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The water erosion is a significant environmental issue in arid and semi-arid regions. It leads to soil 

degradation, reduced agricultural productivity, and desertification. This article used The WEPP, the 

USLE, and the MUSLE models to estimate the average soil loss in the Yozgat-Kadılı village. Also, 

The MUSLE model utilized the WEPP model-estimated runoff for soil loss estimation. The USLE 

model, which estimates soil erosion using six factors (R, K, L, S, P, and C), can be improved by 

incorporating the Modified Fournier Index (MFI). Results indicated that the MUSLE model (3.66 

t/ha) performed well in estimating soil losses close to the observed value (3.15) in the wheat fields 

between 1986-1996. the MUSLE (5.31 t/ha) and WEPP (5.88 t/ha) models underestimated soil 

losses to the observed value (8.75 t/ha) in the fallow field for 1986-1996. The WEPP model 

estimated the highest average soil loss at 5.18 t/ha in a wheat field, while the USLE model yielded 

the lowest estimate at 1.28 t/ha between 1969 and 2020. The MUSLE model estimated the highest 

(4.94 t/ha) and The USLE model estimated the lowest (2.53 t/ha) soil loss in the fallow field between 

1969-2020. Results also revealed that the WEPP model is needed to calibrate for estimating soil 

loss in arid and semi-arid regions.  
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Introduction 

Soil serves as the foundation for cultivating plants that 

provide us with food and fiber, and its quality significantly 

impacts crop production (Luetzenburg et al. 2020; Li et al. 

2020). This quality depends on the interplay of physical, 

chemical, and biological properties. Unfortunately, soil 

erosion a naturally occurring phenomenon, alters these 

properties and ultimately reduces crop yield. Soil erosion 

is influenced by various factors, including land 

management practices, vegetation cover, and climatic 

conditions. These factors can lead to substantial variations 

in the soil’s physico-chemical properties, impacting its 

ability to support healthy crop growth (Panagos et al. 2014; 

García-Ruiz et al. 2017; Babalık et al. 2021; Dursun and 

Babalık 2023; Demir and Dursun, 2024). 

Soil erosion has become the most serious 

environmental problems today (Blanco and Lal., 2008). 

Unsustainable soil management practices and improper 

land use have led to the loss of large quantities of topsoil 

in a short period of time. The global annual soil 

displacement due to erosion is estimated to be around 24 

billion tons (ÇMTUEP, 2005). In Turkey, the estimated 

annual soil displacement due to erosion is about 285.5 

million tons (Berberoglu et al., 2020), Accelerated soil 

erosion is one of the most significant factors contributing 

to desertification and land degradation. This issue threatens 

the sustainability of agricultural production, natural 

resources, and ecosystems (Özşahin, 2024). Given the 

extensive economic and environmental impacts of soil 

erosion, it is evident that urgent protective measures and 

conservation efforts are required. Without these measures, 

the continued degradation of soil resources will persist, 

compromising the effective utilization of natural resources 

(Erkal and Yıldırım., 2012). Accurate measurement and 

estimation of soil erosion is a complex and costly process. 

On-site measurements are time-consuming and limited to 

specific areas. Therefore, the development and application 

of erosion models have become increasingly important. 

These models simulate and predict soil loss by considering 

various factors, allowing for the estimation of erosion over 

larger areas and the reduction of associated costs 

(Djoukbala et al.,2019). Moreover, they provide essential 

information for the sustainable management of soil and 
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water resources. The accuracy of model predictions is 

evaluated by comparing them with field observations and 

measurements. Calibration and validation of these models 

must be conducted in a manner appropriate for regional 

conditions. This approach enables the implementation of 

effective soil conservation measures and informed land use 

planning (Kinnell, 2020). 

Soil erosion models are mathematical tools that simulate 

the erosion process. These models play a vital role in various 

applications, including dam design, environmental planning, 

and natural resource protection. While empirical models are 

valuable for estimating sediment yield, process-based 

models offer greater applicability across diverse spatial and 

temporal contexts. This is particularly true for understanding 

the long-term impacts of erosion. The Universal Soil Loss 

Equation (USLE) developed by Wischmeier and Smith in 

1965 is the most widely used model for estimating soil 

erosion by rainfall and runoff. This equation considers 

several factors, including rainfall patterns, soil properties, 

topography, and land management practices, to calculate the 

average annual soil loss. 

 

A=R×K×LS×C×P    (1) 

 

Where: A is the estimated soil loss per unit area, R is 

the rainfall erosivity factor, representing the erosive power 

of rainfall, K is the soil erodibility factor, indicating the 

susceptibility of the soil to erosion, LS is the slope length 

and steepness factor, considering the slope characteristics, 

C is the cover and management factor, accounting for land 

cover and management practices, P is the support practice 

factor, representing the effectiveness of conservation 

practices. Researchers and conservationists use this 

equation to assess soil erosion risk, develop soil 

conservation strategies, and understand the impact of 

different factors on soil loss. It’s important to note that 

variations and adaptations of the USLE exist to suit 

specific geographic regions and conditions. 

The rainfall erosivity factor (R) captures the combined 

impact of raindrop impact and subsequent runoff generation. 

The topographic attributes of the terrain are represented by 

the slope length factor (L) and slope steepness factor (S), 

which influence the rate of energy dissipation and erosion 

potential. The cover and management factor (C) specifically 

addresses the magnitude of soil loss occurring on 

agricultural lands during fallow periods under prevailing 

environmental conditions.  

