growth and significantly limiting plant yield (Anwar et al., 2023). Salty and alkaline soils constitute more than 6% of the world's soils. Seed germination is affected by adverse environmental conditions, including salinity (Abdi et al., 2022). Salt stress causes a decrease in biomass, stem thickness, leaf area, root and shoot weight and seed yield in cotton (Sharif et al., 2019) and stimulates antioxidant enzymes such as superoxide dismutase, peroxidase, glutathione reductase catalase and (Alizade & Mammodova, 2023; Muhammad et al., 2023), on the other hand, it tends to decrease as a result of increasing salicylic acid (SA) level (Abdi et al., 2022).

In conditions of intense salt stress, seeds cannot absorb sufficient water due to higher osmotic potential, which reduces or delays the germination process in seeds (Azeem et al., 2019). Salt stress causes a significant decrease in leaf chlorophyll index (Demming & Adams, 1996) and photosynthesis rate, which is one of the main regions in photosynthesis and is directly related to photosynthesis performance (Harizanova & Koleva-Valkova, 2019).

Germination is the most sensitive stage in the life cycle of a plant and salt-induced stress inhibits the germination and development of seeds (Biswas et al., 2023; Radwan et al., 2023; Taşan, 2023). Salinity affects germination negatively in cotton (Malik et al., 1994; Amjad et al., 2002; Munawar et al., 2021) and as the salt dose increases biomass, root length and root surface area decrease. High salt concentration prevents germination and seedling growth in cotton (Yan et al., 2019). Salt stress reduces plant height in cotton (Shahzad et al., 2020), reduces germination rate (Ergin et al., 2021), biomass (Guo et al., 2019), negatively affects growth (Long et al., 2019; Ergin et al., 2021; Hamani et al., 2021). One of the methods used to alleviate the effects of salt stress is seed priming (Fujikura et al., 1993; Radwan et al., 2023). This technique provides rapid and uniform seedling emergence, plays a role in breaking seed dormancy, increases protein synthesis, plant growth and development by providing resistance to environmental stress factors (Moreno et al., 2018; Moghaddam et al., 2020; Anwar et al., 2023).

Salicylic acid a phenolic phytohormone, causes many metabolic and biochemical changes in germinating seeds (Farooq et al., 2013), regulates growth with various physiological responses and also plays an important role in reducing the effects of temperature, salt, osmotic and oxidative stress (Khan et al., 2012; Riaz et al., 2019; Sofy et al., 2020; Abdi et al., 2022; Biswas et al., 2023; Maqsood et al., 2023; Ogunsiji et al., 2023). It significantly increases salinity tolerance based on glycine betaine to saline conditions, followed by an increase in water content. While salinity stimulates antioxidant enzymes such as superoxide dismutase, peroxidase, catalase and glutathione reductase, it tends to decrease as a result of increasing salicylic acid level (Abdi et al., 2022).

Salicylic acid has a positive effect on growth, yield and quality characteristics of cotton (Al-Rawi et al., 2014), strawberry (Lolaei et al., 2012) and tomato (Yıldırım & Dursun, 2009). Salicylic acid increases plant tolerance to stress conditions by balancing the decrease in dry weight in plants. This is due to the stimulating effect of salicylic acid on shoot growth and the accumulation of more assimilates in the shoots (Pirasteh-Anosheh et al., 2014). With the application of SA to wheat and maize, abscisic acid and indole acetic acid accumulate (Fahad et al., 2015). Salinity reduces fresh weight (40%) and chlorophyll (39%) in wheat, whereas root fresh weight and chlorophyll b increase after 20 mM SA priming to seeds (Maqsood et al., 2023). Salicylic acid increases cell membrane damage caused by salt stress, thus reducing the transpiration rate, facilitating the adjustment of the optimum amount of water in plant tissues and minimizing water loss (Fairoj et al., 2022).

The application of phytohormones such as salicylic acid will be effective in mitigating or minimizing the negative impact of salinity on plant growth and productivity (Moles et al., 2019).

Therefore, it was aimed to determine the effect of salicylic acid priming on seed germination, seedling growth, morphological and physiological parameters in four cotton genotypes grown under salinity stress in this study. The hypothesis is that salicylic acid application may increase the salinity tolerance of cotton genotypes during germination and seedling periods.

#### **Materials and Methods**

#### Location of the Experiment

The study was carried out at Ege University, Faculty of Agriculture, Department of Field Crops and Aydın Nazilli Cotton Research Institute.

#### Plant Material

The characteristics of four different cotton genotypes used (Laser, May 505, May 455 and Selin) in the experiment are shown in Table 1.

#### Soil Properties

The properties of the soil used in the experiment are given in Table 2. This soil used was mixed with peat at a ratio of 1:1 and added to each pot equally. A total of 216 pots were used.

According to the soil analyzes, it was determined that the soil texture is sandy-loamy, moderately alkaline, poor in CaCO<sub>3</sub> (CaCO<sub>3</sub> %<2.5) and there is no salinity problem (total salt %< 0.150).

#### Treatments and Experimental Design

A completely randomized design was adopted with the levels of different salinity doses (0; 30; 60; 90; 120 mM) and salicylic acid concentrations (0; 0.5; 1.0 mM).

Germination tests were carried out in the growth incubating chamber  $(28 \pm 1^{\circ}C)$  in Aydın Nazilli Cotton Research Institute Laboratory, with a diameter of 9 cm and a depth of 2 cm (0.18 lt) petri dishes placed with double filter paper and 15 seeds on them. Pot experiments were carried out in growth incubating chamber, 15 cm diameter and 20 cm deep pots (3 L) in Aydın Nazilli Cotton Research Institute Laboratory.

| Table 1. Characteristics of cotton g | genotypes used in the experiment |
|--------------------------------------|----------------------------------|
|--------------------------------------|----------------------------------|

| Droportion                                       |           | Gen   | otypes    |         |
|--------------------------------------------------|-----------|-------|-----------|---------|
| Properties                                       | Lazer     | Selin | May455    | May505  |
| 100 grain weight (g)                             | 7.78      | 8.43  | 11.01     | 9.59    |
| Fiber fineness (mikroinere)                      | 4.6 - 4.8 | 4.7   | 4.4 - 4.8 | 4 - 4.6 |
| Fiber strength (g/tex)                           | 34 - 36   | 31.5  | 32 - 35   | 32 - 36 |
| Fiber length (mm)                                | 31 - 32   | 28.7  | 30 - 31   | 30      |
| SCI                                              | 160 - 180 | -     | 135       | 135     |
| Boll opening rate                                | Medium    | Late  | Early     | Early   |
| Average seed cotton yield (kg.ha <sup>-1</sup> ) | 58.4      | 54.8  | 56.2      | 41.6    |
| Ginning outturn (%)                              | 45 - 47   | 42.8  | 44 - 46   | 41-43   |
| Fiber yield (kg.ha <sup>-1</sup> )               | 26.52     | 23.46 | 24.15     | 20.13   |

Table 2. Properties of the soil used in the experiment

| pН  | NaCl (%)                         | $CaCO_3(\%)$                      | Sand (%)                          | Silt (%)                         | Clay (%)                          | P (mg.kg <sup>-1</sup> )          | K (mg.kg <sup>-1</sup> )          |
|-----|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 7.9 | 0.15                             | 2.04                              | 65.7                              | 26.9                             | 7.4                               | 2.65                              | 145                               |
|     | Na (mg.kg <sup>-1</sup> )<br>118 | Fe (mg.kg <sup>-1</sup> )<br>7.09 | Ca (mg.kg <sup>-1</sup> )<br>2230 | Mg (mg.kg <sup>-1</sup> )<br>457 | Zn (mg.kg <sup>-1</sup> )<br>0.38 | Cu (mg.kg <sup>-1</sup> )<br>1.12 | S (mg.kg <sup>-1</sup> )<br>120.4 |

## Seed Priming

Cotton seeds were surface sterilized with 1% sodium hypochlorite (NaOCl) for 2 minutes and then thoroughly washed with sterilized water (Azeem et al., 2019). Seeds were soaked either in water (hydro-priming) or 0.5 and 1.0 mM SA solutions (SA priming), for 12 h.

## Seed Germination in Laboratory

Healthy and uniform seeds from primed treatments were transferred into petri plates (15 seeds per plate), lined with double layer of filter paper. Petri plates were divided into five groups, moistened with 10 ml of 1) distilled water (non-saline control), 2) 30 mM NaCl solution, 3) 60 mM NaCl solution, 4) 90 mM NaCl solution and 5) 120 mM NaCl solution. Each group was further divided into three treatments, 1) hydro-priming 2) primed with 0.5 mM SA and 3) primed with 1.0 mM SA. Each treatment had 3 replicates. Petri-plates were placed in growth incubating chamber at  $28 \pm 1^{\circ}$ C, (12 h light and 12 h dark) for 14 days. A total of 216 petri plates were used. The protuberance of radical (2 mm) was considered as a mark of germination (Mohammadi, 2009). After 14 days, seedlings (3 of each replicates) were kept in oven (70°C for 48 h) for dry weight measurements. The plumule and radicle lengths, fresh weight, dry weight and chlorophyl content index (SPAD) were measured.

