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This study proposes a reliable and easy understandable statistical solution for the selection of 
varieties in the balanced and partially balanced lattice experiments, which are widely used in plant 
breeding studies. For this purpose, the Analysis of Means (ANOM) was adapted to the balanced, 
simple and triple lattice designs and an R function is developed for it. The adapted ANOM approach 
was compared with the Tukey, Duncan and Fisher’s LSD tests with respect to the actual type I error 
rate in all of the balanced, simple and triple lattice designs. In addition to this, the ANOM approach 
and Tukey test were examined comparatively using a hypothetical example. According to the 
simulation results, LSD and Duncan could not maintain the actual type I error rate at 5.00% under 
any conditions. This situation became more dramatic with the increase in the number of groups. 
While the actual type I error rate for LSD and Duncan tests varied between 54.36%-100.00% and 
37.49%-99.96%, respectively, for ANOM and Tukey tests it varied between 4.64%-6.08% and 
4.62%-6.45%, respectively. ANOM and Tukey tests were quite successful in terms of maintaining 
the actual type I error rate. However, since the number of groups in lattice designs was quite high, 
the given hypothetical example showed that it would be more understandable to use the ANOM 
method.   
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Introduction 

Due to the soil structure, the experimental designs 
containing blocks are widely used in agricultural studies. 
The completely randomized block design is the leading of 
these experimental designs. In the completely randomized 
block design, each treatment or group takes place once in 
each block at equal intervals. The purpose of blocking is to 
separate the heterogeneous material of the experiment into 
homogeneous parts within itself. However, as the number 
of groups compared increases, it is almost not possible to 
find homogeneous blocks that can contain all groups. As in 
areas such as the stock market, medical research, and 
automotive industry, also in some cases in agriculture, the 
number of groups (varieties or treatments) compared 
especially in breeding studies is quite large (Wu & Liao, 
2004). Therefore, it is not appropriate to use completely 
randomized block design. As a solution to this situation, 
Yates (1936a) proposed Balanced Incomplete Block (BIB) 
design, where not every group takes part in each block, but 
the number of pairs of each group taking part together is 
equal. Although balanced incomplete block designs are 

effective, they are not suitable. Because the minimum 
number of blocks required is impractical when the number 
of groups is large. Hence, Yates (1936b) developed a new 
experimental design called Lattice or Quasi-factorial for 
cases where the number of groups is large. As with all 
experimental designs, also in Lattice, the analysis of 
variance only shows whether the factor (such as variety, 
treatment or application) is statistically effective (Glass & 
Hakstian, 1969). However, it does not show the difference 
stems from which group or groups (levels of the factor) 
(Duncan, 1955). Therefore, if the effect of the factor as a 
result of the analysis of variance is statistically significant, 
multiple comparison tests are used. Numerous multiple 
comparison tests have been developed to compare group 
averages. At this point, it is very important to determine 
which multiple comparison tests should be used. Multiple 
comparison tests are divided into categories such as all-
contrast comparisons (ACC), all-pairwise multiple 
comparisons (MCP) (Duncan, 1955; Fisher, 1937; Tukey, 
1949) multiple comparisons with the best (MCB) (Hsu, 
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1996), multiple comparisons with the control (MCC) 
(Dunnett, 1955), and multiple comparisons with the overall 
average (MCA), depending on the purpose of use (Hsu, 
1996). MCP tests can be used easily when the number of 
groups compared is not large. However, as the number of 
groups (k) increases, the number of pairwise comparisons 
(kC2) also increases rapidly. For example, when k = 3, 5, 
10, and 50, the number of pairwise comparisons are 3, 6, 
10, 45, and 1225, respectively. Absorbing the results 
becomes increasingly difficult when the number of groups 
being compared is large. Therefore, in such cases, it is 
much more understandable to compare the groups with the 
best group, the control group, or the overall average rather 
than comparing them with each other. Especially in 
experimental designs such as lattice where breeding or 
selection studies are carried out, the differences of quite a 
large number of varieties from the population average are 
examined. Therefore, using MCA may be much more 
useful than MCP, MCB, and MCC. The multiple 
comparisons with the overall average is also called the 
Analysis of Means (ANOM). ANOM is a graphical method 
used to compare groups in terms of averages, variances, 
rates or proportions, correlation coefficients, and 
regression coefficients (Ott, 1983; Nelson, 1983, 1985, 
1989, 1993; Wludyka & Nelson, 1997; Nelson & 
Dudewicz, 2002; Pran Kumar & Rao, 1998; Rao, 2005; 
Nelson et al., 2005). Since it is a graphical method, the 
results are very easy to understand. The use of ANOM is 
detailed by Nelson et al.(2005). In this study, ANOM test 
was adapted to the balanced and partially balanced lattice 
designs. Also, an user friendly function was developed 
with the R programming language to use the improved 
ANOM approach for the balanced and partially balanced 
lattice designs. The adapted ANOM was compared with 
Tukey (Tukey, 1949), Duncan (Duncan, 1955) and LSD 
(Fisher, 1937) tests which are common multiple 
comparison tests in practice (Genç & Soysal, 2018), in 
terms of the actual type I error rate via monte carlo 
simulation technique. Finally, the use and interpretation of 
the ANOM approach were explained by comparing it with 
the Tukey test through a hypothetical example. The aim of 
this study is to provide a reliable solution based on 
statistical approaches for the selection of varieties in the 
balanced and partially balanced lattice experiments, which 
are widely used in plant breeding studies. 

