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A biofilm is a complex matrix formed by microorganisms that includes exopolysaccharides, 
proteins, extracellular DNA, various enzymes, and the microorganisms themselves. Biofilm cell is 
a more stable form of microorganism than planktonic cell. Microbial cells attach themselves to the 
surface after certain signals or changes, colonize to create a more favorable environment for their 
growth and viability, and secrete exopolysaccharide. This component is the basic matrix of biofilm. 
The diversity of exopolysaccharides within biofilms varies significantly depending on their specific 
composition, contributing uniquely to the characteristics of biofilms. This diversity in biofilms 
underscores the need for targeted control strategies. Biofilms can be beneficial or harmful 
depending on the situation and where they develop. Accordingly, microbial biofilms have dual 
effects on health. Biofilms can have both harmful effects on health, such as contributing to antibiotic 
resistance and persistent infections, while biofilms formed by beneficial microorganisms play a 
crucial role in enhancing food functionality. Moreover, the formation of biofilm in certain foods 
can contribute to the enhancement of the product matrix, particularly by improving its texture. In 
this review, the structures of these biofilms, their basic components, their possible safety concerns, 
and health benefits are discussed. Moreover, this review deals with biofilm producing bacteria in 
foods and assesses the prevention strategies for biofilm formation within the food industry. 
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Introduction 

Microorganisms generally found in planktonic cells or 
individual cells which is more sensitive to environmental 
conditions than biofilm producing cells (Malheiro & 
Simões, 2017). They can develop by adhering to surfaces 
and forming structures called biofilms on the surfaces they 
adhere to (López et al., 2010). Anthonie van Leeuwenhoek 
was the first to mention the existence of biofilms, and this 
process dates back to the 17th century (Percival et al., 
2011). Dental plaque is the most well-known and typical 
example of biofilm formation (Høiby, 2017). One of the 
well-known microorganisms that play a role in biofilm 
formation on implants belongs to Staphylococcus spp. 
(Hall-Stoodley et al., 2004). 

The theory and subsequent studies conducted by 
Costerton et al. (1999) explained by which microorganisms 
come together and hold on to living and non-living 
materials. Bacteria are generally free-floating in nature. 
However, they can also live as a colony and form biofilm 
(Valen & Scheie, 2018). A biofilm that can be single or 
multilayered is a collection of microorganisms that are 
comprised of an extracellular polymeric substance. Biofilm 

formation basically follows the steps of planktonic 
bacteria: (i) to adhere to the surface, (ii) to form colonies 
on the surface, and (iii) to develop there (Satpathy et al., 
2016). The target of a self-generated biofilm matrix or 
exopolysaccharide (EPS), composed of proteins, 
polysaccharides, and extracellular DNA, is to guard cells 
from environmental factors, including competitive 
microorganisms, antibiotics, and the immune system of the 
host, which will adversely affect microbial activity 
(Schilcher & Horswill, 2020).  

The biggest concern about biofilm is that it makes 
microorganisms more resistant to certain antibiotics or pH 
changes (Sharma et al., 2019). Accordingly, if a 
microorganism is pathogenic, biofilm enables cells to 
escape from the host immune system. Depending on the 
conditions, several Gram-positive and Gram-negative 
planktonic bacteria can secrete biofilms (Chen et al., 2013). 
Biofilms, which are good survival strategies for 
microorganisms, would also effects in food sector, such as 
spoiling foodstuffs, catalyzing reactions that cause metal 
corrosion, and causing equipment failure and economic 
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loss (Alvarez-Ordóñez et al., 2019). This review presents 
the formation, structure, characteristics and functional 
properties of biofilms, addressing safety concerns, 
microorganisms involved in their production, 
technological aspects, and future perspectives. 
 
Classifications of Biofilms and Their Structure 

 
Biofilms often appear as non-uniform structures 

(Flemming & Wingender, 2010) and the main matrix 
components, EPSs, protein, and DNA are distributed 
between cells as shown in Figure 1. EPS, which is 
generally hydrophobic, is composed of polysaccharides. 
Microbial EPS can be divided into two categories including 
cell surface-associated capsular ones and EPSs secreted as 
free polymers. For microorganisms, the roles of EPS 
(Figure 1) include adhesion, cohesion, mechanical 
stability, adaptation, and protection against environmental 
stresses (Rather et al., 2021). Hernández-Jiménez et al. 
(2013) have concluded that human macrophages recognize 
and phagocytize planktonic cells more rapidly and 
efficiently than biofilm cells. To understand the 
transformation from planktonic cells to cell aggregation in 
biofilm, it is necessary to examine the biofilm formation 
process.  