### Pot experiment

Fifteen seeds of three priming treatments (0, 0.5 and 1 mM SA) were sown in 3 L plastic pots containing (15-cm diameter at the top and 20-cm depth) filled with 2.8 kg of soil and peat at 1:1 ratio. By using 15.10.10 compound fertilizer, 15 kg of pure nitrogen, 10 kg of pure phosphorus and 10 kg of pure potassium were fertilized per decare. Pots were placed in climate laboratory with 6 saline treatments, 1) 0 mM (non-saline), 2) 30 mM NaCl, 3) 60 mM NaCl, 4) 90 mM NaCl and 5) 120 mM NaCl were used. Each group divided into three sub-groups on the basis of seed priming treatments 1) hydo-primed control, 2) 0.5 mM SA and 3) 1.0 mM SA. All pots were observed every day from the start of the study and thinned 28 days after the emergence of seeds.

At the end of four weeks, the plants were harvested and observations were taken. Root length (cm), shoot length (cm), root, shoot fresh and dry weights (g) and chlorophyl content index (SPAD) were evaluated in the seedlings.

#### **Results and Discussions**

#### Labaratory Petri Plates Analyses

The results of the analysis of variance for the observations measured 14 days after sowing of cotton genotypes in which different salt doses were applied under laboratory conditions are summarized in Table 3. The interaction of genotype x salicylic acid x salinity was found to be statistically significant in other properties except plumula and radicle length. Besides, salicylic acid x salinity interaction was found to be significant for plumula length and genotype x salicylic acid interaction for radicle length.

## Germination Percentage (%) and Chlorophyll Content Index (SPAD)

The germination percentage of Selin genotype was the highest (100%) under control conditions, followed by Lazer genotype (80%) (Table 4). However, in both genotype, it was observed that the germination percentage was negatively affected by salicylic acid application under salt stress conditions. In general, for all genotypes, the germination (%) decreased at 90 mM salt stress. Although the Selin genotype had the highest germination rate, salicylic acid application could not prevent the decrease in germination as the salt stress increased.

Azeem et al. (2019) emphasized that as salt stress increases in wheat, germination rate is inhibited, and seed priming process significantly reduces seed dormancy. Salicylic acid application to broad bean seeds against salt stress improved germination (Anaya et al., 2018). A positive effect of 20 mM dose of salicylic acid on seed germination rate was observed (Heidarian & Roshandel, 2021). In another study, salicylic acid (10 mM) increased germination percentage in black bean under salt stress (50 mM and 100 mM) conditions. To reduce the adverse effects of salinity on seed germination and plant performance of Citrullus lanatus, priming with the presowing seaweed Ulva lactuca improved germination and seedling growth (Radwan et al., 2023). In a study conducted on wheat, it was observed that salicylic acid application against salinity increased germination and seedling growth (Shakirova, 2007).

Under salt stress conditions, the effect of salicylic acid applications on SPAD values of genotypes was found to be significant (Table 4). The genotype with the highest SPAD value was Laser.

Table 3. Analysis of the variance of the data of petri plates observations of cotton genotypes

| Courses of Variation | DF  | Mean Square Values |           |           |           |          |           |  |  |
|----------------------|-----|--------------------|-----------|-----------|-----------|----------|-----------|--|--|
| Sources of Variation | DF  | GP                 | PL        | RL        | FW        | DW       | CCI       |  |  |
| Genotype (A)         | 3   | 33.79 **           | 177.73 ** | 416.72ns  | 12.559 ** | 0.369 ** | 289.46 ** |  |  |
| Salicylic acid (B)   | 2   | 26.39 **           | 88.29 ns  | 89.38ns   | 11.059 ** | 0.273 ** | 207.67 ** |  |  |
| Salinity (C)         | 5   | 66.06 **           | 95.55 *   | 226.57 ** | 2.595 **  | 0.074 ** | 84.41 **  |  |  |
| A×C                  | 15  | 25.54 **           | 41.84ns   | 86.79ns   | 0.764ns   | 0.066 ** | 88.86 **  |  |  |
| A×B                  | 6   | 4.48ns             | 26.72 ns  | 253.43 ** | 0.519ns   | 0.021ns  | 121.07 ** |  |  |
| B×C                  | 10  | 32.99 **           | 97.71 *   | 64.81ns   | 1.529 *   | 0.078 ** | 90.91 **  |  |  |
| A×B×C                | 30  | 24.89 **           | 33.52ns   | 57.71ns   | 1.180 **  | 0.063 ** | 73.86 **  |  |  |
| Error                | 142 | 2.67               | 40.49     | 65.56     | 0.678     | 0.019    | 5.63      |  |  |

GP: Germination percentage; PL: Plumule length; RL: Radicle length; FW: Fresh weight; DW: Dry weight; CCI: Chlorohyll content index (SPAD); \* and \*\* indicate significance at 0.05 and 0.01 levels of probability, respectively. ns; not significant;

| Table 4. Effect of see | l priming of salicylic acid on | germination percentage and SPAD value of cotton genotypes |
|------------------------|--------------------------------|-----------------------------------------------------------|
|                        |                                |                                                           |

| C A        | Solimiter        | G     | ermination          | percentage ( | %)         | Chlo    | orophyll cont | ent index (SP | AD)     |
|------------|------------------|-------|---------------------|--------------|------------|---------|---------------|---------------|---------|
| SA<br>(mM) | Salinity<br>(mM) | Lazer | Selin               | May 455      | May<br>505 | Lazer   | Selin         | May 455       | May 505 |
|            | 0                | 80.0b | 82.2a               | 66.6d        | 71.1c      | 33.53a  | 23.53b        | 32.38a        | 24.93b  |
|            | 30               | 64.4a | 24.4d               | 60.0b        | 62.2a      | 32.30a  | 22.94b        | 33.84a        | 19.71b  |
| 0          | 50               | 37.7b | 28.8d               | 33.3c        | 62.2a      | 30.53a  | 20.06bc       | 16.38c        | 23.62b  |
|            | 60               | 28.8d | 62.2b               | 73.3a        | 53.3c      | 30.18a  | 30.65a        | 26.94ab       | 23.47b  |
|            | 90               | 24.4d | 53.3c               | 60.0a        | 55.5b      | 30.13ab | 26.36b        | 33.10a        | 18.92c  |
|            | 120              | 77.7b | 100.0a              | 48.8d        | 75.5c      | 30.33a  | 23.63b        | 25.98b        | 27.35ab |
|            | 0                | 68.8a | 53.3c               | 53.3c        | 64.4b      | 39.37a  | 23.39c        | 23.35c        | 27.69b  |
|            | 30               | 73.3b | 84.4a               | 20.0d        | 66.6c      | 19.30b  | 22.57ab       | 12.73c        | 24.66a  |
| 0.5        | 50               | 53.3d | 75.5a               | 62.2c        | 68.8b      | 33.54a  | 21.33c        | 19.51c        | 25.31b  |
| 0.5        | 60               | 51.1c | 37.7d               | 60.0a        | 57.7b      | 33.87a  | 16.85c        | 29.35b        | 30.89ab |
|            | 90               | 22.2d | 75.5a               | 46.6b        | 33.3c      | 17.99b  | 24.13a        | 17.81b        | 20.61ab |
|            | 120              | 17.7c | 28.8b               | 26.6b        | 75.5a      | 18.94bc | 22.43b        | 17.75c        | 32.35a  |
|            | 0                | 46.6b | 26.6d               | 42.2c        | 68.8a      | 26.94a  | 17.97b        | 21.50b        | 20.69b  |
|            | 30               | 62.2b | 62.2b               | 64.4a        | 28.8c      | 29.86a  | 20.63bc       | 23.29b        | 16.89c  |
| 1.0        | 50               | 73.3a | 28.8d               | 57.7b        | 35.5c      | 33.63a  | 27.22b        | 23.27c        | 21.23d  |
| 1.0        | 60               | 26.6d | 55.5a               | 33.3c        | 48.8b      | 29.24a  | 25.80a        | 20.27b        | 21.16b  |
|            | 90               | 24.4c | 68.8a               | 11.1d        | 55.5b      | 19.73b  | 22.57b        | 14.07c        | 28.37a  |
|            | 120              | 15.5d | 53.3a               | 40.0c        | 42.2b      | 17.77c  | 24.06b        | 34.19a        | 25.38b  |
|            |                  |       | LSD <sub>(A×B</sub> | X = 2.652    |            |         | LSD (A×B      | ×C)= 3.850    |         |