 
Materials and Methods 

 
The Balanced Lattice Designs 
Every replication must be an absolute square in 

balanced and partially balanced lattice desings. The 
number of blocks (k) in each replication must be equal to 
the square root of the number of groups (k2). Also, in 
balanced lattice designs, the number of replications (r = k 
+ 1) must be one more than the number of blocks. 
Calculation steps for balanced lattice designs are as 
follows. 
1. Compute the block totals, the replication totals, the 

group totals (t) and grand total (G). 
2. For each group, compute totals (Bt) for all blocks in 

which the groups are located. 
3. W = kt − (k + 1)Bt + G  

4. Sum of squares (s.s.) for the total, replications and 
groups are found classically. 

5. Compute the adjusted sum of squares for the blocks, 
SSBadj=�∑W2�/(k3+k4)  

6. Compute the adjustment factor, μ = (Eb − Ee)/
(k2Eb) 

7. Eb = SSBadj/(k2 − 1) and Ee = SSE/(k − 1)(k2 −
1), SSE is found by subtracting replications s.s., 
groups s.s. and adjusted blocks s.s. from total s.s. 

8. The adjusted group total is t + μW. 
9. Compute sum of squares for the groups based on the 

adjusted group total. 
10. Effective error (Ee′ ) is Ee(1 + kμ) 
11. Compute the F-value by dividing the adjusted groups 

s.s. by the effective error (Cochran & Cox, 1960). 
 

The Partially Balanced Lattice Designs 
In the partially balanced lattice, the number of 

replications does not have to be more than the number of 
blocks. A partially balanced lattice designs are named 
according to the number of replications. When the number 
of replications (r) are 2, 3, 4, etc., it is called as simple 
lattice, triple lattice, quadruple lattice, etc., respectively. In 
this study also, simple and triple lattice are emphasized. 
Calculation steps for partially balanced lattice designs are 
as follows. 
1. Compute the block totals (B), the replication totals, the 

group totals (t) and grand total (G). 
2. For each block compute, 

C = Sum (OR) of all groups in the block − rB  
OR: overall replicates 

3. All sum of squares are computed classically. 
4. Compute the adjusted sum of squares for the blocks, 

SSBadj = (∑ C2)/[kr(r − 1)]− (∑𝑅𝑅𝑐𝑐2)/[k2r(r − 1)], 
𝑅𝑅𝑐𝑐  𝑖𝑖𝑖𝑖 is the sum of C values in each replication. 

5.  The adjustment factor (μ) is (Eb − Ee)/[k(r − 1)Eb] 
6. Eb = SSBadj/r(k − 1) and Ee is found like in the 

balanced lattice designs. 
7. The adjusted group total is t + μc 
8. Compute sum of squares for the groups based on the 

adjusted group total. 
9. Effective error (Ee′ ) is Ee[1 + (rkμ)/(k + 1)] 
10. Compute the F-value like in the balanced lattice 

designs (Cochran & Cox, 1960). 
 
The Basic Anom Procedure 
The basic ANOM procedure is introduced for balanced 

one-way analysis of variance. In the ANOM chart, there 
are two decision lines, namely lower (LDL) and upper 
(UDL). 