The USLE model has been a commonly used tool for 

soil erosion prediction and management worldwide (). 

Researchers often validate the model predictions by 

comparing them with observed data from field 

measurements or erosion plots. Calibration and validation 

exercises help refine the model parameters and improve its 

accuracy for specific regions or land uses. 

The USLE model has been a commonly used tool for soil 

erosion prediction and management worldwide (Wischmeier 

and Smith, 1965; Ghosh et al., 2013; Bagarello et. al., 2014; 

Di Stefano et. al., 2017; Kinnell, 2020). Researchers often 

validate the model predictions by comparing them with 

observed data from field measurements or erosion plots. 

Calibration and validation exercises help refine the model 

parameters and improve its accuracy for specific regions or 

land uses (Flanagan et al., 2018). 

The Modified Universal Soil Loss Equation (MUSLE) 

model is an erosion model developed by Williams, (1975). 

It includes factors such as rainfall, soil properties, land use, 

and topography from the USLE model’s algorithm to 

estimate sediment yield based on individual rainfall events 

(Ran et al., 2019). 

Williams, (1975), simplified the estimation of stream 

sediment yield for individual storm events by substituting 

the rainfall factor (R) with a runoff factor in the USLE. 

MUSLE was developed by collecting data from 778 storm-

runoff events from 18 small watersheds, with areas ranging 

from 15 to 1500 hectares, slopes from 0.9 to 5.9%, and 

slope lengths of 78.64 to 173.74 m. The MUSLE is given 

in the following revised form: 

 

𝑆 = 11.8(𝑄 𝑞𝑝)0.56 (K LS C P) (2) 

 

Where S is the sediment yield (t), Q is the intensity of 

the runoff (m3), qp, is the surface flow peak value (m3 s-1) 

and K, L, S, C, and P factor values were used as given in 

the USLE equation. K, L, S, C, and P are soil erosion 

sensitivity (t ha h ha-1 MJ-1 mm-1), slope length, slope 

steepness, agricultural management, and soil erosion 

control application factors, respectively, and similar to the 

USLE model. As a and b are position coefficients. For the 

areas where the equation was developed, a and b were 

determined to be 11.8 and 0.56 for metric system units, 

respectively. 

The MUSLE has been applied in many different basins 

and for different purposes around the world  

(Lopez-Tarazn et al. 2012; Khaledi Darvishan et al., 

2009; Zhang et al., 2009; Sadeghi et al., 2008, 2007a, 

2007b; Varvani et al., 2006; Kandrika and Venkataratnam, 

2005; Sadeghi 2004; Sarkhosh et al., 2004; Cambazoglu 

and Gogos, 2004; Fontes et al., 2004; Kandrika and 

Dwivedi, 2003; Erskine et al., 2002; Khajehie et al., 2002; 

Rezaiifard et al., 2002; Kinnell and Riss, 1998; Banasik 

&Walling, 1996; Nicks et al., 1994; Das, 1982; Asokan, 

1981), and this model has been modified in some cases. 

Since the MUSLE model was produced for specific 

conditions, its application without calibration caused huge 

errors. 

The USDA developed the Water Erosion Prediction 

Project (WEPP) in 1985 to model soil erosion caused by 

water. The model takes into account various factors such 

as climate, topography, soil properties, and land 

management practices. Compared to previous models like 

the USLE and its revised version the Revised Universal 

Soil Loss Equation (RUSLE), the WEPP model presents a 

more detailed and process-based approach to erosion 

prediction. It comprehensively considers factors such as 

infiltration, runoff, and sediment transport. 

The WEPP model is widely used because it provides 

more detailed and location-specific predictions than 

previous models like the USLE and the RUSLE. 

Researchers and land managers use the WEPP model to 

evaluate the potential effects of various scenarios, 

including degradation in land use and erosion control 

practices on soil erosion (Elliot and Flanagan, 2023 

Revuelta-Acosta et al., 2021; Zheng et al., 2020). The 

WEPP model requires weather and climate data as inputs 

for predicting soil erosion caused by water. The model uses 
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climate files that contain historical or synthesized 

meteorological data to simulate the effects of weather on 

soil erosion processes. The WEPP model employs the 

Green-Ampt equation to estimate the rate of rainfall 

infiltration into the soil. This equation takes into account 

the soil’s hydraulic properties and initial moisture levels, 

making it a useful tool for simulating water movement 

through unsaturated soil. Understanding this process is 

essential for predicting runoff and sediment transport, 

which are critical factors in soil erosion modeling. The 

steady-state continuity equation of the WEPP model is one 

of the fundamental equations used in soil erosion models, 

particularly for simulating the movement of water and 

erosion: 

 

dG dx = Df + Di⁄      (3) 

 

Where; dx: Total erosion amount at a specific area or 

point, Df: Amount of interrill erosion (surface erosion), Di: 

Amount of rill erosion. Equations are used in modeling soil 

erosion by separating it into different processes (e.g., 

surface erosion and rill erosion). Interrill erosion generally 

represents erosion caused by direct rainfall on the soil 

surface and surface flows while rill erosion represents 

erosion originating from deepening channels.  

Another difference between WEPP and other models is 

that the continuous sediment equation is applied in rills 

from uniform flow hydrology suggests that the WEPP 

model incorporates a continuous sediment equation 

specifically designed for rill erosion within the framework 

of uniform flow hydrology.  