Table 5. Effect of seed priming of salicylic acid on plumule length of cotton

| $\mathbf{C} \mathbf{A} (\mathbf{m} \mathbf{M})$ | Calinitas (m.M) |        | Plumule le          | Plumule length (mm) |         |  |  |
|-------------------------------------------------|-----------------|--------|---------------------|---------------------|---------|--|--|
| SA (mM)                                         | Salinity (mM)   | Lazer  | Selin               | May 455             | May 505 |  |  |
|                                                 | 0               | 23.70a | 27.30a              | 23.70a              | 23.30a  |  |  |
|                                                 | 30              | 26.00a | 26.87a              | 28.88a              | 27.18a  |  |  |
| 0                                               | 50              | 26.14a | 25.00a              | 18.33a              | 24.14a  |  |  |
| 0                                               | 60              | 25.39a | 27.79a              | 21.98a              | 23.37a  |  |  |
|                                                 | 90              | 17.79a | 21.90a              | 16.91a              | 24.26a  |  |  |
|                                                 | 120             | 23.67a | 27.28a              | 27.37a              | 23.28a  |  |  |
|                                                 | 0               | 21.83a | 21.83a              | 21.04a              | 24.83a  |  |  |
|                                                 | 30              | 16.10b | 25.20a              | 14.40b              | 21.40a  |  |  |
| 0.5                                             | 50              | 31.87a | 21.95a              | 29.58a              | 25.98a  |  |  |
| 0.5                                             | 60              | 20.33b | 27.67ab             | 26.49b              | 37.60a  |  |  |
|                                                 | 90              | 17.77a | 22.83a              | 20.85a              | 25.07a  |  |  |
|                                                 | 120             | 11.36b | 20.83ab             | 22.92a              | 22.60a  |  |  |
|                                                 | 0               | 17.15a | 17.67a              | 23.46a              | 21.67a  |  |  |
|                                                 | 30              | 18.33a | 18.51a              | 27.10a              | 18.10a  |  |  |
| 1.0                                             | 50              | 19.40a | 21.87a              | 22.32a              | 24.33a  |  |  |
| 1.0                                             | 60              | 20.33a | 25.95a              | 20.83a              | 25.05a  |  |  |
|                                                 | 90              | 19.37a | 20.70a              | 14.83a              | 24.83a  |  |  |
|                                                 | 120             | 20.0a  | 25.75a              | 26.04a              | 27.71a  |  |  |
|                                                 |                 |        | LSD <sub>(B×C</sub> | = 10.322            |         |  |  |

Application of 0.5 mM salicylic acid under control conditions increased all genotypes except May 455 genotype. However, the SPAD value decreased with increasing salicylic acid dose. In a study conducted under salt stress conditions in wheat, it was found that chlorophyll content, tillering number and K<sup>+</sup>/Na<sup>+</sup> ratio decreased, but there was a significant improvement after salicylic acid application (Suhaib et al., 2018).

## Plumule Length (cm)

The most important parameters in the sensitivity of seeds to salinity are root and plumule length (Jamil et al., 2006). Plumula length was significantly affected by salicylic acid and salt applications (Table 5). However,

difference was not significant between genotypes in terms of plumule lengths. *Lathyrus sativus* L. seeds primed with salicylic acid gave longer radicles and plumules length, regardless of the salicylic acid dose. Salicylic acid application under salt stress increased the fresh and dry weight of *Lathyrus sativus* L. seedlings. The effect on seedling dry weight was observed only at a dose of 0.2 mM salicylic acid (Moghaddam et al., 2020). In another study, salt stress adversely affected germination, root length, plumule length, root fresh weight, plumule fresh weight and mean germination time in canola. However, in canola primed with ascorbic acid, it was observed that ascorbic acid alleviated the negative effect of salt on these properties (Taşan, 2023).

## Radicle length (cm)

The Lazer genotype under control condition gave the highest radicle length with 0.5 mM and 1.0 mM salicylic acid doses (Table 6). Delavari et al. (2014) reported that due to salicylic acid application to Ocimum basilicum under salt stress, osmotic stress decreased and better water uptake was achieved, germination, root and shoot length, fresh and dry weight increased. In saline conditions, soaking bell pepper with salicylic acid improved relative moisture content, radicle and seedling length, dry weight, and vigor, mitigating the toxic effects of salt on the plant (Júnior et al., 2020). Similarly, as the salt dose increased, the decrease in Lathyrus sativus plumula and seedling length was greater. Salinity and priming with salicylic acid affected the radicle, plumule and seedling length of Lathyrus sativus, but it turned out that the observed effect was not dependent on the dose of salicylic acid (Moghaddam et al., 2020).

# Fresh and Dry Weight (g)

The highest fresh weight value of seeds germinated in petri dishes was obtained in the Selin genotype with 3.78 g under control conditions (Table 7). After salicylic acid application (0.5 mM) under salt stress conditions (50 mM), May 505 variety ranked second with 3.60 g. As salt stress increased, a decrease was observed in the Selin genotype fresh weight value, while a high decrease was not detected in the May 505 genotype. In addition, at the highest salt dose (120 mM), fresh weights increased as the salicylic acid dose increased in all cultivars. Priming the seeds with salicylic acid against salt stress causes the plants to accumulate abscisic acid for adaptation.

Abscisic acid promotes various anti-stress proteins that protect plants against stress conditions (Pirasteh-Anosheh et al., 2014; Heidarian & Roshandel, 2021). The cultivar with the highest dry weight was Selin genotype with 0.79 g under the conditions of 120 mM salt application and no salicylic acid (Table 7). Following this, under 120 mM NaCl conditions, May 505 genotype (0.70 g) without salicylic acid gave the highest value, followed by Selin genotype. May 505 genotype gave generally higher values compared to other genotypes when salicylic acid and NaCl doses were taken into account. A study conducted revealed that salt stress significantly reduced seedling dry weight and priming with 0.2 mM salicylic acid increased (Moghaddam et al., 2020). External salicylic acid application to the plant improved fresh weight, dry weight, leaf number (Hayat et al., 2005) and leaf area (Khan et al., 2003a). Treatment of wheat seeds with salicylic acid increased the seedlings' tolerance to salt (Hamada & Al-Hakimi, 2001; Shakirova et al., 2003). There was a significant decrease in growth parameters in cumin under severe salt stress (50 mM NaCl), but application of Amla extract to cumin seeds before sowing improved plant height, number of branches, fresh weight, number of seeds and seed weight, and photosynthetic pigments (Said & Mohammed, 2023).

#### **Pot Experiment Results**

Root and shoot related values and chlorophyll content index (SPAD) were significantly affected by the genotype  $\times$  salicylic acid  $\times$  salinity interaction (Table 8, Table 9).

| $T_{11}$ ( 0 1 | • • •       | · 1· 1· · 1    | 1 / /1        | 1.1.1.1.6.1              |
|----------------|-------------|----------------|---------------|--------------------------|
| Table 6 Need   | nriming of  | salicvlic acid | regulates the | radicle length of cotton |
|                | prinning or | Suncy ne ucia  | regulates the | radicle length of cotton |

| SA (mM)<br>0<br>0.5<br>1.0 | Radicle length (mm)          |         |          |         |  |  |  |  |
|----------------------------|------------------------------|---------|----------|---------|--|--|--|--|
|                            | Lazer                        | Selin   | May 455  | May 505 |  |  |  |  |
| )                          | 34.95 a                      | 20.49 b | 23.04 b  | 23.84 b |  |  |  |  |
| .5                         | 25.77 ab                     | 20.99 b | 23.35 ab | 27.14 a |  |  |  |  |
| .0                         | 24.59 a                      | 24.75 a | 23.14 a  | 20.93 a |  |  |  |  |
|                            | $LSD_{(A \times B)} = 5.362$ |         |          |         |  |  |  |  |

| Table 7. Effect of seed | priming of salic | vlic acid on fresh and o | lry weight of cotton |
|-------------------------|------------------|--------------------------|----------------------|
|                         |                  |                          |                      |

