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Excel is a useful and powerful software for simple regression analysis without any programming 
skills and that is why, it is widely preferred by the undergraduate students from various areas such 
as chemistry, biology and agriculture as well as many engineering disciplines such as chemical 
engineering, food engineering and bioengineering. Parameter values and coefficient of 
determination (R2) can be easily obtained together with the graphical representation for those 
models exist in Excel such as linear and exponential models. It is also possible to visually examine 
the model fit and experimental data together on the same graph. For linear models (linear in 
parameters) Excel Add-In Data Analysis-Regression tool creates a summary output, and parameter 
estimates, parameter uncertainties, adjusted R2 (R2adj) and root mean square error (RMSE) values 
can be found even for the models that do not exist in Excel. For nonlinear models (nonlinear in 
parameters) Excel Add-In Solver tool can be used to obtain parameter estimates (but not 
uncertainties), and R2, R2adj and RMSE can be calculated manually. Despite these advantages, there 
are some shortcomings of Excel for regression analysis. For linear models with no-intercept Excel 
reports the incorrect and overoptimistic R2 and also reports incorrect and overpessimistic R2adj. 
Excel has also some nonlinear models such as exponential and power models in it; however, Excel 
computes linear parameter estimates for those nonlinear models and again optimistic R2 is 
calculated. This paper aims (i) to show these inaccuracies with their reasons by using published 
data, (ii) how to obtain the correct results, (iii) to warn the instructors who would use Excel for 
regression analysis in class. Excel users (instructors, students, professionals in any field) should be 
aware of the pitfalls when using Excel for regression. 
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Introduction 

Software programs are being used not only for data 
analysis but also for teaching purposes. Microsoft Excel is 
very popular for data collection and storage and it is the 
first choice for especially undergraduate students as well as 
instructors. Moreover, professionals working in any field 
and dealing with data also use Excel. This is mostly due to 
Excel’s versatility, availability and ease of use (Serment-
Moreno, 2021). It seems that Excel is one of the best 
software for teaching statistical analysis, graphic data 
presentation and data management (Rubin & Edams, 
2015). Regression is a widely used technique in almost all 
areas such as chemistry, biology, agricultural science, 
biotechnology, chemical engineering, food engineering 
and bioengineering. Excel also provides regression 
analysis without any knowledge of a programming 
language which is very advantageous for undergraduate 
students as well as graduates from the aforementioned 
disciplines. Despite all these positive features, earlier 
versions of Excel were criticized by statisticians. Keeling 

& Pavur (2011) compared six spreadsheet packages 
including Excel 2007 and 2010 and noted that Excel 2010 
had significant improvement especially on the numerical 
accuracy of the statistical distribution tests compared to 
Excel 2007. Besides, Excel 2010 and Gnumeric (a 
spreadsheet package) performed the best out of all 
packages on regression datasets. Although Microsoft 
partially improved some aspects of Excel throughout the 
years (Mélard, 2014), there are still some problems in 
Excel especially for regression analysis.   

Excel users should be aware of some false results 
reported by Excel in regression analysis and should know 
how to find the correct results. Therefore, the aim of this 
paper was to (i) discuss some of the positive and negative 
features of Excel for regression analysis, (ii) show 
incorrect results calculated by Excel with some examples 
and (iii) also show how to correct those results again by 
using Excel. 

 

http://creativecommons.org/licenses/by-nc/4.0/
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Some Advantages of Excel for Regression Analysis 
 
It is possible to sketch the x-y data in Excel easily and 

to fit some equations (such as linear and exponential 
equations) to data which are available in Excel. Users can 
fit the model and obtain the parameter estimates as well as 
coefficient of determination (R2) on the graph. However, 
uncertainties in parameters (standard errors or confidence 
intervals) and other goodness-of-fit indices such as 
adjusted R2 (R2

adj) and standard error of the model also 
known as root mean square error (RMSE) cannot be 
obtained by this way. This is a major disadvantage because 
parameter uncertainties are as important as the parameters 
themselves (Denton, 2000; van Boekel, 1996). Excel has a 
great solution for this: Data Analysis ToolPak. This Excel 
Add-In has several applications and regression is one of 
them. Users who wish to use regression application follow 
the path: Data > Data Analysis > Regression in Excel and 
enter the x and y data to obtain a “Summary Output”.  