Sediment may form in the interrill area then be 

transported downslope or accumulate in rills. The rill 

detachment capacity in the WEPP is calculated when the 

surface hydraulic shear stress exceeds the critical shear 

stress of the soil with the equation 4 given below: 
 

Dc = Kr(τf − τc)     (4) 

 

Where Dc is the detachment capacity of the rill flow, 

Kr is the rill erodibility of the soil, τf is flow shear stress 

acting on soil particles, and τc is the rill detachment 

threshold parameter or critical shear stress of the soil. 

Rill detachment is zero if the shear stress of the runoff 

is less than the shear stress of the soil. In modeling or 

simulation, if the shear stress from runoff water is below a 

critical threshold for the soil, rill detachment the process of 

soil particle detachment leading to rill formation does not 

occur and equation 5 is calculated: 
 

Df = Dc (1 −
G

Tc
)     (5) 

 

Where Df is the net rill detachment, and Tc is the 

transport capacity of flow in the rill. In erosion models, 

four hydraulic processes play a crucial role: peak surface 

runoff, effective surface runoff duration, effective rainfall 

intensity, and effective rainfall duration (Spadaro et al., 

2018). Peak surface runoff measures the highest flow rate 

of water in a given area, indicating how quickly 

precipitation-induced water converges on the soil surface 

(Dutta et al., 2016). Effective surface runoff duration 

shows the period during which surface runoff is in effect 

reflecting the duration of precipitation-induced water flow 

on the soil surface. Effective rainfall intensity quantifies 

the amount of rainfall per unit area over a defined period 

indicating the density of impactful precipitation in a 

particular region. Effective rainfall duration represents the 

duration for which precipitation affects a specific area. 

These hydraulic factors are crucial in assessing and 

simulating soil erosion, taking into account precipitation 

dynamics, soil characteristics, and topographic features 

(Flanagan et al., 2018). 

The validation process of the WEPP model involves 

assessing its performance against observed data, aiming to 

gauge its accuracy (Elliot et al., 1995). This assessment 

entails comparing field data or other sources to evaluate the 

model’s performance, serving as a basis for identifying 

areas of improvement and estimating errors. Enhancements 

may involve adjusting model algorithms, refining 

parameters, or improving input data quality. Additionally, 

optimizing parameters specific to the region or usage 

scenario is often necessary during the validation process. 

Scientific literature systematically records these 

enhancements and parameter adjustments, furnishing a 

robust framework for enhancing the performance of the 

WEPP model. Numerous studies have conducted 

sensitivity analyses of the WEPP model, which involve 

evaluating how variations in parameters affect model 

outputs. These analyses are critical for understanding the 

model’s behavior, enhancing its reliability, and gaining 

insights into its performance under specific conditions 

(Wang et al., 2023; Erdoğan Yüksel et al.,2019; Demir et 

al., 2018; Nearing et al.,1990). Typically, researchers 

manipulate individual parameter values and observe their 

impacts on model outputs. Precipitation, soil properties, 

vegetation cover, slope, and erosion control practices are 

some of the parameters that influence the WEPP model’s 

performance. In other studies, researchers have focused on 

examining precipitation patterns. These analyses aim to 

investigate the sensitivity of the WEPP model to 

precipitation variables and its response to different 

precipitation scenarios. Researchers typically manipulate 

precipitation quantities, distributions, or intensities to 

assess the resultant changes in the model outputs. 

Precipitation is a critical input parameter for the WEPP 

model. It has a significant impact on erosion and surface 

runoff. Therefore, sensitivity analyses that focus on 

precipitation variables are crucial for understanding how 

the model responds to different precipitation conditions 

and for improving its performance conditions (Wang et al., 

2023; Erdoğan Yüksel et al.,2019; Demir et al., 2018; 

Nearing et al.,1990. For example, changes in precipitation 

distribution can be explored to enhance the model’s outputs 

under specific rainfall regimes. These studies provide 

detailed insights into the WEPP model’s reactions to 

precipitation variables. They contribute to more effective 

erosion control and soil management strategies, especially 

in arid and semi-arid areas where precipitation is a 

significant factor. 

Soil erosion is a critical issue for sustainable agriculture 

and environmental management on a global scale, and 

empirical and physically-based models such as USLE, 

MUSLE, and WEPP are widely employed for its 

assessment. The comparability and applicability of these 

models are facilitated by their use of various methods and 

parameters. Specifically, USLE is an empirical model, 
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MUSLE is semi-empirical, and WEPP is a physically-

based model. This diversity allows for a more 

comprehensive evaluation of each model’s strengths and 

weaknesses. USLE and MUSLE operate at the field scale, 

whereas WEPP operates at the watershed scale. Comparing 

models at different scales contributes to understanding the 

impact of scale on model selection. there has been no study 

comparing the performance of USLE, MUSLE, and WEPP 

models in predicting soil loss specifically in the Central 

Anatolia region. Most existing studies in this region have 

utilized only a single model, highlighting the importance 

of evaluating the effectiveness of these three models 

together under Central Anatolian conditions. The region’s 

semi-arid climate, high soil erodibility, and intensive 

agricultural activities make it a unique context for this 

evaluation. Assessing the sensitivity and prediction 

performance of USLE, MUSLE, and WEPP models to the 

specific conditions of Central Anatolia is crucial for 

identifying the most appropriate model for the region. 