| SA   | Salinity |        | Fresh w             | eight (g)              |         |        | Dry we   | eight (g)            |         |
|------|----------|--------|---------------------|------------------------|---------|--------|----------|----------------------|---------|
| (mM) | (mM)     | Lazer  | Selin               | May 455                | May 505 | Lazer  | Selin    | May 455              | May 505 |
|      | 0        | 1.52b  | 3.78a               | 2.95a                  | 2.57a   | 0.43a  | 0.63a    | 0.56a                | 0.58a   |
|      | 30       | 1.76ab | 0.98a               | 2.40a                  | 2.26ab  | 0.41ab | 0.21b    | 0.52a                | 0.50a   |
| 0    | 50       | 2.18ab | 1.78b               | 0.94b                  | 2.52a   | 0.48a  | 0.25b    | 0.26ab               | 0.41ab  |
| 0    | 60       | 0.70b  | 2.04a               | 2.91a                  | 2.66a   | 0.20b  | 0.53a    | 0.68a                | 0.62a   |
|      | 90       | 0.67b  | 1.22ab              | 1.63ab                 | 2.11a   | 0.22b  | 0.37ab   | 0.53a                | 0.46a   |
|      | 120      | 1.38b  | 3.14a               | 1.95ab                 | 2.78a   | 0.42c  | 0.79a    | 0.54bc               | 0.70ab  |
|      | 0        | 1.23a  | 1.90a               | 2.07a                  | 2.43a   | 0.40a  | 0.45a    | 0.49a                | 0.49a   |
|      | 30       | 1.19ab | 2.29a               | 0.43b                  | 1.93a   | 0.38a  | 0.54a    | 0.12b                | 0.54a   |
| 0.5  | 50       | 1.19c  | 2.07bc              | 2.84ab                 | 3.60a   | 0.36b  | 0.50ab   | 0.55ab               | 0.63a   |
| 0.5  | 60       | 0.99b  | 1.11b               | 1.77ab                 | 3.07a   | 0.22b  | 0.31ab   | 0.46a                | 0.52a   |
|      | 90       | 0.59a  | 1.50a               | 1.32a                  | 1.29a   | 0.14b  | 0.48a    | 0.30ab               | 0.26ab  |
|      | 120      | 0.30b  | 0.86b               | 0.94b                  | 2.57a   | 0.06b  | 0.17b    | 0.24b                | 0.67a   |
|      | 0        | 0.98ab | 0.68b               | 0.41ab                 | 2.07a   | 0.27b  | 0.20b    | 0.51a                | 0.57a   |
|      | 30       | 1.03a  | 1.24a               | 1.13a                  | 0.87a   | 0.35ab | 0.37ab   | 0.43a                | 0.17b   |
| 1.0  | 50       | 1.22a  | 0.85a               | 1.65a                  | 1.71a   | 0.47a  | 0.22b    | 0.54a                | 0.34ab  |
| 1.0  | 60       | 0.60a  | 1.70a               | 0.96a                  | 1.38a   | 0.16b  | 0.46a    | 0.32ab               | 0.43a   |
|      | 90       | 0.57ab | 1.51ab              | 0.31b                  | 1.77a   | 0.14b  | 0.50a    | 0.08b                | 0.46a   |
|      | 120      | 0.43b  | 1.43ab              | 1.73ab                 | 2.20a   | 0.10b  | 0.47a    | 0.43a                | 0.43a   |
|      |          |        | LSD <sub>(A×B</sub> | <sub>(C)</sub> = 1.335 |         |        | LSD (A×B | $(\times C) = 0.225$ |         |

| Table 8 A  | nalvsis      | of the | variance | of the root | data of | not ex | neriments ( | of cotton genotypes | 2 |
|------------|--------------|--------|----------|-------------|---------|--------|-------------|---------------------|---|
| Table 0. A | 11a1 y 515 y | or une | variance | of the root | uata OI | porun  | perments    | of conton genotypes | , |

| Courses of Variation | DE  | Mean Square Values |                   |                 |  |  |  |
|----------------------|-----|--------------------|-------------------|-----------------|--|--|--|
| Sources of Variation | DF  | Root length        | Root fresh weight | Root dry weight |  |  |  |
| Genotype (A)         | 3   | 13.39 **           | 0.16 **           | 0.018 **        |  |  |  |
| Salicylic acid (B)   | 2   | 73.55 **           | 0.22 **           | 0.014 **        |  |  |  |
| Salinity (C)         | 5   | 422.39 **          | 0.83 **           | 0.007 **        |  |  |  |
| A×C                  | 15  | 92.00 **           | 0.17 **           | 0.033 **        |  |  |  |
| A×B                  | 6   | 55.34 **           | 0.21 **           | 0.010 **        |  |  |  |
| B×C                  | 10  | 153.80 **          | 0.26 **           | 0.011 **        |  |  |  |
| A×B×C                | 30  | 102.66 **          | 0.19 **           | 0.011 **        |  |  |  |
| Error                | 142 | 0.09               | 0.00              | 0.00            |  |  |  |

\* and \*\* indicate significance at 0.05 and 0.01 levels of probability, respectively. ns; not significant

| T 11 0   |             | C .1   | •        | C .1   | 1 .   | 1       | •      | •         | <b>c</b>  |           |
|----------|-------------|--------|----------|--------|-------|---------|--------|-----------|-----------|-----------|
| Table 9  | Analysis    | of the | variance | of the | shoot | data of | not ev | neriments | of cotton | genotypes |
| rable ). | 7 mar y 515 | or the | variance | or the | shout | uata O  | porca  | permento  | or conton | genotypes |

|                      |     | Mean Square Values |                       |                     |                                   |  |  |
|----------------------|-----|--------------------|-----------------------|---------------------|-----------------------------------|--|--|
| Sources of Variation | DF  | Shoot<br>length    | Shoot fresh<br>weight | Shoot dry<br>weight | Chloroyll content<br>index (SPAD) |  |  |
| Genotype (A)         | 3   | 285.48 **          | 2.37 **               | 0.023 **            | 774.81 **                         |  |  |
| Salicylic acid (B)   | 2   | 69.77 **           | 0.19 **               | 0.094 **            | 781.81 **                         |  |  |
| Salinity (C)         | 5   | 1010.90 **         | 37.55 **              | 0.433 **            | 702.99 **                         |  |  |
| A×C                  | 15  | 56.27 **           | 5.68 **               | 0.047 **            | 138.98 **                         |  |  |
| A×B                  | 6   | 36.30 **           | 9.69 **               | 0.093 **            | 171.59 **                         |  |  |
| B×C                  | 10  | 56.93 **           | 5.09 **               | 0.043 **            | 309.78 **                         |  |  |
| A×B×C                | 30  | 34.25 **           | 6.21 **               | 0.048 **            | 128.19 **                         |  |  |
| Error                | 142 | 0.08               | 0.00                  | 0.00                | 5.96                              |  |  |

Table 10 Effect of seed priming of salicylic acid on root and shoot length of cotton genotypes

| SA   | Salinity | Root length (cm) |         |                       |         | Shoot length (cm) |          |                        |         |
|------|----------|------------------|---------|-----------------------|---------|-------------------|----------|------------------------|---------|
| (mM) | (mM)     | Lazer            | Selin   | May 455               | May 505 | Lazer             | Selin    | May 455                | May 505 |
|      | 0        | 9.53d            | 10.3c   | 23.53a                | 14.50b  | 18.38d            | 28.50a   | 19.43c                 | 23.87b  |
|      | 30       | 20.60a           | 15.47c  | 17.83b                | 21.10a  | 18.33d            | 27.93a   | 20.00c                 | 21.93b  |
| 0    | 50       | 16.60b           | 3.33c   | 19.33a                | 16.17b  | 17.70b            | 4.33c    | 17.53b                 | 23.27a  |
| 0    | 60       | 11.33d           | 19.73c  | 23.47b                | 30.93a  | 17.20b            | 17.43b   | 19.40a                 | 15.50c  |
|      | 90       | 21.93b           | 25.77a  | 15.37d                | 17.93c  | 10.60c            | 18.53a   | 18.00b                 | 18.27ab |
|      | 120      | 4.30b            | 3.67b   | 3.67b                 | 3.33b   | 5.27a             | 4.67b    | 4.67b                  | 4.33b   |
|      | 0        | 13.93b           | 14.77a  | 14.27a                | 12.20c  | 16.93d            | 22.80a   | 22.13b                 | 21.20c  |
|      | 30       | 11.33c           | 27.30a  | 19.20b                | 11.50c  | 21.83a            | 20.83b   | 20.40b                 | 20.57b  |
| 0.5  | 50       | 29.30a           | 19.50b  | 19.33b                | 14.20c  | 18.07c            | 16.90d   | 21.23a                 | 19.83b  |
| 0.5  | 60       | 27.30a           | 15.27c  | 27.30a                | 16.83b  | 13.27c            | 16.77a   | 16.23b                 | 17.17a  |
|      | 90       | 9.30d            | 22.87a  | 11.43c                | 20.93b  | 7.83d             | 13.03b   | 12.23c                 | 18.03a  |
|      | 120      | 17.27a           | 3.33d   | 5.77c                 | 14.20b  | 5.73b             | 4.33c    | 5.83b                  | 11.20a  |
|      | 0        | 18.00b           | 14.37d  | 16.00c                | 18.93a  | 16.67d            | 26.20b   | 25.73c                 | 32.17a  |
|      | 30       | 14.57d           | 15.90c  | 17.40b                | 24.80a  | 15.50c            | 19.33b   | 17.67c                 | 20.17a  |
| 1.0  | 50       | 9.87d            | 21.83b  | 23.20a                | 13.37c  | 13.87c            | 21.77b   | 23.97a                 | 21.83b  |
| 1.0  | 60       | 22.43a           | 13.50d  | 14.87c                | 16.43b  | 7.87d             | 19.83b   | 20.40a                 | 17.63c  |
|      | 90       | 16.27c           | 22.50a  | 19.80b                | 15.80c  | 12.17bc           | 12.43b   | 11.87c                 | 24.43a  |
|      | 120      | 21.80a           | 14.90c  | 10.80d                | 20.67b  | 10.33b            | 5.77c    | 10.40b                 | 19.23a  |
|      |          |                  | LSD (A× | <sub>B×C)</sub> =0.50 |         |                   | LSD (A×B | <sub>5×C)</sub> =0.444 |         |