The summary output provides parameter estimates, 
standard error, 95% upper and lower limits (by default) or 
99% upper and lower limits (users should write it 
manually, or should write any other desired percentage), 
correlation coefficient between the experimental data and 
the fitted model (named as multiple R in the summary 
output), R2, R2

adj and RMSE values. Any linear model 
(linear in parameters) can be analyzed this way whether the 
model exists in Excel or not. 

Consider a simple linear regression in the form of: 
 
𝑦𝑦 = 𝑎𝑎 ∙ 𝑥𝑥 + 𝑏𝑏     (1) 
 
where y is the dependent variable, x is the independent 

variable, a (slope) and b (intercept) are the model 
parameters. This model (exist in Excel) can directly be 
fitted after the graph is sketched and this provides users to 
visualize or observe the straight line and data together on 
the graph. Then users can utilize Data Analysis > 
Regression tool and can enter the x (shown as Input X 
Range in Regression tool) and y (shown as Input Y Range 
in Regression tool) and have the results. 

Now let us consider a quadratic polynomial: 
 
𝑦𝑦 = 𝐴𝐴 ∙ 𝑥𝑥2 + 𝐵𝐵 ∙ 𝑥𝑥 + 𝐶𝐶    (2) 
 
Since this model also exists in Excel (users have 

options for higher order polynomials such as third- or 
fourth-order), after sketching the data users can select this 
model to observe the model and data together on the graph. 
Parameter values and R2 are also displayed. Moreover, the 
model is linear in parameters and therefore linear 
regression (polynomial or curvilinear regression) can be 
used to calculate the parameter values and goodness-of-fit 
statistics in Excel. However, it is expected that users should 
calculate x2 in the cells next to x before to use Data 
Analysis > Regression tool and enter not only the x values 
but also x2 values for the dependent variable since there is 
only one space for x (shown as Input X Range in 
Regression tool). This is a major drawback because users 
need to make extra calculations which is not a limitation 
for other statistical software packages because they are 
designed solely for this purpose. Nevertheless, by doing 

this, Excel will provide the summary output and all 
necessary information.  

As a last example, let us consider Van Deemter 
equation: 

 
𝑦𝑦 = 𝐴𝐴 ∙ 𝑥𝑥 + 𝐵𝐵/𝑥𝑥 + 𝐶𝐶     (3) 
 
This model is also linear in parameters (and hence linear 

regression can be used) but does not exist in Excel. The model 
is used to define chromatography data where the dependent 
variable is plate height in mm and the independent variable is 
flow rate in mL/min (Harris, 1998). After the calculation of 
1/x next to x, both x and 1/x can be entered in X, and y can be 
entered in Y section in regression tool and this provides the 
summary output. Since the model is not in Excel, to observe 
the model fit and data together on the same graph, users should 
use the parameter values given in the summary output and 
calculate the model estimates for each x and then add the 
model fit to the graph. All of those (calculations and model 
addition) can be done in Excel (Leylak et al., 2020); however, 
depending on Excel experience of the users this would take 
one to several minutes (3-5 min). This is another limitation of 
using Data Analysis ToolPak for regression analysis over 
other statistical software packages. 