 
LDL = X� .. − h(α, k, v)√MSE�(k − 1) (kn)⁄    (1) 
 
UDL = X�.. + h(α, k, v)√MSE�(k − 1) (kn)⁄   (2) 
 
If the average of which group is outside of these 

decision lines, it is understood that the average of that 
group is statistically significantly different from the overall 
average. This is corresponding to comparing with 
h(α, k, v). 

|Ti| = |X�i. − X�..|/ �√MSE�(k − 1) (kn)⁄  �  (3) 
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The assumption that Xij~N(μi,σ2) are independent are 
met and if H0: μ1 = μ2 = ⋯ = μk, (T1, T2, … , Tk) has a 
multivariate t distribution with equicorrelations ρ =
−1/(k − 1) and v = k(n − 1) df. Under H0, the critical 
values h(α, k, v) meet,  

 
P[|T1| ≤ h(α, k, v), |T2| ≤ h(α, k, v), … , |Tk| ≤

h(α, k, v)] = 1 − α  
 
Where, X�i. is average of ith group, X�.. is the overall 

average, MSE is the mean square error, α is significance 
level, k is the number of groups (treatments or varieties), n 
is the number of replications (Nelson, 1993). 

 
Adaptation of ANOM for the Balanced and Partially 

Balanced Lattice Designs 
Lattice designs adjust Ee and group totals so as to take 

account of sampling errors in the block correction. 
Therefore, the ANOM method should be applied to 
adjusted means. The Adjusted overall average is 

 
X�... = ��X�i..� /k2  

 
The Adjusted average of ith group is 
X�i.. = (ti + μWi)/(k + 1) for the balanced lattice, 
X�i.. = (ti + μc)/r for the partially balanced lattice. 
 
Therefore, the variance for difference of the adjusted 

averages of the groups from the adjusted overall average is 
 
Var(X�i.. − X�...) = Ee′ (k2 − 1) (k3 + k2)⁄  for the 

balanced lattice, 
 
Var(X�i.. − X�...) = Ee′ (k2 − 1) (rk2)⁄  for the partially 

balanced lattice. 
 
Thus, 
 
|Ti| = �X�i.. − X�...�/�Ee′ (k2 − 1) (k3 + k2)⁄  for the 

balanced lattice, 
 
|Ti| = �X�i.. − X�...�/�Ee′ (k2 − 1) (rk2)⁄  for the partially 

balanced lattice. 
 
The assumption that Xijk~N(μi,σ2) are independent is 

met and if H0: μ1 = μ2 = ⋯ = μk, (T1, T2, … , Tk) has a 
multivariate t distribution with equicorrelations ρ =
−1/(k2 − 1) and degree of freedom v = (k − 1)(k2 − 1) 
for the balanced lattice and v = (k − 1)(rk − k − 1) for 
the partially balanced lattice. Under H0, the critical values 
h(α, k2, v) are 

 
P[|T1| ≤ h(α, k2, v), |T2| ≤ h(α, k2, v), … , |Tk2|

≤ h(α, k2, v)]  =  1 − α 
 
Accordingly, decision lines are 
 
LDL = X�... − h(α, k2, v)�Ee′�(k2 − 1) (k3 + k2)⁄

UDL = X�... + h(α, k2, v)�Ee′�(k2 − 1) (k3 + k2)⁄
� 

for the balanced lattice, 

LDL = X�... − h(α, k2, v)�Ee′�(k2 − 1) (rk2)⁄

UDL = X�... + h(α, k2, v)�Ee′�(k2 − 1) (rk2)⁄
� for the 

partially balanced lattice. 
If an adjusted average of group falls outside these 

decision lines, it is statistically significantly different from 
the adjusted overall average. 

Also, the required h(α, k2, v) values according to 
different significance levels (α = 0.25, 0.10, 0.05, 0.01, 
0.001) for all available the balanced, simple and triple 
lattice experimental designs were given in the appendix B 
(Table 8, 9 and 10). 

 
The R Function for ANOM Approach 
The function (ANOMLattice) developed using the R 

programming language (R Core Team, 2021) for the 
ANOM approach were given in appendix C. While writing 
the “ANOMLattice” function, “agricolae” (de Mendiburu, 
2021), “MASS” (Venables & Ripley, 2002), “ggplot2” 
(Wickham, 2016) and “mvtnorm” (Genz et al., 2021) 
packages were used. Therefore, the aforementioned 
packages must be installed in order to use the 
“ANOMLattice” function. Then the following steps should 
be applied.  

Firstly, installed packages must be loaded. 
library(agricolae) 
library(MASS) 
library(ggplot2) 
library(mvtnorm) 
Secondly, it should be loaded by running the 

“ANOMLattice” function given in the appendix C.  
Thirdly, the block, group, replication and response 

vectors required for “ANOMLattice” function should be 
created and the alpha value should be determined 
according to the desired significance level. 

The “ANOMLattice” function were explained through 
two different examples for the balanced and partially 
balanced lattice designs. 