#### Root and Shoot Length (cm)

In Table 10, it was revealed that the root length decreased as the salt dose increased. The highest root length was obtained from May 505 genotype (30.93 cm) in pots with 60 mM NaCl dose and no salicylic acid application. In the experiment, the highest value Lazer genotype was observed after 0.5 mM salicylic acid application against salt stress. However, as the Laser genotype and salt dose increased, it was determined that salicylic acid applications were not effective on root length. By increasing the salicylic acid dose to 1.0 mM, the Lazer genotype with a root length of 22.43 cm at 60 mM

NaCl stress and the May 505 genotype with a root length of 24.80 cm at 30 mM NaCl stress came to the fore. It was observed that the highest shoot length value was not salt stress, but May 505 genotype was obtained with 1.0 mM dose of salicylic acid. In terms of shoot length, May 505 genotype also gave high values under salt stress conditions. Salicylic acid doses (1.0 mM) under high salt stress to Lazer, Selin and May 455 genotypes did not have a positive effect on shoot length values. In pots without salt stress and salicylic acid applied, Selin genotype gave the highest shoot length of 28.50 cm. Increasing salt doses caused a significant decrease in shoot length in all cultivars with salicylic acid. The Laser genotype gave a value of 21.83 cm with 0.5 mM SA at 30 mM salinity and the May 455 genotype gave a value of 21.23 cm. In black bean, salinity caused a decrease in seedling length, but priming with 10 mM salicylic acid gave the most effective result compared to 2 and 20 mM doses and the seedling length increased under salt stress (Heidarian & Roshandel, 2021). Hussein et al. (2007) emphasized that salicylic acid increased growth in maize against saline conditions. Salicylic acid increased growth and yield in chickpea under salt stress conditions (Riaz et al., 2019). Priming with salicylic acid suppressed the phytotoxic effects caused by salinity in cotton, affected plant growth, improved the phenotypic appearance of the plant and increased salt tolerance in cotton (Keya et al., 2023).

# Root Fresh Weight and Shoot Fresh Weight (g)

In Table 11, the highest root fresh weight was observed in the Selin genotype (1.54 g), which was not treated with salicylic acid at 30 mM salt stress. It was revealed that root growth decreased in all cultivars in general at 120 mM NaCl dose, where salt stress was the highest. However, increasing the salicylic acid had a positive effect on root growth. The highest root fresh weight was obtained in the Selin genotype under control conditions. However, the root fresh weight of Selin genotype decreased significantly when salt doses were increased, except for 30 mM salt stress. In the applied 50 mM NaCl and 0.5 mM salicylic acid, the Laser genotype had the same value at 1.0 mM salicylic acid, and May 455 was in the front row with 0.88 g. The highest shoot fresh weight (90 mM salt + 0.5 mM salicylic acid) was obtained from May 455 genotype with 10.22 g (Table 11). In all other genotypes, shoot fresh weight decreased significantly as salt stress increased, regardless of salicylic acid dose. In the experiment where salicylic acid was not applied and the salt stress was 30 mM, the highest shoot fresh weight was obtained as 7.03 g from Selin genotype. As the salicylic acid dose increased in Selin genotype, shoot fresh weight decreased. Salt dosage caused a decrease in shoot fresh weight. When the salicylic acid dose was increased to 0.5 mM, the May 505 genotype ranked higher in high salt conditions. Further increasing the salicylic acid dose resulted in less decrease in fresh weight values. While high values were obtained at the 1.0 mM SA without salinity, the salicylic acid effect was less at the 120 mM salt dose. The highest value in shoot fresh weight values was obtained from applications without the use of salicylic acid. Salicylic acid-induced abiotic stress tolerance is due to the fact that osmolyte accumulation via salicylic acid helps maintain osmotic homeostasis and improves the regulation of mineral substance intake (Abdi et al., 2022). Salicylic acid to maize exposed to salt stress improved plant height, root and shoot fresh and dry weight (Khodary, 2004). Priming against salt stress caused an increase in seedling weight (Heidarian & Roshandel, 2021). Foliar salicylic acid application to cotton against salinity reduced the negative effect of salt on cotton seedlings (Hamani et al., 2021).

#### Root Dry Weight and Shoot Dry Weight (g)

The highest root dry weight was obtained from Selin genotype with 0.36 g (90 mM salt + 0 mM salicylic acid) (Table 12). However, in terms of root fresh weight, Selin genotype had the highest value at 30 mM salt stress. This shows that as the salt stress increases, the organic and inorganic substances in the roots decrease. Increasing the dose of salicylic acid also had no effect on root dry weight. Root dry weight values gave high values in cultivars that were not treated with salicylic acid under salt stress conditions.

| Table 11 Effect of and   |                           | an up of and also of fur als | inlat of a stand source to a second |
|--------------------------|---------------------------|------------------------------|-------------------------------------|
| Table 11. Effect of seed | prinning of sancyfic acid | on root and shoot fresh      | weight of cotton genotypes          |

| SA   | Salinity          | Root fresh weight (g) |       |         |         | Shoot fresh weight (g) |          |                        |         |
|------|-------------------|-----------------------|-------|---------|---------|------------------------|----------|------------------------|---------|
| (mM) | (mM)              | Lazer                 | Selin | May 455 | May 505 | Lazer                  | Selin    | May 455                | May 505 |
|      | 0                 | 0.26d                 | 0.74a | 0.61b   | 0.37c   | 3.10b                  | 6.81a    | 2.36d                  | 2.53c   |
|      | 30                | 0.75b                 | 1.54a | 0.43c   | 0.37d   | 3.91b                  | 7.03a    | 2.90c                  | 2.76d   |
| 0    | 50                | 0.68a                 | 0.07d | 0.36c   | 0.41b   | 3.20a                  | 0.35d    | 1.91c                  | 2.61b   |
| 0    | 60                | 0.36c                 | 0.29d | 0.67a   | 0.54b   | 2.61a                  | 1.60c    | 2.23b                  | 1.46d   |
|      | 90                | 0.89b                 | 1.50a | 0.42d   | 0.50c   | 2.92a                  | 2.83a    | 1.70c                  | 2.09b   |
|      | 120               | 0.09a                 | 0.06b | 0.06b   | 0.07b   | 0.35a                  | 0.35a    | 0.35a                  | 0.35a   |
|      | 0                 | 0.35c                 | 0.44b | 0.50a   | 0.33d   | 2.11d                  | 2.76c    | 3.48a                  | 2.92b   |
|      | 30                | 0.51b                 | 0.74a | 0.43c   | 0.28c   | 4.37a                  | 2.85b    | 1.65d                  | 2.08c   |
| 0.5  | 50                | 0.88a                 | 0.74b | 0.53c   | 0.38d   | 3.32a                  | 2.81c    | 2.98b                  | 2.01d   |
| 0.5  | 60                | 0.31b                 | 0.31b | 0.29c   | 0.46a   | 1.52c                  | 1.68b    | 1.26d                  | 1.87a   |
|      | 90                | 0.09d                 | 0.36b | 0.21c   | 0.86a   | 0.61d                  | 1.37c    | 10.22a                 | 1.85b   |
|      | 120               | 0.22a                 | 0.06c | 0.07b   | 0.23a   | 0.51b                  | 0.35c    | 0.53b                  | 0.96a   |
|      | 0                 | 0.50c                 | 0.46d | 0.67a   | 0.57b   | 2.18d                  | 4.98a    | 3.73c                  | 4.77b   |
|      | 30                | 0.35d                 | 0.50c | 0.64b   | 0.86a   | 2.34c                  | 2.79b    | 2.25c                  | 3.49a   |
| 1.0  | 50                | 0.20d                 | 0.84b | 0.88a   | 0.36c   | 1.55c                  | 2.90b    | 3.18a                  | 3.09a   |
| 1.0  | 60                | 0.23d                 | 0.59a | 0.53c   | 0.55b   | 0.63d                  | 2.56b    | 2.76a                  | 2.06c   |
|      | 90                | 0.41b                 | 0.32d | 0.35c   | 0.57a   | 1.70b                  | 1.33c    | 1.06d                  | 2.96a   |
|      | 120               | 0.40b                 | 0.18d | 0.20c   | 0.52a   | 0.82b                  | 0.46c    | 0.89b                  | 1.82a   |
|      | LSD (A×B×C)=0.009 |                       |       |         |         |                        | LSD (A×E | <sub>8×C)</sub> =0.100 |         |

| Table 12 Effect of seed | priming of  | Salicylic acid | on root and shoot dry   | weight of cotton genotypes |
|-------------------------|-------------|----------------|-------------------------|----------------------------|
| Table 12 Effect of secu | prinning Of | same yne acio  | i on root and shoot ury | weight of cotion genotypes |