EPS can be extracted and purified by applying physical 
and chemical processes (Di Martino, 2018). Microbial 
growth conditions and growth stages affect the 
composition and characterization of EPS structure 
(Yoshida et al., 2015). One of the exciting facts about EPS 
is that some of the EPS contains rare sugars (Roca et al., 
2015). These sugars in EPS are classified into categories 
containing fucose or rhamnose. The structure of 
polysaccharides determines biofilm formation (Di 
Martino, 2018). Polysaccharides with high molecular 
weights of about 10 to 1000 kDa are classified as 
homopolymers and heteropolymers (Nwodo et al., 2012). 
Homopolysaccharides contain only one type of 
monosaccharide while heteropolysaccharides are made up 
of different repeating units with varying sizes. Although 
homopolysaccharides are synthesized by extracellular 
enzymes, heteropolysaccharides are synthesized by a 
complex sequence of interactions involving intracellular 
enzymes (Abedfar & Hosseininezhad, 2016). Considering 

the EPS produced by Cupriavidus pauculus KPS 201, a 
rhamnose homopolymer containing protein, uronic acid, 
and nucleic acid was observed in its composition (Pal & 
Paul, 2013). Homopolysaccharides of lactic acid bacteria 
(LAB) consist of repeating units of one type of 
monosaccharide such as D-glucose or D-fructose (Saadat 
et al., 2019). On the other hand, heteropolysaccharides are 
also produced by the mesophilic LAB which are 
Lactococcus lactis, Lactococcus lactis subsp. cremoris, 
Lactobacillus casei, Lactobacillus sake, and Lactobacillus 
rhamnosus and by the thermophilic lactic acid bacteria 
which are Lactobacillus helveticus Lactobacillus 
bulgaricus, Lactobacillus acidophilus, and Streptococcus 
thermophilus (Saadat et al., 2019). 

As mentioned before, EPS contributes to the biofilm 
matrix. Pseudomonas aeruginosa produces EPS called 
alginate in its biofilm (Valentine et al., 2020). Alginate 
protects Pseudomonas aeruginosa cells from 
phagocytosis. Escherichia coli produces 
phosphoethanolamine cellulose and it provides 
intercellular connections (Flemming and Wingender, 
2010; Moradali and Rehm, 2020). Different major 
polysaccharides can also be found in the biofilm structure 
of different microorganisms. For instance, Staphylococcus 
epidermis produces polysaccharide intercellular adhesin 
(PIA), which is a homoglycan composed of β-1,6-linked 2-
deoxy-2-amino-d-glucopyranosyl residues (Gowrishankar 
& Pandian, 2017). Pseudomonas aeruginosa produces Pel 
and Psl polysaccharides in their biofilms (Gowrishankar & 
Pandian, 2017; Cherny & Sauer, 2020). The diversity of 
bacterial EPSs classified to date is summarized in Table 1. 
Although some studies are provided in Table 1 to show the 
diversity of EPS, there are studies on the production and 
characterization of similar EPSs for a wider variety of 
bacterial species and even strains in the literature. 
Additionally, Figure 2 represents the microorganisms 
identified as producers of these EPSs. 
Heteropolysaccharides, including gellan from 
Sphingomonas elodea ATCC 31461 and xanthan from 
Xanthomonas campestris, have distinct monosaccharide 
compositions, with gellan comprising β-D-glucose, L-
rhamnose, and D-glucuronic acid units, and xanthan 
containing D-glucose, D-glucuronic acid, and L-rhamnose 
units (Wang et al., 2015; West, 2021).  

 

 
Figure 1. Biofilm structure and function of EPS component (created with BioRender version 2023). 
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Figure 2. Bacterial sources of hetero- and homopolysaccharides. 