 
An Example for The Balanced Lattice Designs 
An application of the balanced lattice design were 

examined in a study investigating the effect of 9 feeding 
treatments on the growth rates of pigs by Comstock et al. 
(1948). The use of the “ANOMLattice” function for the 
balanced lattice were also explained through the same 
study. The R function is 

“ANOMLattice(block,treat,rep,response,alpha)”. 
Vectors must be created for all inputs required by the 

function. 
library(agricolae) 
library(MASS) 
library(ggplot2) 
library(mvtnorm) 
blk =rep(1:12,each=3) 
trt = c(1,2,3,4,5,6,7,8,9, 

3,4,8,2,6,7,1,5,9, 
  1,4,7,2,5,8,3,6,9, 
  3,5,7,2,4,9,1,6,8) 
rep = rep(1:4, each=9) 

growth = c(2.20,1.84,2.18,2.05,0.85,1.86,0.73,1.60,1.76, 
           1.71,1.57,1.13,1.76,2.16,1.80,1.81,1.16,1.11, 
           1.19,1.20,1.15,2.26,1.07,1.45,2.12,2.03,1.63, 
           2.04,0.93,1.78,1.50,1.60,1.42,1.77,1.57,1.43) 
ANOMLattice(blk, trt, rep, growth, alpha = 0.05) 
When the codes written above are run, figure 1 was 

generated directly.  
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Figure 1. ANOM Chart for Balanced Lattice Design 

 

 
Figure 2. ANOM Chart for Partially Balanced Lattice 

Design 
 
Figure 1 just showed that the average of the treatment 

5 was statistically significantly smaller than the overall 
average, while the other treatment averages were not 
statistically significantly different from the overall 
average. 

 
An Example for The Partially Balanced Lattice 

Designs 
The use of the “ANOMLattice” function for the 

partially balanced lattice designs were explained through 
an example given by Cochran and Cox (1960). In this 
example, 25 soybean varieties are compared with respect 
to yield in a simple lattice design. 

library(agricolae) 
library(MASS) 
library(ggplot2) 
library(mvtnorm) 
block = rep(1:10,each=5) 

Variety = 
c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 
21,22,23,24,25,1,6,11,16,21,2,7,12,17,22,3,8,13,18,23, 
4,9,14,19,24,5,10,15,20,25) 
rep = rep(1:2,each=25) 

yield =  
c(6,7,5,8,6,16,12,12,13,8,17,7,7,9,14,18,16,13,13,14,14,15, 
11,14,14,24,13,24,11,8,21,11,14,11,23,16,4,12,12,12,17,10, 
30,9,23,15,15,22,16,19) 
ANOMLattice(block, Variety, rep, yield, alpha = 0.05) 
When the codes written above are run, figure 2 was 

generated directly.  
 

Figure 2 showed that the average of any variety was not 
different from the overall average in terms of yield. 
However, variety 11 was fairly close to UDL. This 
situation can be practically important (Nelson et al., 2005). 

 
Design of the Simulation Study 
ANOM approach together with Tukey (Tukey, 1949), 

Duncan (Duncan, 1955) and Fisher’s LSD (Fisher, 1937) 
tests, which are widely used in practice, were examined in 
terms of the actual type I error rates in the balanced and 
partially balanced lattice designs under the assumptions of 
normality and homogeneity of variances. Random numbers 
which were generated using “rnorm” function of R project 
(R Core Team, 2021) were used in order to examine the all 
tests in terms of the actual type I error rates. Six different 
designs (k=3, 4, 5, 7, 8 and 9) for the balanced lattice and 
nine different designs (k=3, 4, 5, 6, 7, 8, 9, 10 and 12) for 
partially balanced lattice were considered in the study. 
Each experimental condition was repeated 10,000 times. 
The actual type I error rates for all tests were estimated as 

 
The number of falsely rejected H0 hypothesis

10,000
 

 
Bradley (1978) reported that the actual type I error rate 

of a robust test should be between 4.50% and 5.50% when 
testing at the 5.00% level. In this work, Bradley’s 
conservative criterion was taken into account as a measure 
of robustness. 
 
Results and Discussion 

 
Results of the Simulation Study 
The actual Type I error rates were obtained as a result 

of simulation trials were given in Tables 1, 2 and 3. The 
actual type I error rates within Bradley’s limits were 
written in bold. 

In the balanced lattice designs, the actual type I error 
rates for the ANOM approach, Tukey, Duncan and LSD 
tests were in the range of 4.64-5.71%, 4.62-5.74%, 37.49-
98.31% and 54.36 100.00%, respectively. Bradley’s 
criterion was met for the ANOM approach and Tukey test 
in the all balanced lattice designs except 3x3 design. In the 
3x3 design also, the actual type I error rates for ANOM and 
Tukey which were 5.76% and 5.74%, respectively deviated 
negligibly from Bradley’s criterion. However, 
performances of the Duncan and LSD tests were 
dramatically badness under the same experimental 
conditions (Table 1). 