For nonlinear models (nonlinear in parameters) Data 
Analysis > Regression tool is useless since it is designed 
for linear models but Solver Add-In (Data > Solver) can be 
used (Brown, 2001; Kemmer & Keller, 2010; Yurdakul et 
al., 2020). This is an iterative procedure and initial 
parameter estimates should be entered by the user. 
Unfortunately, only the parameter estimates can be 
obtained, not the uncertainties by this procedure. 
Moreover, all goodness-of-fit statistics should be 
calculated by the users manually. SolverAid (De Levie, 
2012) which is an Excel macro can be used to obtain the 
standard errors of the parameters but it seems that not too 
many people use this macro (van Boekel, 2022). On the 
other hand, statistical software packages used for nonlinear 
regression not only estimate the parameters but also 
standard error of the parameters. Some packages can even 
calculate the upper and lower confidence limits.  

 
Some Examples of, and Some Problems with, the Use of 
Excel for Regression Analysis 

 
Linear Models with No-Intercept 
Excel can be safely used for simple linear regression 

[Eq.(1)] as said above. Consider the data given in Table 1. 
Independent variable (x) is concentration in μg/mL and 
dependent variable (y) is corrected absorbance (595 nm) in AU. 

The data can be sketched and a straight line can be 
easily fitted in Excel (Figure 1). 
 
Table 1. Absorbance data taken from Harmer & Hill (2021) 

x y 
0 0.000 

40 0.189 
80 0.253 

120 0.385 
160 0.603 
200 0.680 
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Figure 1. Fit of the linear model [Eq.(1)]. 

 

 
Figure 2.  Summary output of the linear model [Eq.(1)] given by Excel. 

 

 
Figure 3. Fit of the linear model with no-intercept [Eq.(4)]. 

 
Parameter values as well as R2 were found (Figure 1); 

however, parameter uncertainties and other goodness-of-fit 
indices cannot be obtained. To have those, Data Analysis 
> Regression in Excel was used x and y data were entered 
to obtain a “Summary Output”. This output is shown in 
Figure 2. 

It was now possible to observe not only the parameter 
estimates but also their standard error values and their 95% 
and 99% lower and upper confidence limits. Moreover, R2 
(also found in Figure 1), R2

adj and RMSE values were also 
obtained. A careful inspection of Figure 2 revealed that 
parameter b (intercept) was statistically insignificant (p > 
0.05 or p > 0.01). Therefore, it might be better to repeat the 
regression without an intercept (data in Table 1 also 

supported this because x = 0 → y = 0). In this case Eq.(1) 
becomes: 

 
𝑦𝑦 = 𝑎𝑎 ∙ 𝑥𝑥      (4) 
Again, linear trendline was added but this time 

intercept was set to zero (Figure 3). 
Slope (a) and R2 were displayed on the graph. Note that 

the model without the intercept (y = a·x) had higher R2 than 
the model with intercept (y = a·x + b) – see Figure 1 and 
Figure 3. To find the parameter uncertainty and other 
goodness-of-fit indices “Data Analysis > Regression” 
application was used once more (this time “Constant is 
Zero” option was selected.) and the summary output was 
obtained (Figure 4).  
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Figure 4. Summary output of the linear model with no-intercept [Eq.(4)] given by Excel. 

 
Table 2. Sum of squared error (SSE) and sum of squared total (SST) calculations for the linear model with no-intercept 

[Eq.(4)] and for the data given in Table 1 
x y ymodel (0.00348·x) (y – ymodel)2 (y – ymean)2 
0 0.000 0.0000 0.000000 0.1237 
40 0.189 0.1392 0.002480 0.0265 
80 0.253 0.2784 0.000645 0.0097 

120 0.385 0.4176 0.001063 0.0011 
160 0.603 0.5568 0.002143 0.0632 
200 0.680 0.6960 0.000256 0.1078 
ymean = 0.35167  SSE: 0.006587 SST: 0.332 

 
In the summary output given in Figure 4, the same R2 

value shown on the graph (Figure 3) was found. Users 
generally satisfy by these results because as said earlier 
higher R2 was found [R2 = 0.9808 for Eq.(1) and R2 = 
0.9909 for Eq.(4)] and the sole parameter in Eq.(4) was 
also statistically significant (p ≤ 0.05 or p ≤ 0.01); however, 
it is awkward that R2

adj was much smaller than R2 (Figure 
4). Normally, R2

adj is almost always smaller than R2 but, it 
is expected that these two should be close to each other. 
Moreover, R2 (both shown in Figure 3 and Figure 4) was 
rather optimistic and higher than the actual R2  – see below. 