Additionally, comparing the results of field-scale and 

watershed-scale models will provide insights into the 

impact of scale on prediction accuracy. This evaluation 

may also guide the development of a scale-compatible 

model for Central Anatolia in future research. In summary, 

a comprehensive assessment of the USLE, MUSLE, and 

WEPP models, when applied together in the Central 

Anatolian region, will provide valuable insights for both 

academic and practical applications. The study aims to 

compare soil loss predictions from these models with 

observed data from 1986-1996 and to test their 

performance over the extended period from 1969-2020. 

This approach will ensure a thorough evaluation of each 

model’s accuracy and applicability, offering significant 

contributions to the sustainable management of soil and 

water resources in the region. 

 

Materials and Methods 

 

Study Area  

The study was conducted in Kadılıl village located 10 

km from the Sarıkaya county by the Yozgat-Kayseri 

highway in Turkey (Figure 1). The study location is 

situated between 39° 32’13’’ N latitudes and 35°18’14’’E 

longitudes. The semi-arid continental climate of the 

Central Anatolia region dominates Yozgat province. 

Owing to its isolation from the sea, summers are hot and 

dry, while winters are cold and rainy. There are significant 

temperature differences between summer and winter and 

day and night. The coldest months are January and 

February, while July and August are the hottest months 

(Yozgat Çevre ve Şehirçilik İl Müdürlüğü, 2020). Yozgat, 

located at an altitude of 1300 m, experiences significant 

temperature and precipitation differences from the 

surrounding area. Precipitation has an irregular distribution 

throughout the year, and winter and spring are the rainy 

seasons in Yozgat. Precipitation is generally in the form of 

snow and starts in early November and continues until the 

first week of May. The average annual temperature in the 

region is 9.08°C, and the average annual precipitation is 

418.7 mm. Due to its geographical location, the prevailing 

wind direction in Yozgat is northeast. The average wind 

speed is 2.03 m/s, while the fastest wind recorded is 19.1 

m/s (Meteoblue, 2023). 

 
Figure 1. Location map of the study area 

 

Model Definitions, Data Entry, and Output Evaluation 

The data required for these equations were obtained 

through experiments and observations conducted over a 

period of 10 years. During this process, various 

meteorological data, land measurements, soil analyses, and 

vegetation assessments were carried out. Long-term data 

collection allowed for a more accurate determination of the 

impacts of climate changes and land use on erosion. These 

data were used for the calibration and validation of the 

models, enabling erosion predictions that are appropriate 

for regional conditions. The R factor in the USLE was 

determined through the use of the Fournier index, which is 

also referred to as the “precipitation erosivity index”. This 

index takes into account the relationship between 

transported material, climate data, and topographic 

features (Lal, 1988). Considering the erosional power and 

precipitation characteristics of soils, the MFI is used as a 

guide for taking soil and water protection measures in areas 

with erosion risk. In the study, there is observed soil loss 

for the years 1986-1996. Monthly total precipitation for 

these years was determined and the monthly MFI was 

calculated for each year using Eq.6: 

 

MFI = ∑
p2i

p

12
1       (6) 

 

Where, Pi is total precipitation in (i) month, mm, and P 

is annual average precipitation, mm. 

The relationship between the annual observed and 

predicted MFI between 1987 and 1996 was determined 

(Figure 2). R values were calculated by substituting the 

values obtained from this relationship in Eq.7: 

 

R = (1.1909 × F) − 4.2297  n  (7) 

  

The K factor was determined based on laboratory 

analysis of each soil sample utilizing Eq.8: 

 

100×K=((2.1×10-4)(M1.14)(12-a)+(3.25×(b-2)+2.5×(c-3) (8) 

 

Where K is soil erosion factor, M is particle size matter, 

a is organic matter content, %b is structure type code, and 

c is water permeability code. The particle size (M) in the 

equation is determined by Eq.9:  

 

M = (very fine sand + Silt) × (100 - Clay)  (9) 
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The average K value for 1987-1996 was calculated to 

be 0.15 and used for other years. The P factor, representing 

the soil conservation factor value, was calculated for 

observed years, while a value of 1.00 was used for the other 

years. For the C factor, 0.18 and 0.3653 values were used 

for wheat and fallow lands, respectively. The LS value is 

taken as 1 because the study area has a slope of 9° and a 

length of 22.1 meters.for the entire study period.  

The MUSLE Model. Runoff volume (Q) and peak 

runoff rate (qp) were calculated with the WEPP model 

since there is no observation station in the basin.  

The WEPP Hillslope version model (Flanagan and 

Nearing, 1995) was utilized in this study. To effectively 

use the model, it was crucial to prepare four separate input 

files for each study area. These files contained detailed 

information on the climate, topography, soil 

characteristics, and land use of the research area. The raw 

data from the records at the Tokat Gaziosmanpaşa 

University Agricultural Laboratory were translated into 

WEPP input file format over many years. The WEPP 

model utilizes two distinct types of climate files. One is the 

breakpoint format data, and the other is the daily’ip-tp’ 

format data (intensity-at-peak factor and time-to-peak 

factor) as described by McGehee et al. in 2020. Because of 

the unavailability of breakpoint data for all precipitation 

events, we chose the ‘daily ip-tp format’ for our analysis. 

Moreover, the WEPP modeling system incorporates a 

stochastic climate generator (CLIGEN) developed by 

Nicks et al. (1995). CLIGEN generates daily estimates for 

various climate parameters such as precipitation, time to 

peak, peak intensity, storm duration, maximum and 

minimum temperature, dew point temperature, wind speed 

and direction, and solar radiation for a specific 

geographical point, as highlighted by Srivastava et al. 