 
Table 1. Exopolysachharides defined in bacterial biofilms 

Microbial exopolysaccharides 
Homopolysaccharides Heteropolysaccharides 

Dextran (Palomba et al., 2012)  Gellan (West, 2021) 
Curdlan (Laxmi et al., 2018)  Welan (Zhao et al., 2021) 
Cellulose (Ghozali et al., 2021)  Diutan (Coleman et al., 2008) 
Salecan (Xiu et al., 2011)  Xanthan (Nejadmansouri et al., 2021) 
Mutan (Banas et al., 2007)  Alginate (Bustamante-Torres et al., 2022) 
Reuteran (Meng et al., 2016)  Kefiran (ZajŠEk et al., 2011) 
Levan (Anguluri et al., 2022)  psl (Cherny and Sauer, 2020) 
Inulin (Van Hijum et al., 2002; 

Ortiz-Soto et al., 2009) 
 Gellan (West, 2021) 

Fructooligosaccharide (van Hijum et al., 2002)  Welan (Zhao et al., 2021) 
Strain specific galactan (Kavitake et al., 2016)    
D-galactopyranose (Verhoef et al., 2003)    

 
Homopolysaccharides are further categorized into 

glucans, fructans, and galactans. Glucans such as dextran, 
produced by Leuconostoc lactis 95A (Palomba et al., 
2012), and cellulose, synthesized by Acetobacter xylinum 
(Ghozali et al., 2021), consist of glucose monomers. 
Fructans composed of fructose units like inulin and levan 
are synthesized by bacteria such as acetic acid bacteria and 
lactic acid bacteria, respectively (Van Hijum et al., 2002; 
Ortiz-Soto et al., 2009; Anguluri et al., 2022). Lastly, 
galactans include D-galactopyranose, synthesized by 
Methylobacterium spp., composed mainly of galactose 
units (Verhoef et al., 2003). This classification is crucial 
for understanding the biosynthesis, application, and control 
of these biopolymers in various industries. 
 
Biofilm Formation by Microorganisms 

 
Bacteria exist in nature in two forms: (i) planktonic 

(individual) cells and (ii) microbial aggregates (biofilm cells) 
(Figure 1). Biofilm formation is seen when planktonic cells 
come together and attach to the surface where they are located. 
The formation of these microcolonies is followed by the 
maturation of the biofilms to form large colonies (Ghanbari et 
al., 2016; Sauer et al., 2022). 

Biofilm formation begins with the contact of planktonic 
cells with the surface. In the first stage, planktonic cells are 
free in the environment. After that, cells are aggregated, 
and biofilm formation occurs by increasing the cell density 
(Flemming & Wingender, 2010). Microorganisms attach to 
the surface with weak interactions like Van der Waals 
interactions and establish colonies there. Colonization is 
achieved by polysaccharides found in or secreted by 
microorganisms (Sauer et al., 2022). Flagella structures 
also facilitate the colonization. Adhesion provides long-
term binding to the surface. At the same time, the 
aggregation of cells allows them to recognize each other 
and promotes the total cell density. After increasing cell 
density, a maturation process and a stable structure are 
observed. They then separate into clusters and establish 
colonies elsewhere (Flemming and Wingender, 2010; Yin 
et al., 2019; Sauer et al., 2022). Microbial biofilm 
formation occurs due to factors such as nutrient 
competition, oxygen depletion, pH, and fluctuating 
temperatures (Rumbaugh & Sauer, 2020). The 
biopolymers known as EPS are responsible for adhesion to 
surfaces and cohesion in the biofilm (Flemming & 
Wingender, 2010). EPS improves the resistance of biofilms 
to antimicrobial agents (Yüksel et al., 2018).  
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Biofilms act as a protective barrier for microorganisms. 
They form biofilm structures to adapt to stress conditions, 
to perform intercellular communication, and to establish 
colonization. Cell-to-cell communication, known as 
quorum sensing, is one of the metabolic processes leading 
to biofilm formation and mainly mediated by small 
diffusible molecules called autoinducers (Banerjee et al., 
2019). Once the concentration of autoinducers reaches a 
threshold, cells detect these signals, initiate local 
colonization, and begin forming a biofilm. This process is 
highly conserved evolutionarily, however, different 
autoinducers are used for Gram-negative and Gram-
positive bacteria (Fuqua et al., 1994). 
 