 
R2 can be calculated by using the following formula: 
 
R2 = 1 − SSE

SST
      (5) 

 
where SSE is sum of squared error i.e., sum of the 

difference between the (experimental) data and the model 
fit and SST is the sum of squared total i.e., sum of the 
difference between the (experimental) data and the mean 
or average of the data. These values were calculated by 
using Excel for Eq.(2). Results of the calculations are 
shown in Table 2.  

 
It was now possible to calculate R2 by using SSE and 

SST in Table 2 for Eq.(4) i.e. y = 0.0348·x 
 
R2 = 1 − 0.006587

0.332
= 0.9802    (6) 

 

This R2 value was smaller than the one reported by 
Excel in Figure 3 and Figure 4 which was 0.9939. A 
question arises here: How Excel could calculate different 
R2 than the real R2?  

Normally SST should be calculated as: 
 
SST = ∑(𝑦𝑦 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2    (7) 
 
However, Excel for no-intercept model calculates SST as: 
 
SST = ∑(𝑦𝑦 − 0)2     (8) 
 
In other words, Excel sets the mean value as zero in 

regression through origin and this generally ends up with 
higher SST and hence higher R2 – see Eq.(5). SST value 
calculated by using Eq.(8) was found as 1.074 which was 
exactly the same value in Figure 4. However, SST was 
found as 0.332 by using Eq.(7) (Table 2).  

The formula of R2
adj is given below: 

 
Radj
2 = 1 − 𝑛𝑛−1

𝑛𝑛−𝑝𝑝
× (1 − R2)    (9) 

 
where n is the number of data points and p is the number 

of parameters in the model. According to Eq.(9), R2
adj and R2 

can only be equal to each other in two cases: (i) if R2 = 1 then 
R2

adj = 1 which means R2 = R2
adj. However, R2 = 1 means 

perfect fit and this is not likely possible for any experimental 
data such as biological or chemical data. (ii) if there is only 
one parameter in the model then R2 = R2

adj. Other than these 
two cases R2

adj should be smaller than R2. 
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Since Eq.(4) had only one parameter R2 should be equal 
to R2

adj; however, it was totally a different value (Figure 4). 
Therefore, R2

adj too should be calculated, but in our case, 
there was no need for another calculation because we 
already calculated and found R2 value as 0.9802 which was 
also the value of R2

adj. 
 
RMSE can be calculated by using the following 

formula:  
 

RMSE = �SSE
𝑛𝑛−𝑝𝑝

      (10) 

 
As said earlier there was only one parameter (p) in the 

model [Eq.(4)] and number of data points (n) was 6 (Table 
1), and SSE was calculated as 0.006587 (Table 2). If these 
values were integrated into Eq.(10), RMSE can be found 
as 0.0363. Note that both SSE and RMSE values were same 
as the ones calculated by Excel (Figure 4). In conclusion, 
RMSE (standard error of the model) was the sole correct 
goodness-of-fit statistic in regression statistics table shown 
in Figure 4 with no-intercept model. 

 
Now consider Eq.(2) with no-intercept, i.e.: 
 
𝑦𝑦 = 𝐴𝐴 ∙ 𝑥𝑥2 + 𝐵𝐵 ∙ 𝑥𝑥     (11) 
 
If Data Analysis > Regression application of Excel is 

used for Eq.(11), R2 and R2
adj values would be again 

incorrect (RMSE would be correct) in the summary output 
and they should be recalculated by the user, but this time 
users should make two calculations: one for R2 and one for 
R2

adj because number of parameters in Eq.(11) is not one. 
Furthermore, the model should be added to the graph 
manually by the users to visualize the model fit and the 
experimental data on the same sketch.  