(2019). In this study, two different CLIGEN input files 

were used for a WEPP model: they covered the period 

1986–1996, and 1969-2022, respectively. Studies 

evaluating the performance of the CLIGEN climate model 

in Turkey are quite limited. Demir and Oğuz (2019) 

evaluated the performance of the CLIGEN climate model 

in simulating seasonal precipitation data in Tokat Province, 

Turkey. The study found that the CLIGEN model 

successfully predicted the precipitation during Tokat’s dry 

season. Specifically, the model demonstrated accurate 

predictions for winter and spring precipitation, with 

observed and predicted values being closely aligned. 

However, it was noted that the model’s performance was 

less effective during the summer season. Demir et al. 

(2018) conducted a study where daily precipitation data 

from the Tokat meteorological station between 2005 and 

2015 were simulated using the CLIGEN precipitation 

model and compared with the observed data. The results 

demonstrated that while CLIGEN exhibited limited 

accuracy in estimating daily precipitation data, it showed 

improved performance in predicting monthly and annual 

precipitation totals. Specifically, the model tended to 

underestimate observed daily precipitation, particularly 

during the spring and winter months, yet it performed well 

in simulating the annual total average and monthly average 

precipitation. Overall, this study provided a comprehensive 

evaluation of the CLIGEN model’s performance under the 

climatic conditions of Tokat Province, highlighting both its 

capabilities and limitations. 

The slope input files were built using the erosion plot 

slope length, width, and shape based on the topographic 

information. All the plots had a uniform slope and width 

used in the USLE. Soil input files were generated based on 

measured data. The soil parameters were not calibrated.  

The texture data, the organic matter, cation exchange 

capacity and the percent rock content were available in the 

measured data set on all plots (Table 1).  

 

Table 1. The study used soil data 

Analyzes Depth (cm) 0-20 

OM % 4.5 

Sand % 34.3 

Clay % 28.7 

Silt % 37 

VFS % 16.4 

CEC Meq/100 7.7 

Rock 2.7 

 

Table 2. The study used erodibilite data 

Erodibilite Parameters Results 

İnterill (kg×s/m×4) 5.86884e+006 

Rill (s/m) 0.0069 

Critical Shear (N/m×2) 3.6 

Eff. Hid. Con. (mm/hr) 7.38 

 

Other soil parameters were calculated such as baseline 

interrill erodibility (ki), baseline rill erodibility (kr), 

baseline critical shear stress (c), and baseline effective 

hydraulic conductivity (ke) based on the equation 

developed in Risse et al., (1994) and given in the WEPP 

user’s manual (Flanagan and Livingston, 1995).  

Management input file included detailed information 

on plant physical growth, residue properties and 

decomposition, tillage operations, residue management, 

and all relevant dates, management practices and initial 

conditions, etc. The information was incorporated in the 

management file based on the recorded data available and 

the WEPP crop input information. This study evaluated the 

10-year individual soil loss data of two different parcels, 

wheat and fallow. Wheat was sown manually in October 

with inclinations opened toward the slope. Both October 

and spring fertilization was performed, and wheat was 

harvested in July. Fallow was left unplanted for a year 

(Table 3). Concerning crop growth parameters, the 

biomass energy ratio, harvest index, and optimum yield 

under non-stress conditions were adjusted to match the 

observed plot crop yield. All other crop growth parameters 

are assumed to be the same as those specified in the WEPP 

default database (Flanagan and Livingston, 1995). 

 

Model Evaluation 

The model performance was assessed using the 

coefficient of determination (R2), Nash–Sutcliffe 

efficiency (NSE) (Eq. 11). The NSE indicates the agreement 

between the observed and predicted values (fit to the 1:1 

line). Perfect agreement is reached with an NSE value of 1. 

Brooks et al. (2016) indicated that when using the daily 

output for streamflow prediction from an uncalibrated 

model, an NSE above 0.30 is a good indication that the 

fundamental mechanics of the model are correct.  
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Table 3. The study used management file 

Tillage System Cropping System Tillage operation and dates 

Wheat 

Annual continuous winter 

wheat (harvest on 15 

July, planting 15 Oct. 

Tillage: Disk plow, 1 Oct. 

Tillage: Field cultivator, secondary tillage, 1 Oct. 

Tillage: Plow molboard, 8”, 1 Aug. 

Plant: Winter wheat, 15 Aug. 

Harvest: 15 July 

Fallow Tilled Annual continuous Tillage: 15 May, June, July, Aug, Sep. 

 

 

 

(a) (b) 

Figure 2. The relationship between observed and simulated rainfall, a. 1996, b.2020 

 

 

Foglia et al. (2009) considered NSE values below 0.2 

insufficient, 0.2–0.4 sufficient, 0.4–0.6 good, 0.6–0.8 very 

good, and greater than 0.8 excellent. R2 represents the 

proportion of observed data that can be explained by the 

model. (Foglia et al., 2009; Moriasi et al., 2007). 

 

ENS =
∑ 1(Q1−Q1)

2n
n

∑ 1(Q1−Q)2n
n

     (11) 

 

Results and Discussion 

 

The CLIGEN 5.3 model was used to determine daily 

precipitation, maximum and minimum temperature, solar 

radiation, wind intensity, and direction at Yozgat weather 

stations from 1986 to 1996 and from 1969 to 2020. The 

observed annual precipitation from 1986 to 1996 and from 

1969 to 2020 was 646 and 557 mm, respectively. The 

annual precipitation at the CLIGEN model was similar to 

observed annual precipitation for both 1986 to 1996 and 

1969 to 2020 periods. The simulated annual precipitation 

was 676 mm for 1986-1996, and 583 mm for 1969-2020 

(Figure 2). 