Concerning Microorganisms in Foods 

 
Foodborne disease is an issue that affects public health 

all around the world. About 800 foodborne outbreaks have 
been reported annually in the United States (Qiu et al., 
2021). In 2006-2016, a great majority of these outbreaks 
were caused by Salmonella spp., Escherichia coli, and 
Listeria monocytogenes. While pathogenic or spoilage 
microorganisms can pose risks to food safety, food quality, 
and human health, starter cultures and probiotic 
microorganisms can be beneficially used in food 
production, applications, and the development of 
functional foods. Fermentation, which is a process step 
used in the production of food products, such as yogurt, 
wine, and pickles, is a good example of this situation. Food 
microorganisms are summarized in Figure 3. 

 
Pathogenic and Spoilage Microorganisms 
Food spoilage can be defined as a deterioration or change 

in the sensory properties of food that are unacceptable to 
consumers. This process is caused by different spoilage 
microorganisms. Microorganisms involved in food spoilage 
belong to bacteria and fungi (Schmeisser et al., 2007). 
Zygosaccharomyces spp., Saccharomyces spp., 
Debaryomyces hansenii and Candida yeasts generally cause 
spoilage in foods, changing color, odor, and texture. Lorenzo 
et al. (2018) have stated that the most common spoilage 
bacteria in foods consist of Lactococcus spp., Leuconostoc 

spp., Lactobacillus spp., Pediococcus spp., Streptococcus 
spp., Carnobacterium spp., Brochothrix thermosphacta, 
Kurthi zapfilai, and Weissella spp. Among these 
microorganisms, species such as Lactococcus, Leuconostoc, 
Lactobacillus, and Streptococcus spp. are particularly used as 
starter cultures in food production. However, biofilm 
formation can vary depending on the species and even the 
strain (Wallis et al., 2018). Additionally, LAB, known as 
Generally Recognized as Safe (GRAS), are used in food 
products. Not all industrial cultures produce biofilms, but 
cultures that produce EPS, the main component of biofilms, 
can be preferred to use for enhancing the textural properties of 
the final product (Berthold-Pluta et al., 2019). Regarding this, 
detailed information is provided under the section on starter 
cultures. 

Food pathogens are microorganisms threatening public 
health and food safety. The most common food pathogens 
encountered in many parts of the world have been 
identified as Clostridium botulinum, Campylobacter, 
Escherichia coli, Listeria monocytogenes, Salmonella, and 
some toxin producer molds (Bintsis, 2017). Canned food 
produced in unfavorable conditions contains Clostridium 
botulinum. This bacterium causes botulism by producing 
neurotoxins that affect the human nervous system 
(Parkinson et al., 2017). Escherichia coli O157:H7, which 
is mostly encountered in undercooked meat, meat products 
and unpasteurized milk and dairy products, is also a 
foodborne pathogen (Bedasa et al., 2018). Listeria 
monocytogenes, which appears in foods, such as raw and 
processed milk and dairy products, meat and meat 
products, and seafoods, causes listeriosis (Shamloo et al., 
2019). Campylobacter enteritis is the most common cause 
of enteric infections. Campylobacter jejuni infection 
occurs after consuming or contacting contaminated 
poultry, meat, milk, or water (Facciolà et al., 2017; 
Hansson et al., 2018). Salmonella spp., which is one of the 
main pathogens occasioned by food infections, occurs in 
unpasteurized products, cocoa, and cake mixes. In this 
group, the two main Salmonella serotypes transmitted from 
animals to humans are Salmonella Enteritidis and 
Salmonella Typhimurium (Demirbilek, 2018; Sharma et 
al., 2019; Olaimat et al., 2020). 

 

 
Figure 3. Microorganisms found in food products (created with BioRender version 2023). 
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Foodborne pathogens and their biofilms are the main 
causes of foodborne diseases. It has been reported that 
Listeria monocytogenes forms biofilms in food processing 
environments (Wang et al., 2022). Campylobacter jejuni, 
which causes gastrointestinal disorders, is frequently 
observed in poultry products. Pokhrel et al. (2022) have 
reported that this pathogen forms a biofilm when exposed 
to oxidative stress conditions. Essentially, biofilm 
formation occurs through various stress responses or 
quorum sensing mechanisms (Zhao et al., 2023). 
Salmonella biofilms are responsible for various foodborne 
diseases and contamination of the food processing 
environment (Seo & Kang, 2020). In this context, the use 
of some probiotic bacteria and lactic acid bacteria as 
antibiofilm agents in the food industry has been suggested 
(Vuotto et al., 2014). 