 
Nonlinear Models 
There are some nonlinear models such as exponential 

and power models in Excel; however, the trend lines of 
these models do not represent the best fit parameter 
estimates obtained from nonlinear regression. Excel 
linearizes these models by logarithmic transformations and 
computes parameter values obtained from linear 
regressions (Dolan & Mishra, 2013; Yurdakul et al., 2020). 
Moreover, R2 value given by Excel for those models are 
also incorrect.  

Let us give an example to show these shortcomings by 
using the exponential model in Excel which is in the form of:  

 
𝑦𝑦 = 𝐺𝐺 ∙ 𝑒𝑒−𝐻𝐻∙𝑥𝑥     (12) 
 
where y is the dependent variable, x is the independent 

variable, G and H are the model parameters. 
As an example, consider the data given in Table 3. 

Original data were published by Halabi et al. (2020); 
however, data were directly taken from 
https://github.com/TinyvanBoekel/IDJ (van Boekel, 
2022). Independent variable (x) is time in minutes and 
dependent variable (y) is concentration of α-lactalbumin in 
mg/L. 

 

Table 3. Denaturation data of α-lactalbumin taken from van 
Boekel (2022) 

x y 
0.0 1.288 
1.1 1.214 
3.1 1.088 
5.1 0.969 
7.1 0.844 
9.1 0.769 

14.1 0.596 
19.1 0.389 
24.1 0.279 
29.1 0.295 
39.1 0.135 
49.1 0.122 
59.1 0.066 

 
Figure 5 shows the model fitting, model equation and 

R2 computed by Excel. When Eq.(12) was fitted to the data 
G = 1.2002, H = 0.05 and R2 = 0.9926. If the exponential 
model was linearized by logarithmic transformation: 

 
ln𝑦𝑦 = ln𝐺𝐺 − 𝐻𝐻 ∙ 𝑥𝑥     (13) 
 
or 
 
𝑦𝑦′ = 𝐺𝐺′ − 𝐻𝐻 ∙ 𝑥𝑥     (14) 
 
where y´ = lny and  G´ = lnG. It was possible to perform 

simple linear regression by using Eq.(13) or Eq.(14). 
Therefore, if the natural logarithm of y values given in 
Table 3 were calculated and then lny vs. x was plotted, 
Excel reported the results given in Figure 6. 

Parameter H could be directly obtained from the linear 
regression as 0.0505 which has the same value as 
exponential model’s parameter H (Note that it was found 
as 0.05, the difference was due to the way of reporting the 
digits in Excel) and lnG = 0.1825 which means G = 
exp(0.1825) or G = 1.2002. In brief, both models i.e., 
Eq.(12) and Eq.(13) resulted in the same parameter 
estimate. This would lead to a wrong conclusion as there 
was no difference between linear and nonlinear regression 
results. As said before Excel linearizes the nonlinear 
equation and obtains the parameters via linear regression 
(not nonlinear regression!) and computes those parameters 
in the nonlinear model. Therefore, parameter values given 
in Figure 5 are not the best-fit parameters.  

In order to obtain the parameters via nonlinear 
regression [Eq.(12)], Solver in Excel was used. The 
parameter values and R2 were found as: G = 1.2893, H = 
0.0572 and R2 = 0.9957. The parameter values were close 
but not identical and so was R2. Fits of both models (linear 
and nonlinear parameters estimates) are shown in Figure 7. 

Visually results of non-linear regression were better 
because the orange lines passed closer to the data (blue 
circles) especially for the first four data points (Figure 7). 
Furthermore, R2 of the nonlinear regression was higher 
than that of linear regression indicating a better fit, but 
unfortunately, there is another pitfall in exponential model: 
Excel reports the wrong and optimistic R2 for its 
exponential model (Even if this was the case, the nonlinear 
regression produced better R2 value).  
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Figure 5. Fit of the exponential model [Eq.(12)]. 