The monthly change in winter precipitation (October-

March) was uniform for both periods and the observed 

annual precipitation the simulated annual precipitation for 

1986-1996 was slightly higher than that for 1969-2020. 

However, the change of precipitation in summer (April-

September) monthly was not uniform, while in July and 

August, the mean precipitation for 1969-2020 was much 

higher than that for 1986-1996.  

 

 

 

Soil Loss Results in the Wheat Field for the Period 

1986-1996 

Soil loss estimates were calculated for each type of land 

use in the Yozgat-Kadılı region for comparison of the 

USLE, MUSLE, and WEPP on average annual soil loss. 

Table 4 presents the statistics for the analysis based on 

average annual values of soil loss predicted by these 

models. The observed precipitation data were used to 

calculate the Fournier precipitation index for average 

annual soil loss values predicted by the USLE model. The 

average index, calculated separately for each year, was 

found to be 45.36 mm per year from 1986 to 1996. The 

average index was 45.36 mm per year from 1986 to 1996. 

The average annual soil loss predicted by the USLE model 

for wheat land was 1.97 t/ha, with a range of 0.11 to 11.08 

t/ha. MUSLE and WEPP models predicted average annual 

soil losses of 3.67 and 3.42 t/ha, respectively. 

The average annual soil loss values by MUSLE and 

WEPP were found to be close to average measured soil loss 

values. Figure 3a shows a comparison between the USLE 

soil loss estimate and the observed average annual soil loss 

in a wheat field. The USLE model was underestimated soil 

loss values more than observed soil loss values. The model 

correlation coefficient (R2) for the WEPP models was less 

than 0.70; indicating poor performance in predicting 

average annual soil loss. On the other hand, the USLE and 

MUSLE models showed higher R2 values for the average 

annual values (0.78 and 0.83 respectively) than the WEPP 

model. These findings are consistent with a previous study 

on the application of the USLE model in the Konya Plain, 

Turkey (LaRocque et.al., 2013). 
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Table 4. Observed and Simulated Soil Loss Results: Using WEPP, MUSLE, and USLE in the wheat field 

Land use 
Mean Soil Loss (t/ha) 

Observed USLE MUSLE WEPP 

Wheat 3.90 1.97 3.67 3.42 

 

Table 5. Observed and Simulated Soil Loss Results: Using WEPP, MUSLE, and USLE in the fallow field 

Land use 
Mean Soil Loss (t/ha) 

Observed USLE MUSLE WEPP 

Fallow 7.52 3.65 6.49 7.19 

 

  
(a) (b) 

  
(c) (d) 

Figure 3 (a) Comparison of estimated average annual soil erosions by USLE, (b) The relationship between observed and 

uncalibrated surface runoff in wheat field, (c) Comparison of estimated average annual soil erosions by MUSLE, (d) 

Comparison of estimated average annual soil erosions by WEPP in wheat fields. 

 

The WEPP overestimates low values and 

underestimates a majority of high values (Figure 3b). This 

phenomenon is common in all erosion models, but it 

appears to be more prevalent in WEPP compared to other 

models. The study area has an arid climate and the soils are 

quite resistant to these climatic conditions. Surface runoff 

and annual rainfall amounts are low in some years. Hence, 

the model may be limited in considering the effect of 

certain climatic factors such as drought.  

The MUSLE model utilized the WEPP model to predict 

runoff data for both wheat and fallow fields. This model 

was integrated with other models to produce 

comprehensive results in the study of soil erosion 

mechanisms in different farming regions. This integration 

can play a significant role in devising effective strategies 

to tackle soil erosion issues. Using integrated data from 

these models can offer a more accurate evaluation of the 

sustainability of farming practices and the efficiency of soil 

management techniques. Before estimating soil losses 

using the MUSLE method, surface runoff data from 1986 

to 1996 were estimated using the WEPP model (Figure 3c). 

The results showed a close relationship between the 

observed and predicted data. The WEPP model: R2 = 0.79, 

ENS = 0.56 with surface runoff. The results demonstrate the 

WEPP model’s ability to accurately forecast runoff data, as 

evidenced by its close proximity to observed data. The 

considerable R2 value obtained indicates the model’s 

capacity to explain the runoff data. Moreover, the moderate 

ENS value close agreement between the model predictions 

and the observed data. Figure 3d present plots of measured 

the MUSLE model estimated values of soil loss. Figure 4b, 

it becomes apparent that the MUSLE model tends to 

overestimate soil loss for smaller values. A previous study 

conducted in Malaysia by Mohammed (2021) compared 

soil losses using the USLE and MUSLE models in a study 

area divided into five distinct catchments. The study 

revealed that the MUSLE model performed better than the 

USLE model due to continuous rainfall in the study area, 

which caused soil loosening and surface runoff. These 

findings support our results as well. 

Figure 3(a) Comparison of estimated average annual 

soil erosions by USLE, (b) The relationship between 

R² = 0.7798
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observed and uncalibrated surface runoff in wheat field, (c) 

Comparison of estimated average annual soil erosions by 

MUSLE, (d) Comparison of estimated average annual soil 

erosions by WEPP in wheat fields. 