 
Starter Cultures 
Starter cultures can be defined as living 

microorganisms that contain a single type or mixture of 
microbial cells and are added to foods to produce final 
characteristic product (García-Díez & Saraiva, 2021). 
Starter cultures are responsible for executing the 
fermentation process in foods like dairy products and meat 
products. Besides the role of initiating fermentation, starter 
cultures are known to inhibit the growth of unwanted 
microbiota in food product (Laranjo et al., 2019). LAB, 
which is the most common example for starter cultures in 
the production of food products such as cheese and yogurt. 
LAB produce lactic acid from lactose, accelerating the 
acidification in foods. Thus, it enhances food safety 
through its antimicrobial effects while also improving the 
sensory properties of the food (Altieri et al., 2017). 

Some strains of Lactobacillus, such as Lactobacillus 
plantarum, Lactobacillus brevis, and Lactobacillus 
fructivorans, one of the most well-known starter cultures, 
appear to form biofilms (Kubota et al., 2008). Biofilm 
formation is not always harmful. With the formation of 
biofilm, microorganisms, such as Acetobacter and 
Gluconobacter spp., which are used in vinegar production, 
grow more on wooden chips and this ensures efficient 
production (Giudici et al., 2017). In another study on starter 
culture for fermented milk production, biofilms of 
Lactobacillus plantarum culture had a positive effect on 
planktonic probiotic Lactobacillus plantarum cells (Hu et 
al., 2019). Moreover, EPS in biofilm produced by LAB has 
been reported to improve the texture and viscosity of foods 
(De Souza et al., 2023). 

 
Probiotics 
The term 'probiotic' is derived from the Greek word 

meaning 'for life.' Probiotics are living microorganisms 
that have a positive influence on the host when consumed 
in adequate quantities (Özkan et al., 2021). Probiotics have 
positive effects such as balancing the intestinal microbiota, 
alleviating the effects of lactose intolerance, protecting 
against cancer, and supporting the immune system (Binda 
et al., 2020). Commonly used probiotics are Lactobacillus, 
Bifidobacterium, Bacillus, and Streptococcus species. The 
action mechanisms of probiotics are stimulation and 
support of the immune system and inhibition of pathogenic 
microorganisms by producing antimicrobial substances, 
blocking their attachment sites, and competing for 

nutrients (Bermudez-Brito et al., 2012). The biofilm-
forming probiotics as Bifidobacterium longum subsp. 
infantis and Lactobacillus reuteri have demonstrated an 
ability to effectively delay microbial spoilage (Speranza & 
Corbo, 2017). Probiotics are able to secrete products, such 
as hydrogen peroxide, bacteriocins, organic acids, and 
lactic acids, to inhibit the pathogens. Interestingly, 
probiotics not only promote gut health but also exhibit 
effective biofilm inhibition. This inhibition occurs through 
various mechanisms, such as competing with pathogens for 
adhesion sites, producing antimicrobial substances, and 
disrupting the communication signals essential for biofilm 
formation (Barzegari et al., 2020). 
 
Effects of Biofilms on Human Health and Safety 
Concerns 

 
Biofilms may cause several infectious diseases. 

Biofilm-forming organisms can cause human infections, 
such as keratitis on contact lenses, chronic sinusitis, and 
wound infection (Del Pozo & Patel, 2007). In biofilm 
studies, it has been observed that bacteria within biofilms 
can exhibit antibiotic resistance due to several factors, 
including the limited penetration of antibiotics into the 
biofilm, the chemical composition and thickness of biofilm 
matrix, and the inherent resistance mechanisms of the 
microorganisms themselves (Singh et al., 2010; Sharma et 
al., 2019). The increased antibiotic resistance of biofilm 
cells compared to planktonic cultures, combined with 
endotoxin production by Gram-negative bacteria, plays a 
significant role in the progression of diseases (Saxena et 
al., 2019). These factors contribute to the persistence and 
severity of infections, making them more challenging to 
treat effectively. Another factor contributing to the 
resistance of biofilms against antibiotics is the 
accumulation of enzymes, such as β-lactamases, that 
degrade antibacterials within the biofilm matrix (Dincer et 
al., 2020).  