| SA   | Salinity          | <u> </u> | Root dry v |         | ind shoot dry | Shoot dry weight (g) |          |                        |         |
|------|-------------------|----------|------------|---------|---------------|----------------------|----------|------------------------|---------|
| (mM) | (mM)              | Lazer    | Selin      | May 455 | May 505       | Lazer                | Selin    | May 455                | May 505 |
|      | 0                 | 0.04c    | 0.09a      | 0.09a   | 0.05b         | 0.28b                | 0.74a    | 0.28b                  | 0.28b   |
|      | 30                | 0.10b    | 0.26a      | 0.08c   | 0.04d         | 0.44b                | 0.86a    | 0.33c                  | 0.30d   |
| 0    | 50                | 0.18a    | 0.01c      | 0.08b   | 0.03c         | 0.47a                | 0.08d    | 0.26c                  | 0.37b   |
| 0    | 60                | 0.06c    | 0.04c      | 0.28a   | 0.09b         | 0.30c                | 0.19d    | 0.44a                  | 0.24b   |
|      | 90                | 0.13b    | 0.36a      | 0.09c   | 0.08c         | 0.41b                | 0.48a    | 0.28d                  | 0.32c   |
|      | 120               | 0.02a    | 0.01a      | 0.01a   | 0.02a         | 0.05b                | 0.09a    | 0.08a                  | 0.08a   |
|      | 0                 | 0.04b    | 0.06b      | 0.09a   | 0.05b         | 0.27d                | 0.29c    | 0.48a                  | 0.31b   |
|      | 30                | 0.07b    | 0.16a      | 0.09b   | 0.04c         | 0.57a                | 0.34c    | 0.42b                  | 0.23d   |
| 0.5  | 50                | 0.15a    | 0.14a      | 0.11b   | 0.05c         | 0.52a                | 0.40b    | 0.39b                  | 0.29c   |
| 0.5  | 60                | 0.04a    | 0.05a      | 0.05a   | 0.05a         | 0.20b                | 0.21b    | 0.18c                  | 0.27a   |
|      | 90                | 0.02d    | 0.08b      | 0.04c   | 0.11a         | 0.09d                | 0.22c    | 0.23b                  | 0.33a   |
|      | 120               | 0.05a    | 0.01b      | 0.03ab  | 0.033a        | 0.09b                | 0.09b    | 0.09b                  | 0.14a   |
|      | 0                 | 0.07ab   | 0.05b      | 0.11a   | 0.09a         | 0.24d                | 0.59b    | 0.50c                  | 0.63a   |
|      | 30                | 0.09b    | 0.07b      | 0.09b   | 0.11a         | 0.36b                | 0.35b    | 0.36b                  | 0.50a   |
| 1.0  | 50                | 0.03d    | 0.17b      | 0.26a   | 0.06c         | 0.19d                | 0.43b    | 0.50a                  | 0.42c   |
| 1.0  | 60                | 0.08b    | 0.11a      | 0.10a   | 0.07b         | 0.17d                | 0.36b    | 0.42a                  | 0.31c   |
|      | 90                | 0.07b    | 0.06b      | 0.13a   | 0.07b         | 0.28b                | 0.20d    | 0.24c                  | 0.49a   |
|      | 120               | 0.04b    | 0.02c      | 0.02c   | 0.07a         | 0.21b                | 0.09d    | 0.19c                  | 0.33a   |
|      | LSD (A×B×C)=0.023 |          |            |         |               |                      | LSD (A×E | <sub>B×C)</sub> =0.010 |         |

Table 13 Effect of seed priming of salicylic acid on chlorophyll content index (SPAD) of cotton genotypes

| SA   | Solinity (mM)   |                       | Chlorophyll conte | ent index (SPAD) |         |
|------|-----------------|-----------------------|-------------------|------------------|---------|
| (mM) | Salinity (mM) - | Lazer                 | Selin             | May 455          | May 505 |
|      | 0               | 39.95c                | 46.92b            | 43.37bc          | 58.43a  |
|      | 30              | 55.33b                | 44.67c            | 45.47c           | 61.13a  |
| 0    | 50              | 53.87a                | 32.67c            | 46.80b           | 53.23a  |
| 0    | 60              | 51.83bc               | 47.95c            | 60.98a           | 54.32b  |
|      | 90              | 49.98b                | 57.00a            | 60.83a           | 58.48a  |
|      | 120             | 33.66a                | 22.37b            | 31.73a           | 31.33a  |
|      | 0               | 42.39c                | 58.68a            | 48.18b           | 50.82b  |
|      | 30              | 44.58b                | 40.85b            | 57.15a           | 59.32a  |
| 0.5  | 50              | 55.67b                | 46.55c            | 40.75d           | 62.08a  |
| 0.5  | 60              | 60.49a                | 41.93c            | 46.90b           | 60.67a  |
|      | 90              | 48.60b                | 52.17b            | 52.16b           | 56.92a  |
|      | 120             | 46.00b                | 32.37d            | 40.27c           | 60.10a  |
|      | 0               | 56.18b                | 60.20a            | 50.20c           | 45.20d  |
|      | 30              | 49.80b                | 61.63a            | 58.72a           | 59.17a  |
| 1.0  | 50              | 42.60c                | 47.12b            | 60.00a           | 43.12c  |
| 1.0  | 60              | 61.28a                | 44.04b            | 61.27a           | 60.93a  |
|      | 90              | 48.97b                | 50.83b            | 60.03a           | 59.32a  |
|      | 120             | 61.55a                | 56.12b            | 49.23c           | 51.98c  |
|      |                 | LSD (A×B×C) = $3.959$ |                   |                  |         |

Selin was the genotype that gave the highest value in terms of shoot dry weight (Table 12). The highest value in terms of shoot dry weight was obtained from May 455 genotype. However, this value was found to be low in shoot dry weight. This situation can be interpreted as the high water intake capacity of May 455. In all cultivars, the increase in salt dose caused a decrease in shoot dry weight. However, May 505 genotype gave higher values at 1.0 mM salicylic acid dose compared to control conditions at 120 mM salt stress. This reveals that the May 505 genotype can be grown under high salt stress conditions with salicylic acid application. In the absence of salt stress, the Selin genotype may be preferred. Salicylic acid application to wheat increased root and shoot dry weight under salt stress conditions (Azeem et al., 2019; Abdi et al., 2022). Priming of baby corn seeds with SA in saline conditions (6 dS  $m^{-1}$ ) significantly increased the root dry weight. At high salt concentrations (9-12 dS  $m^{-1}$ ), treatment of seeds with salicylic acid had no significant effect. Priming baby corn seeds with 1 mM SA at moderate salinity has been suggested for production (Islam et al., 2022). Salicylic acid application under salt stress caused a significant increase in shoot dry weight in wheat (Arfan et al., 2005). Similar results were obtained in dry leaf weight of cotton (Hussein et al., 2012).

## Chlorophyll Content Index (SPAD)

The highest SPAD value in plants was obtained from the May 505 genotype containing 0.5 mM salicylic acid under 50 mM salt stress (Table 13). In 0.5 mM salicylic acid application, SPAD value was higher than control at 120 mM salt stress in all cultivars. In applications where salt stress is high, the addition of salicylic acid caused an increase in the SPAD values of the plants. The lowest SPAD value was observed in Selin genotype with 0.5 mM salicylic acid application at 120 mM salt stress.

Pancheva et al. (1996) emphasized that the application of more than 1 mM SA reduces the rate of photosynthesis. Soaking wheat seeds with salicylic acid against salinity significantly reduced NaCl-induced phytotoxicity in terms of chlorophyll index (Alam et al., 2022). SPAD values obtained after salicylic acid applied to Vigna radiata grown under salinity are an important criterion for evaluating plant lines, and it can be used as a physiological measurement criterion in determining photosynthetic performance in plants under salt stress (Ogunsiji et al., 2023). High NaCl content caused a decrease in chlorophyll content due to inhibition of chlorophyll biosynthesis in wheat (Khan, 2003b). Salicylic acid application in salt conditions improved chlorophyll value in cotton (Souza et al., 2023). Photosynthesis and chlorophyll synthesis are inhibited in plants exposed to high salt (Cha-Um et al., 2010; Mahboob et al., 2016; Mahboob et al., 2017), but salicylic acid reduces the negative effects (El Tayeb, 2005; Afzal et al., 2006; Farooq et al., 2007; Hussain et al., 2011; Rehman et al., 2011; Pirasteh-Anosheh et al., 2012). In salt stress conditions, SA to wheat improved seedling length and total chlorophyll content (Azeem et al., 2019). Salicylic acid application under salt stress conditions increased the chlorophyll content index (SPAD) in barley (Pirasteh-Anosheh et al., 2014). Similar studies were also observed in different plants (Khodary, 2004; Parida et al., 2008; Nikolaeva et al., 2010; Pirasteh-Anosheh & Emam, 2012). Hamid et al. (2010) revealed that priming wheat seeds with salicylic acid under salinity stress conditions made the seedlings stronger and increased the plant chlorophyll content.