When comparing USLE, MUSLE with WEPP, the 

Nash and Sutcliffe model efficiency was highest close to 

each other for USLE and MUSLE (0.41 and 0.42 

respectively), followed by 0.15 for the WEPP model. This 

shows that USLE and MUSLE performed slightly better 

than the WEPP model in predicting average annual soil 

erosion. 

In the fallow field, the observed average annual soil 

erosion was 7.52 t/ha. The three models used to predict 

average annual soil loss were USLE, MUSLE, and WEPP, 

and they predicted 3.65 t/ha, 6.49 t/ha, and 7.19 t/ha, 

respectively (Table 5). The USLE model underestimated 

soil loss, as shown in Figure 4a. The USLE underestimated 

soil loss in 1991 and 1992 when actual losses were higher. 

This suggests limitations in the USLE model, particularly 

in situations where soil splash and movement tendencies 

are minimal (Alewell et al., 2019). These findings indicate 

that USLE performance may vary over time and under 

different conditions, potentially not fully capturing reality 

in certain scenarios. Therefore, we recommend using more 

accurate and spatially distributed data on the soil and 

climate characteristics of the study area and incorporating 

more process-based models for large-scale applications 

(Mohammed et al., 2021). 

Figure 4b presents plots of observed and WEPP-

predicted values of soil loss. 

In Figure 4b it is apparent that WEPP overestimates soil 

loss for the small values. These values demonstrate the 

model’s consistency with observed data, and indicate its 

ability to account for rainfall, surface runoff, and soil 

properties. The findings have confirmed that the model 

accurately simulates the processes of soil erosion. Han et 

al. (2016) reported that the model-predicted erosion was 

greater than the observed erosion. At the slope scale, under 

different coverages, the simulated erosion was slightly 

higher than the measured erosion. When the coverage is 

40%, the simulated results of both runoff and erosion are 

the best. 

The MUSLE method was used to estimate soil loss in 

the fallow land according to the procedure described for the 

wheat field. The only difference was that the management 

file was changed and runoff data was estimated. We 

compared the estimated and observed data and presented 

them in Figure 4c. The coefficient of determination (R2) 

and the ENS values were 0.84 and 0.54, respectively. The 

observed runoff values were low in the fallow land, and the 

study area had an arid climate. WEPP overestimates low 

values and underestimates high values. The WEPP model 

could not predict the high rainfall values for each year. 

Therefore, MUSLE underestimated soil loss in some years. 

The results obtained in this study were consistent with 

those of previous studies. Alewell et al. (2019) reported 

that the MUSLE model performed well in estimating soil 

loss in Mediterranean catchments. Still, it was sensitive to 

input parameters such as soil texture, slope, and land 

management practices. Another study reported that the 

WEPP model could reasonably predict runoff in 

agricultural lands and forest ecosystems, but it 

overestimated runoff in burned forest ecosystems. They 

also reported that the WEPP model was limited in 

accounting for certain climatic factors such as drought (Al-

Ani & Ola,2019). 

 

  
(a) (b) 

  
(c) (d) 

Figure4 (a) Comparison of estimated average annual soil erosions by USLE, (b) The relationship between observed and 
uncalibrated surface runoff in fallow field, (c) Comparison of estimated average annual soil erosions by MUSLE, (d) 

Comparison of estimated average annual soil erosions by WEPP in fallow fields. 
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Table 6. Simulated Average Soil Loss Results for 1969-2020 using WEPP, MUSLE, and USLE in the wheat field. 

Parameter USLE MUSLE WEPP 

Average 2.60 4.58 3.15 

SD 1.65 4.57 1.81 

Skew 2.57 2.19 0.69 

 

Table 7. Simulated Average Soil Loss Results for 1969-2020 using WEPP, MUSLE, and USLE in the fallow field. 

Parameter USLE MUSLE WEPP 

Average 1.28 3.45 6.14 

SD 0.84 2.54 5.4 

Skew 2.99 1.88 1.68 

 

On the other hand, the average annual soil loss values 

predicted by MUSLE (6.49 t/ha) were very close to the 

observed annual average soil values (7.52 t/ha), as 

illustrated in Figure 4d. 

When comparing USLE, MUSLE with WEPP 

correlation coefficient values, the results show that the 

MUSLE correlation coefficient value was highest (0.76), 

followed 0.70 by WEPP for WEPP and 0.64 for USLE. 

According to the Nash and Sutcliffe model efficiency, 

MUSLE had the highest efficiency of 0.44, followed by 

WEPP with 0.37, and USLE with 0.22. The lower values 

of R2 and ENS for USLE indicate that the model was 

strongly affected by environmental conditions and had 

limited agreement with the observed data. 

 

Soil Loss Results in the Wheat Field for the Period 

1969-2020.  

The estimated average annual soil loss in a wheat field 

between 1969 and 2020 by the USLE, MUSLE, and WEPP 

models were 2.60 t/ha, 4.58 t/ha, and 3.15 t/ha, respectively 

(Table 6). The highest soil losses predicted by The USLE 

for both wheat and fallow land occurred in 1996. The 

reason for the high soil losses is the high intensity of 

precipitation. Rainfall in March, April, and August 

impacted soil loss. In particular, short-term but very heavy 

rains occurred in April. Jemai et al. (2021) assessed soil 

erosion by the USLE in a Tunisian region. They stated that 

the insufficient dataset for validation was due to the 

region’s heterogeneous structure and arid climate. These 

findings support the results obtained in our study. 