Moreover, biofilm formed microorganisms can be 
evaded from immune systems by hiding themselves or 
staying dormant. This escape mechanism might lead to an 
increase in local tissue damage. Also, in the literature, there 
is evidence for the interaction between biofilm formation 
and cancer (Ivanenko, 2021). Cancer cells can be defined 
as cells that can uncontrolledly cell division. The 
aggregation of cancer cells leads to tumor formation. 
Cancer cells and biofilms are similar in a way that both try 
surviving in extreme conditions (Ivanenko, 2021). 
Biofilms can be involved in tumor formation, promotion, 
progression (Choi et al., 2023). Evidence shows that 
biofilm formation can lead to changes in the surrounding 
tissue environment that to the aid of cancer cells 
(Upadhyay et al., 2023). 
 
Technological Strategies for Preventing Biofilm 
Formation in the Food Industry 

 
Biofilm formation is an important problem that 

threatens food safety in the food industry (Lindsay & von 
Holy, 2006). Biofilm formation is a dynamic process, not 
a static one, with biofilm structures changing based on the 
type of microorganisms, the surface they attach to, and the 
environmental components (Tang et al., 2011). The first 
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step in controlling and preventing biofilm formation is to 
take necessary precautions before biofilm formation 
(Meyer, 2003). Effective and appropriate cleaning should 
be done at regular intervals in the food plant. In addition, 
angular and blunt equipment should not be used, as corner 
points generally cause accumulation, and round structures 
are easier to clean. Silver-plated surfaces show inhibitory 
properties of biofilm formation and polymer coatings show 
antibiofilm properties (Knetsch & Koole, 2011; Vera-
González & Shukla, 2020). 

Different biofilms have different spectral properties 
and the structure of the relevant biofilm can be studied 
using image processing methods (Grichkin et al., 2017; 
Achinas et al., 2020). In the most food factories, 
mechanical processes are applied to the equipment surface 
to remove the biofilm during cleaning (Meyer, 2003). 
Automatic brushing or high-pressure cleaning is more 
effective than gel cleaners or low-pressure cleaning. There 
are problems in sanitation and disinfection due to the 
resistant structures of biofilms, affecting both food safety 
and food quality (Abebe, 2020). In addition to traditional 
biofilm control mechanisms, ultrasonication, electric 
fields, enzymes, or hurdle technologies such as using 
hydrogen peroxide and ultraviolet light together, can be 
used to break down the EPS (Simões et al., 2010; Chemat 
et al., 2011; Vankerckhoven et al., 2011). However, the 
effectiveness of each technique may differ according to the 
applied surface, the type of bacteria that form biofilm, and 
the application methods (Meyer, 2003).  

Since the use of chemicals for biofilm removal does not 
give effective results in all cases, different strategies have 
been developed instead of using traditional cleaning and 
disinfection methods. Innovative prevention strategies 
against biofilms are summarized in Table 2. Modern 
approaches such as nanotechnology-based applications, 

quorum sensing inhibitors (QSIs), enzymatic biofilm 
disruptors, phage therapy, biologically based strategies, 
and photodynamic therapy (PDT) hold promise in 
preventing and eradicating biofilms (Zhu et al., 2022; 
Ribeiro et al., 2022). The mode of action of these methods 
may affect the early stages of biofilm formation or other 
phases of the biofilm development process. One of the 
strategies to remove biofilms involves the use of enzymes 
to degrade the EPS of biofilms (Johansen et al., 1997). The 
different structures of EPS (Table 1) require the use of 
different types of enzymes. For this purpose, enzymes such 
as DNases (human DNase I), proteases (Savinase, 
Everlase, Polarzyme), amylases (BAN-alpha-amylase, 
AMG-glucoamylase), cellulases, and glycoside hydrolases 
(Dispersin B, alginate lyase) are used in the disruption of 
biofilms (Mayton et al., 2021; Molobela et al., 2010). 
Another novel method is related to bacteriophage 
application to prevent the formation of biofilms by 
microorganisms (Squires, 2018). Bacteriophages are 
viruses that specifically infect bacteria, allowing for 
targeted action against biofilm-forming pathogens without 
harming beneficial microorganisms, unlike broad-
spectrum antibiotics (Tian et al., 2021). Moreover, 
bacteriophages produce enzymes such as depolymerases, 
which degrade the EPS within biofilms, weakening the 
biofilm structure and enhancing susceptibility to 
antimicrobial agents (Topka-Bielecka et al., 2021). 
However, there are some difficulties with the use of phage 
theory. One of these challenges is that bacteriophages 
reach target bacteria and bind to specific receptors found 
on bacterial cells. In planktonic cells, this connection is 
much easier than biofilm cells. The microbial cells in the 
biofilm are enclosed by a matrix, which prevents 
bacteriophages from easily binding to their receptors (Pires 
et al., 2017).  