 

 
Figure 6. Fit of the linearized exponential model [Eq.(13)]. 

 

 
Figure 7. Fit of exponential model [Eq.(12)]. The dotted blue lines were the results of Excel by adding the trend line of 

exponential model (linear regression). The solid orange lines were the results of Solver Add-In of Excel (nonlinear 
regression). 

 
We concluded that linear regression fit was worse than 

that of nonlinear regression. Nevertheless, linearization is 
not totally useless because parameter values obtained by 
linear regression can be used as the initial estimates for 
nonlinear regression (Buzrul, 2024; van Boekel, 2008). 

It may be possible to calculate SSE and SST for Excel’s 
exponential model (1.2002·e-0.0505·x) and the results of these 
calculations are shown in Table 4. 

 
By using the values in Table 4: 
R2 = 1 − 0.03198

2.2782
= 0.9860    (15) 

This R2 value was smaller than the one reported by 
Excel in Figure 5 which was 0.9926. We can ask the same 
question once again here: How come Excel could calculate 
different R2 than the real R2? R2 value reported in Excel for 
non-linear models was nothing but the square of 
(Pearson’s) correlation coefficient (r). Note that this 
correlation was not between x and y but between y and 
ymodel. Using the y and ymodel values in Table 4 correlation 
coefficient (r) was calculated as 0.9953 and its square was 
0.9926 which was R2 value in Figure 5.  
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Table 4. Sum of squared error (SSE) and sum of squared total (SST) calculations for Excel’s exponential model [Eq.(12)] 
and for the data given in Table 3 

x y ymodel (1.2002·e-0.0505·x) (y – ymodel)2 (y – ymean)2 
0.0 1.288 1.2002 0.00771 0.4468 
1.1 1.214 1.1353 0.00619 0.3534 
3.1 1.088 1.0263 0.00381 0.2195 
5.1 0.969 0.9277 0.00171 0.1221 
7.1 0.844 0.8386 0.00003 0.0504 
9.1 0.769 0.7580 0.00012 0.0223 

14.1 0.596 0.5889 0.00005 0.0006 
19.1 0.389 0.4575 0.00469 0.0531 
24.1 0.279 0.3554 0.00583 0.1160 
29.1 0.295 0.2761 0.00036 0.1053 
39.1 0.135 0.1666 0.00100 0.2348 
49.1 0.122 0.1006 0.00046 0.2475 
59.1 0.066 0.0607 0.00003 0.3064 

ymean = 0.6195  SSE: 0.03198 SST: 2.2782 
 
 
It should be noted that both examples (linear model 

with no-intercept and nonlinear model) could be solved by 
using standard statistical software package without a 
problem. We used SigmaPlot 12.0 for both dataset and 
managed to obtain the correct results (not shown). 
However, those using Excel for such problems should be 
aware of these pitfalls. 

 
Conclusion 

 
Use of Excel for regression analysis, and some 

advantages and disadvantages of Excel for such analysis 
has been discussed. Some errors for regression analysis 
with the use of Excel has been also shown. Being aware of 
those errors are important otherwise, misjudgment such as 
selecting a wrong model to describe the data or finding the 
incorrect parameter estimates should not come as a 
surprise.   

Examples shown in this paper revealed that for linear 
models with no-intercept R2 and R2

adj values should be 
recalculated because the incorrect values were displayed 
by Excel. For nonlinear models in Excel such as 
exponential model (or power model): 
• Excel reports the linear parameter estimates of 

exponential model (same is also true for the power 
model). 

• Excel calculates R2 incorrectly and it should be 
recalculated for the linear parameters. 

• One can find the best (real) parameter estimates as 
well as real R2 value of the exponential model (or 
power model) by using nonlinear regression (Solver in 
Excel). 

It is normal to expect new improvements from 
Microsoft to fix the problems in Excel presented here.  
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