In this study, soil loss estimates were compared using 

different erosion models (WEPP, USLE, MUSLE) 

between 1969 to 2020 (Table 6). The results present 

significant findings in the context of model selection and 

soil erosion assessments. The USLE and WEPP models 

yielded similar results in soil loss predictions. This 

demonstrates the effectiveness of both models in 

representing general erosion processes and their 

applicability to different soil types and terrains. The 

MUSLE model tended to predict higher soil loss 

predictions compared to the USLE model cannot be 

attributed to a single factor alone. Multiple factors 

contribute to this phenomenon. These factors include 

topographic variables such as slope length and steepness, 

the significance assigned to surface runoff, model 

parameters, as well as land factors like soil cover type and 

land use. The study area has arid climatic conditions, and 

the MUSLE model is closely related to surface runoff. 

Djoukbala et al. (2019) conducted a study to estimate soil 

erosion rates in the Wadi Gazouana Basin using USLE, 

MUSLE, and RUSLE models. The average soil loss was 

9.65, 9.90, and 11.33 t/ha/year for the USLE, MUSLE, and 

RUSLE models, respectively. The MUSLE model 

indicated a higher risk of erosion than the other models. 

The RUSLE model was evaluated as the most suitable 

model for the study area. The study also found that many 

soil losses per year could be lower than estimated with the 

MUSLE model and that short-term, high-intensity runoff 

caused more soil loss. Previous studies stated that MUSLE 

did not provide predictive results in estimating the 

sediment yield for small flows (Williams and Berndt, 1977; 

Johnson et al., 1985; Sadeghi, 2004; and Sadeghi & 

Mizuyama, 2007; Ege, 2019 ). 

The uncalibrated WEPP model estimated soil losses was 

3.25 t/ha for wheat fields between 1996-2020 in Table 6. The 

model estimated very high soil losses in 2002, a year with high 

annual precipitation and wet days. The model estimated the 

highest surface runoff and soil loss values in January and 

October, which are the months of soil preparation and plowing 

for wheat. This situation caused the transport of the plowed 

soil layer with rain. The model also predicted high soil losses 

in the winter months due to frequent rains. Similar results 

were found in previous studies that used the uncalibrated 

WEPP hillslope model in wheat fields with different slopes in 

the Tokat region (Demir et al., 2017; Uslu et al., 2022). These 

results indicate that the WEPP model, even without 

calibration, can reasonably estimate soil losses in arid regions, 

especially when the soil is disturbed by tillage practices. 

Similar results were obtained in previous studies (Kinnell, 

2003; Tiwari et al., 2000; Zhang et al.,1996). The model may 

overestimate soil losses in years with high precipitation 

because of its sensitivity to surface runoff. The tendency to 

overpredict smaller events and under predict larger events for 

both runoff and soil erosion is common in most soil erosion 

models (Nearing, 1998; Tiwari et al., 2000).For fallow land, 

soil losses between 1969 and 2020 were estimated using 

three models (Table 7). The average soil loss estimates of 

the USLE, MUSLE, and WEPP models are 1.28, 3.45, and 

6.24 t/ha, respectively. WEPP and MUSLE did not 

estimate soil loss, especially in the years when the annual 

total rainfall was below 500 mm. This is closely related to 

the duration and intensity of the rainfall in these years. 

USLE, as in the wheat field, found the lowest soil loss in 

1996 and the lowest soil loss in 1995 in the fallow land. 

USLE estimated high soil loss, especially in the years when 

heavy rainfall was effective. The WEPP model provided 

higher estimates compared to the other two models, 

particularly during years of high rainfall. This can be 

related to the high peak value of surface runoff. The 

average annual soil loss values found with the WEPP 

583mm 



Demir et al. / Turkish Journal of Agriculture - Food Science and Technology, 12(10): 1684-1695, 2024 

1693 

 

model show considerable variability. In the years when 

rainfall was high, the model either did not estimate soil loss 

or found low estimates. This is closely related to the 

algorithm of the model. The observed rainfall is not enough 

to cause soil erosion on bare land. 

 

Conclusion 

 

The observed soil loss data were compared with the 

simulated USLE, MUSLE, and WEPP models for two 

periods 1986-1996 and 1969-2020. Soil loss estimates 

generated by USLE, MUSLE, and WEPP models tend to 

be higher than actual soil losses. Model performance is also 

influenced by environmental factors, particularly climate 

change. . However, predicting the amount and rate of water 

erosion from land surface into streams and rivers is 

challenging, expensive and time-consuming, particularly 

due to the complex land use cover types exist within small 

scale of lands in Yozgat. The USLE and MUSLE models 

have been extensively used in Turkey,. The WEPP model 

is not widely used in Turkey. However, as illustrated by the 

examples above, its usage has been increasing in recent 

years. The primary reason for the limited use of the WEPP 

model is the availability of meteorological data. 

Specifically, when preparing the CLIGEN file, there is a 

need for 1, 10, 15, and 30-minute precipitation data. The 

dataset comprising these values spans many years. 

The WEPP model’s high estimation of soil losses in 

both land uses indicates that the uncalibration model’s 

performance is not satisfactory in arid and semi-arid 

conditions. In summary, these models can be evaluated for 

performance after being calibrated using more suitable data 

related to the soil and climate characteristics of the study 

area. In particular, studies assessing the impact of 

snowmelt-surface runoff events on soil erosion under 

different soil management and crop types are crucial for 

soil conservation. 
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