 
 

Table 2. Novel and traditional elimination methods for biofilm 
Novel Methods Description  Advantages Limitations  References 

Enzymatic 
Degradation 

Targeting destruction of 
EPS  

Prolong resistance 
development  

Heterogeneity structure 
of EPS, accordingly 
single enzyme might not 
effective 

(Ramakrishnan et al., 
2022; Wang et al., 

2023) 

Quorum Sensing 
Inhibitors 

Blockage on cell-to-cell 
communication 

Usage of natural 
product as an inhibitor 

Targeting and specificity 
problems 

(Machado et al., 
2020) 

Photodynamic 
Therapy 

Usage of light, molecular 
oxygen, and 
photosensitizer against 
microorganisms 

Eliminate 
microorganisms by not 
using harsh chemicals 

Low penetration of PS 
with biofilm 
Short-life time of ROS 

(Hu et al., 2022) 

Nanotechnology 
based methods 

Development of new 
surfaces as an antibacterial 
surface 

Prevention of adhesion 
ability of 
microorganisms 

Potential of leaching  
(Li et al., 2021; 
Birkenhauer, & 

Neethirajan 2015 

Bacteriophage 
Usage of “virus” to 
eliminate biofilm 
formation. 

Alternative approaches 
to antibiotic usage Limited host-range (Topka-Bielecka et 

al., 2021) 

Traditional 
Methods Description Advantages Limitations References 

Cleaning in place Cleaning of equipment via 
circulating fluid flow Less time consuming Not easy to remove 

accumulated biofilms (Loeffler, 2006) 

Ultrasound cleaning  Usage of mechanical 
energy No usage of chemical Low intensity does not 

affect bacterial biofilm (Elafify et al., 2024) 

Antibiotics 
Disruption of 
microorganisms’ cellular 
integrity 

Easy to use Adaptable 
for combined therapy 

Development of 
antibiotic resistance (Sullivan et al., 2020) 
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Figure 4. Functional properties of EPSs secreted by microorganisms (created with BioRender version 2023). 

 
PDT is an emerging strategy with diverse applications, 

particularly noted for its potent antimicrobial effects 
(Songca & Adjei, 2022). PDT relies on chemical reactions 
triggered by the interaction of molecular oxygen, a 
photosensitizer, and light (Niculescu & Grumezescu, 
2021). When these three components come together, they 
produce toxic compounds known as reactive oxygen 
species (ROS) or singlet oxygen. These compounds 
degrade the matrix of biofilms, breaking down 
polysaccharides and protein. This weakening of the matrix 
leads to the disruption of the biofilm. Silver nanoparticles 
are widely recognized for their strong antimicrobial 
properties (Liao et al., 2019). They can penetrate biofilm 
matrices and disrupt bacterial cells by generating ROS, 
damaging cell membranes, and interfering with bacterial 
DNA. Other metallic nanoparticles, such as gold, zinc 
oxide, and titanium dioxide, are also effective in inhibiting 
biofilm formation and promoting the degradation of 
existing biofilm (Pourmehdiabadi et al., 2024). Another 
approach involves using QSIs to effectively disrupt biofilm 
formation and inhibit the production of virulence factors 
(Wang et al., 2024). Quorum sensing relies on a variety of 
molecules in its process, and QSIs can interfere with this 
system, thereby reducing the formation of biofilms and the 
pathogenicity of bacteria. To enhance the efficacy of QSIs, 
they can be used in combination with antibiotics. QSIs 
work through three primary mechanisms: directly 
inhibiting the production of the signal molecule, promoting 
the breakdown of the signal molecule, or inhibiting the 
interaction between the signal molecule and its receptor 
(Carradori et al., 2020). Developing new technologies and 
methodologies will give people the power to control 
unwanted microbial cell growth. 
 