## Conclusion

In the present study, we explored the exogenous SAinduced salt tolerance in cotton. High dose salt concentrations (90, 120 mM) negatively affected germination and development in seeds. Salicylic acid application was significantly effective in the germination and seedling growth of cotton seeds. Therefore, to obtain high yields in cotton under saline conditions, priming the seeds with 0.5 mM SA will be effective. Priming with SA reduced the degradation of photosynthetic pigments while increasing plant biomass. Exogenously applied SA increased the salinity tolerance of Selin and May 505, particularly by reducing the negative effects of salts. Salicylic acid application (0.5 mM) had positive effects on germination percentage, plant height, fresh and dry weight and SPAD parameters in cotton. Selin and May 505 genotypes can be recommended to be planted after priming the seeds with salicylic acid (0.5 mM) for soils with 50 mM-60 mM salt concentration.

## Acknowledgements

We highly appreciate the Nazilli Cotton Research Institute for providing the cotton genotypes. We express the profound sense of reverence to the entire research team and any other person who contributed. *Author Contributions:* Data curation, NO; Project administration, IY, EI. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest

*Data availability:* The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

This Research was Conducted as a Master's Thesis

#### References

- Abdi, N., Van Biljon, A., Steyn, C., Labuschagne, M.T. (2022). Salicylic acid improves growth and physiological attributes and salt tolerance differentially in two bread wheat cultivars. *Plants.* 11(14): 1853.
- Afzal, I., Basra, S.M.A., Farooq, M., Nawaz, A. (2006). Alleviation of Salinity Stress in Spring Wheat by Hormonal Priming with ABA, Salicylic Acid and Ascorbic Acid. *International Journal of Agriculture and Biology*. 8(1): 23-28.
- Alam, P., Balawi, T.A., Faizan, M. (2022). Salicylic acid's impact on growth, photosynthesis, and antioxidant enzyme activity of *Triticum aestivum* when exposed to salt. *Molecules* 28(1): 100.
- Alizade, S., Mammadova, R. (2023). Assessment of Salt Stress Resistance of Cotton Varieties Based on Different Parameters. Advances In Biology & Earth Sciences. 8(1).
- Al-Rawi, A.N.T., Al-Ani, M.H., Al-Saad, T.M. (2014). Response of cotton *Gossypium hirsutum* L. for different irrigation periods and salicylic acid. *Anb. J. Agric. Sci.* 12: 283.
- Amjad, J., Yasin, M., Nabi, G., Rauf, A. (2002). Evaluation of germination and growth of cotton by presowing treatments under salt-stressed conditions. *Pakistan Journal of Agricultural Research*. 17(2): 170-175.
- Anaya, F., Fghire, R., Wahbi, S., Loutfi, K. (2018). Influence of salicylic acid on seed germination of *Vicia faba* L. under salt stress. J. Saudi Soc. Agri. Sci. 17: 1–8.
- Anwar, Z., Ijaz, A., Ditta, A., Wang, B., Liu, F., Khan, S.M.U.D. ... & Khan, M.K.R. (2023). Genomic Dynamics and Functional Insights under Salt Stress in *Gossypium hirsutum* L. *Genes.* 14(5): 1103.
- Arfan, M., Athar, H.R., Ashraf, M. (2006). Does exogenous application of salicylic acid through the rooting medium moderate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J *Plant Physiol*. 164(6): 685-94
- Azeem, M., Qasim, M., Abbas, M.W., Tayyab, Sultana. R., Adnan, M.Y., Ali, H. (2019). Salicylic acid seed priming modulates some biochemical parametrs to improve germination and seedling growth of salt stressed wheat (*Triticum aestivum* L.). *Pak. J. Bot.* 51(2): 385-391.
- Biswas, S., Seal, P., Majumder, B., Biswas, A.K. (2023). Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. *Plant Stress.* 100186.
- Cha-Um, S., Yooyongwech, S., Supaibulwatana, K. (2010). Water deficit stress in the reproductive stage of four indica rice (*Oryza sativa* L.) genotypes. *Pak. J. Bot.* 42: 3387-3398.
- Delavari, M., Enteshariand, Sh., Manoochehri Kalantari, Kh. (2014). Effects of Response of Ocimum basilicumto the interactive effect of salicylic acid and salinity stress. *Iranian Journal of Plant Physiology*. 4(2): 983-990
- Demming, A.B., Adams, W.W. (1996). The role of the xanthophyll cycle carotenoids in the protection of photosynthesis. *Trends Plant Sci.* 1:21–26.
- El Tayeb, M.A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. *Plant Growth Regulation*. 45: 215-224.

- Ergin, N., Kulan, E., Gözükara, M., Muhammed, K., Çetin, S., Kaya, M.D. (2021). Response of germination and seedling development of cotton to salinity under optimal and suboptimal temperatures. *KSÜ Tarim Doga Derg.* 24: 108– 115.
- Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., Khan, F.A., Khan, F., Chen, Y., Wu, C. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. *Environ. Sci. Poll. Res.* 22: 4907–4921
- Fairoj, S.A., Islam, M.M., Islam, M.A., Zaman, E., Momtaz, M.B., Hossain, M.S. ... & Murata, Y. (2022). Salicylic Acid Improves Agro-Morphology, Yield and Ion Accumulation of Two Wheat (*Triticum aestivum* L.) Genotypes by Ameliorating the Impact of Salt Stress. Agronomy. 13(1): 25.
- Farooq M, Basra SMA, Rehman H, Hussain M, Amanat Y (2007) Pre-sowing salicylicate seed treatments improve the germination and early seedling growth in fine rice. Pakistan Journal of Agricultural Sciences 44(1): 1-8.
- Farooq, M., Irfan, M., Aziz, T., Ahmad, I., Cheema, S.A. (2013). Seed priming with ascorbic acid improves drought resistance of wheat. J. Agron. & Crop Sci. 199(1): 12-22.
- Fujikura, Y., Kraak, H.L., Basra, A.S., Karssen, C.M. (1993). Hydropriming, a simple and inexpensive priming method. *Seed Science and Technology*. 21(3): 639-642.
- Guo, H., Li, S., Min, W., Ye, J., Hou, Z. (2019). Ionomic and transcriptomic analyses of two cotton cultivars (*Gossypium hirsutum* L.) provide insights into the ion balance mechanism of cotton under salt stress. *PLoS ONE* 14, e0226776
- Hamada, A.M., Al-Hakimi, A.M.A. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. *Rostlinna Vyroba*. 47 (10): 444-450.
- Hamani, A.K.M., Chen, J., Soothar, M.K., Wang, G., Shen, X., Gao, Y., Qiu, R. (2021). Application of exogenous protectants mitigates salt-induced Na+ toxicity and sustains cotton (*Gossypium hirsutum* L.) seedling growth: Comparison of glycine betaine and salicylic acid. *Plants*. 10(2): 380.
- Hamid, H., Rehman, K., Ashraf, Y. (2010). Salicylic acidinduced growth and biochemical changes in salt-stressed wheat. *Commun. Soil Science and Plant Analysis.* 41: 373-389
- Harizanova, A., Koleva-Valkova, L. (2019). Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress. J. Cent. Eur. Agric. 20: 953–960.
- Hayat, S., Fariduddin, Q., Ali, B., Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. *Acta Agron. Hung.* 53(4): 433-437
- Heidarian, F., Roshandel, P. (2021). Salicylic acid improves tolerance against salt stress through boosting antioxidant defense system in black bean. *International Journal of Horticultural Science and Technology*, 8(2): 175-189.
- Hussain, K., Nawaz, K., Majeed, A., Ilyas, U., Lin, F., Ali, K., Nisar, M.F. (2011). Role of exogenous salicylic acid applications for salt tolerance in violet. *Sarhad Journal of Agriculture*. 27(2): 171-175.
- Hussein, M.M., Balbaa, L.K., Gaballah, M.S. (2007). Salicylic acid and salinity effects on growth of maize plants. *Research Journal of Agriculture and Biological Sciences*. 3(4): 321-328.
- Hussein, M.M., Mehanna, H., Abou-Baker, N.H. (2012). Growth, photosynthetic pigmentsand mineral status of cotton plants as affected by salicylic acid and salt stress. *Journal of Applied Sciences Research*. 5476-5484.
- Islam, A.T., Ullah, H., Himanshu, S.K., Tisarum, R., Cha-um, S., Datta, A. (2022). Effect of salicylic acid seed priming on morpho-physiological responses and yield of baby corn under salt stress. *Scientia Horticulturae*. 304: 111304.

- Jamil, M., Deog Bae, L., Kwang Yong, J., Ashraf, M., Sheong Chun, L., Eui Shik, R. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetable species. *Journal of Central European Agriculture*. 7(2):273– 282. https://doi.org/10.5513/jcea.v7i2.370
- Júnior, S.D.O.M., de Andrade, J.R., do Nascimento, R., de Lima, R.F., Nascimento, E.C.S., Batista, M.C.,... & de Castro Bezerra, C.V. (2020). Salicylic acid and its method of application affect germination and vigor in bell pepper seedlings under salt stress. *In Colloquium Agrariae*. 16(6): 101-110
- Keya, S.S., Mostofa, M.G., Rahman, M.M., Das, A.K., Sultana, S., Ghosh, P.K., ... & Tran, L.S.P. (2023). Salicylic Acid Application Improves Photosynthetic Performance and Biochemical Responses to Mitigate Saline Stress in Cotton. *Journal of Plant Growth Regulation*. 1-14.
- Khan, W., Prithiviraj, B., Smith, D.L. (2003a). Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160(5): 485-492.
- Khan, N.A. (2003b). NaCl inhibited chlorophyll synthesis and associated changes in ethylene evolution and antioxidative enzyme activities in wheat. *Biologia plant*. 47:437–440.
- Khan, S.U., Bano, A., Gurmani, A.R. (2012). Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (*Triticum aestivum* L.). *Pak. J. Bot.* 44: 43-49.
- Khodary, S.E.A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. *Int. J. Agric. Biol.* 6(1): 5-8.
- Lolaei, A., Kaviani, B., Rezaei, M.A., Raad, M.K., Mohammadipour, R. (2012). Effect of pre and postharvest treatment of salicylic acid on ripening of fruit and overall quality of strawberry (*Fragaria ananasa* Duch cv. Camarosa) fruit. *Ann. Biol. Res.* 3: 4680-4684.
- Long, L., Yang, W.-W., Liao, P., Guo, Y.-W., Kumar, A., Gao, W. (2019). Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. *Plant Sci.* 281: 72–81.
- Mahboob, W., Khan, M.A., Shirazi, M.U. (2016). Induction of salt tolerance in wheat (*Triticum aestivum* L.) seedlings through exogenous application of proline. *Pak. J. Bot.* 48: 861-867.
- Mahboob, W., Khan, M.A., Shirazi, M.U. (2017). Characterization of salt tolerant wheat (*Triticum aestivum*) genotypes on the basis of physiological attributes. *Int. J. Agric. Biol.* 19: 726-734.
- Malik, M.N.A., Ahmad, M., Makthum, M.I., Chaudhry, F.I. (1994). Germination performance of cotton cultivars under saline conditions. *Journal of Drainage and Reclamation*. 6 (1-2): 50-53.
- Maqsood, M.F., Shahbaz, M., Zulfiqar, U., Saman, R.U., Rehman, A., Naz, N ... & Haider, F.U. (2023). Enhancing Wheat Growth and Yield through Salicylic Acid-Mediated Regulation of Gas Exchange, Antioxidant Defense, and Osmoprotection under Salt Stress. *Stresses*. 3(1): 372-386.
- Moghaddam, S.S., Rahimi, A., Pourakbar, L., Jangjoo, F. (2020). Seed Priming with salicylic acid improves germination and growth of *Lathyrus sativus* L. under salinity stress. *Yuzuncu Yıl University Journal of Agricultural Sciences*. 30(1):68-79.
- Mohammadi, G. (2009). The effect of seed priming on plant traits of latespring seeded soybean (*Glycine max*). *American Eusian Journal of Agriculture & Environment Science*. 5(2): 322-26.
- Moles, T.M., Guglielminet, L., Reyes, T.H. (2019). Differential effects of sodium chloride on germination and post-germination stages of two tomato genotypes. *Sci. Hort.* 257: 108730
- Moreno, C., Seal, C.E., Papenbrock, J. (2018). Seed priming improves germination in saline conditions for *Chenopodium quinoa* and *Amaranthus caudatus. Journal of Agronomy and Crop Science*. 204(1): 40-48. https://doi.org/10.1111/jac.12242

- Muhammad, N., Wang, X., Song, M. (2023). Effects of Salt Stress on Cotton Growth and Germination at Different Stages; a Review. Available at SSRN 4484422.
- Munawar, W., Hameed, A., Khan, M.K.R. (2021). Differential morphophysiological and biochemical responses of cotton genotypes under various salinity stress levels during early growth stage. *Frontiers in Plant Science*. 12: 622309.
- Nikolaeva, M.K., Maevskaya, S.N., Shugaev, A.G., Bukhov, N.G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. *Russ J Plant Physiol.* 57: 87–95.
- Ogunsiji, E., Umebese, C., Stabentheiner, E., Iwuala, E., Odjegba, V., Oluwajobi, A. (2023). Salicylic Acid Enhances Growth, Photosynthetic Performance and Antioxidant Defense Activity Under Salt Stress in Two Mungbean [Vigna radiata (L.) R. Wilczek] Variety. Plant Signaling & Behavior 18(1): 2217605.
- Öz, M., Karasu, A. (2007). Pamuğun çimlenmesi ve erken fide gelişimi üzerine tuz stresinin etkisi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 21(1): 9-21.
- Pancheva, T.V., Popova, L.P., Uzunova, A.N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. *Journal of plant physiology*. 149(1-2): 57-63.
- Parida, A.K., Dagaonkav, V.S., Phalak, M.S., Aurangabadkar, L.P. (2008). Differential responses of the enzymes involved in praline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. *Acta Physiol Plant*. 30: 619–627.
- Pirasteh-Anosheh, H., Emam, Y. (2012). Manipulation of morphophysiological traits in bread and durum wheat by using PGRs at different water regimes. *J Crop Prod Process*. 5: 29–45.
- Pirasteh-Anosheh, H., Emam, Y., Ashraf, M., Foolad, M.R. (2012). Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. *Adv Stud Biol.* 11: 501–520
- Pirasteh-Anosheh, H., Ranjbar, G., Emam, Y., Ashraf, M. (2014). Salicylic-acid-induced recovery ability in salt-stressed *Hordeum vulgare* plants. *Turkish Journal of Botany.* 38(1): 112-121.
- Radwan, A.M., Ahmed, E.A., Donia, A.M., Mustafa, A.E., Balah, M.A. (2023). Priming of *Citrullus lanatus* var. Colocynthoides seeds in seaweed extract improved seed germination, plant growth and performance under salinity conditions. *Scientific Reports*. 13(1): 11884.
- Rehman, H., Farooq, M., Basra, S.M.A., Afzal, I. (2011). Hormonal Priming with Salicylic Acid Improves the Emergence and Early Seedling Growth in Cucumber. *Journal* of Agriculture and Social Sciences. 7: 109-113

- Riaz, A., Rafique, M., Aftab, M., Qureshi, M.A., Javed, H., Mujeeb, F., Akhtar, S. (2019). Mitigation of salinity in chickpea by plant growth promoting rhizobacteria and salicylic acid. *Eurasian Journal of Soil Science*. 8(3): 221-228.
- Said, E.M., Mohammed, H.F. (2023). Enhancement of salinity stress tolerance in cumin (*Cuminum cyminum* L.) using seed priming with Amla extract and NaCl. *Egyptian Journal of Agricultural Research*. 101(1): 200-212.
- Shahzad, A.N., Qureshi, M.K., Ullah, S., Latif, M., Ahmad, S., Bukhari, S.A.H. (2020). Exogenous trehalose improves cotton growth by modulating antioxidant defense under salinity-induced osmotic stress. *Pak. J. Agric. Res.* 33: 270– 279.
- Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A., Fatkhutdinova, DR. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. *Plant science*. 164(3): 317-322.
- Shakirova, F.M. (2007). Role of hormonal system in the manifestation of growth promoting and antistress action of salicylic acid. In Salicylic acid: a plant hormone: 69-89. Springer Netherlands
- Sharif, I., Aleem, S., Farooq, J., Rizwan, M., Younas, A., Sarwar, G., Chohan, S.M. (2019). Salinity stress in cotton: Effects, mechanism of tolerance and its management strategies. *Physiol. Mol. Biol. Plants.* 25: 807–820.
- Sofy, M.R., Seleiman, M.F., Alhammad, B.A., Alharbi, B.M., Mohamed, H.I. (2020). Minimizing adverse effects of pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. *Agronomy*. 10: 699.
- Souza, F.S.D., Soares, L.A.D.A., Lima, G.S.D., Almeida, A.K.C.D., Silva, A.A.R.D., Paiva, F.J.D.S., ... & Fernandes, P.D. (2023). Physiology and production components of cotton plants under salt stress and salicylic acid application. *Semina ciênc. agrar.* 147-170.
- Suhaib, M., Ahmad, I., Munir, M., Iqbal, M.B., Abuzar, M.K., Ali, S. (2018). Salicylic acid induced physiological and ionic efficiency in wheat under salt stress. *Pakist. J. Agric. Res.* 31:79.
- Taşan, S. (2023). Seed Priming with Ascorbic Acid to Ameliorate the Effects of Salinity Stress on Germination and Growth Traits of Rapeseed (*Brassica napus L.*). Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi. 9(2): 239-251.
- Yan, Q., Zhang, J., Li, X., Wang, Y. (2019). Effects of salinity stress on seed germination and root growth of seedlings in island cotton. *Acta Agronomica Sinica*. 45(1): 100-110.
- Yıldırım, E., Dursun, A. (2009). Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. *Acta Hortic*. 807: 395–400.