Functional Properties of Secreted Biofilms 

 
EPS, which differs in terms of physical and chemical 

properties, is secreted by microorganisms out of the cell 
(Karygianni et al., 2020). Although it is a matter of great 
concern that pathogenic microorganisms produce EPS, 
these biopolymers produced by beneficial bacteria can 
have positive effects on human health. It has been observed 
that EPSs have beneficial effects, such as antioxidant, 
immunomodulator, anticarcinogenic, anti-inflammatory, 

and antiviral, in several studies (Angelin & Kavitha, 2020; 
Wu et al., 2021; Zayed et al., 2022). Ayyash et al. (2020) 
have reported that EPSs produced by Lactobacillus 
plantarum isolates among LAB have antioxidant, 
antidiabetic, and antitumor activities. Jeong et al. (2017) 
revealed that the EPS synthesized by Lactobacillus. 
kefiranofaciens DN1 showed both bacteriostatic and 
bactericidal activity against Listeria monocytogenes and 
Salmonella Enteritidis. The functional properties of EPS 
are summarized in Figure 4. Secreted EPSs can be used in 
many industries, such as food, pharmacology, textiles, and 
cosmetics. The physicochemical and functional properties 
of some EPS species make them basic microbial synthesis 
products with various biotechnological applications 
(Osemwegie et al., 2020; Zayed et al., 2022).  

Tarannum et al. (2023) conducted a study on the 
antioxidant activity of EPS produced by new bacterial 
strains isolated from bovine milk. Among the 63 isolates, 
4 strains exhibited higher EPS production and significant 
antioxidant activity, along with high antibiofilm activity 
against Staphylococcus aureus ATCC 6538 and 
Escherichia coli ATCC 25922. Another study 
demonstrated that Lactobacillus plantarum 12 exhibited 
effects against Shigella flexneri, revealing that the EPS 
produced by Lactobacillus plantarum 12 not only inhibited 
the biofilm formation but also reduced the antibiotic 
resistance of Shigella flexneri (Song et al., 2020). 

Due to the significant diversity of the gut microbiota, 
maintaining a balance among the various microorganisms 
is of paramount importance. To prevent and address 
imbalances within the gut microbiota, several strategies 
have been developed. Among these strategies, the use of 
probiotics, prebiotics, and postbiotics has emerged as a 
promising solution. During the journey of probiotics in the 
body, they are faced with different conditions and their 
effectiveness might be decreased until they reach their 
target (Han et al.,2021). To overcome these challenges, 
embedding probiotics in biofilms may present an effective 
solution. Biofilms are known for their resistance to 
environmental changes, including variations in pH, 
temperature, nutrient derivation, and exposure to 
antibiotics, thereby offering enhanced protection and 
viability for the probiotics (Gao et al., 2022). 
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Concluding Remarks and Future Perspectives 
 
This review has provided a comprehensive overview of 

microbial biofilms, their structures, formation 
mechanisms, and their implications for human health, 
particularly in the context of food-related microorganisms. 
Biofilms are specialized structures that enable 
microorganisms to survive and proliferate in challenging 
environmental conditions. Although the general 
mechanism for biofilm formation is the same for most 
microorganisms, species- or even strain-specific behaviors 
are unique to each microorganism. The formation of 
biofilms by pathogenic and spoilage microorganisms 
presents serious challenges for food safety and public 
health, as these biofilms are often at the center of persistent 
infections and can accelerate the degradation of food 
products, leading to both safety risks and economic losses 
in the food industry. Conversely, biofilms produced by 
beneficial microorganisms, particularly those rich in EPS, 
offer valuable technological and functional benefits. These 
EPS can enhance food quality by improving texture, 
stability, and extending shelf life. However, the dual nature 
of biofilms, as both beneficial and harmful, underscores the 
need for ongoing research. Future studies should aim to 
better understand the specific roles of EPS in promoting 
health and food quality, as well as to develop innovative 
and sustainable strategies to prevent the formation of 
harmful biofilms. Advancing our knowledge in these areas 
is crucial for maximizing the benefits of microbial biofilms 
while minimizing their risks. 
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