In simple lattice designs, the actual type I error rates 
varying between 4.76-6.08% for ANOM, 4.75-6.45% for 
Tukey, 44.59-99.96% for Duncan and 44.31-100.00% for 
LSD were estimated. The ANOM and Tukey could not 
meet Bradley’s criteria only in 3x3 and 4x4 designs. 
However, this situation was negligibly compared to the 
Duncan and LSD (Table 2). The actual type I error rates for 
the ANOM (6.04%) and Tukey (6.33%) fallen outside 
Bradley’s limits only in 3x3 triple lattice design. However, 
the actual type I error rates for the Duncan and LSD tests 
could not met Bradley’s criterion in any triple lattice 
designs (Table 3).  
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Table 1. The actual type I error rates for the balanced lattices. 
k×k ANOM Tukey Duncan LSD 

3×3 5.71 5.74 37.49 54.36 
4×4 4.82 4.96 55.01 81.63 
5×5 4.94 4.91 71.45 95.31 
7×7 4.82 4.99 90.86 99.95 
8×8 4.64 4.62 95.94 100.00 
9×9 5.03 5.05 98.31 100.00 

 

Table 2. The actual type I error rates for the simple balanced lattices. 
k×k ANOM Tukey Duncan LSD 

3×3 6.08 6.45 44.59 44.31 
4×4 5.98 5.97 63.06 74.10 
5×5 5.49 5.50 77.22 91.19 
6×6 5.16 5.35 86.74 97.80 
7×7 5.07 5.19 92.90 99.66 
8×8 5.19 5.23 97.01 99.96 
9×9 4.97 4.94 98.70 99.99 
10×10 4.98 4.75 99.36 100.00 
12×12 4.76 4.75 99.96 100.00 

 

Table 3. The actual type I error rates for the triple balanced lattices. 
k×k ANOM Tukey Duncan LSD 

3×3 6.04 6.33 40.74 53.34 
4×4 5.11 5.25 58.29 79.45 
5×5 5.07 5.14 73.31 93.97 
6×6 5.10 5.07 84.92 98.64 
7×7 5.00 5.14 92.59 99.76 
8×8 4.95 4.95 96.72 99.98 
9×9 4.73 4.74 98.46 100.00 
10×10 5.24 4.93 99.55 100.00 
12×12 5.10 4.98 99.91 100.00 

 
As the number of groups increases, the total number of 

observations increases, so the effect of the number of 
replications on the actual type I error rate decreases. Since 
the number of groups is less in 3×3 and 4×4 designs 
compared to the other designs, the actual type I error rates 
for the ANOM and Tukey deviated slightly. On the other 
hand, the actual type I error rates for the Duncan and LSD 
tests were seriously high under all experimental conditions. 

 
A Numerical Example 
A hypothetical example was given in which averages 

of 49 varieties (groups) from any plant species (for 
example wheat, barley, oat, etc.) were compared in terms 
of any traits (for example yield, length, etc.) in the balanced 
lattice design (Table 7 in appendix A). Calculations can be 
made easily by applying the formulas given in section 3 for 
the partially balanced lattices. While creating this example, 
the balanced lattice plan given by Cochran and Cox was 
used (1960). Since the number of varieties compared (k2) 
was 49, the number of blocks must be k = √49 = 7 and 
the number of replications must be r=7+1 = 8. 

Bt and W for Treatment 3, 
First, the blocks in which variety 3 was located were 

determined. These were blocks 1, 10, 17, 24, 31, 38, 45 and 52. 
The sum of these blocks given the Bt for Variety 3. 
Bt = 76 + 68 + 65 + 75 + 75 + 73 + 81 + 66 = 579  
W = kt − (k + 1)Bt + G  
W = (7)93− (7 + 1)579 + 3921 = −60  
Similarly, 𝐵𝐵𝑡𝑡  and W were calculated for all treatments 

(Table 4). After the Bt andWvalues were obtained, the 
analysis of variance table (Table 5) were easily created by 
using the formulas given in section 2. 

The adjusted mean square for treatment (23.29) was 
found by dividing the adjusted sum of squares for treatment 
(1117.95) by degrees of freedom (d.f.) for treatment (k2 −
1 = 48). The effective error was found by Ee′ = Ee(1 +
kμ) = (2.07)[1 + (7)(0.0029)] = 2.11. An 
approximately F value, 23.29/2.11 or 11.04, had 48 and 
288 d.f. . Because the F value (11.04) was greater than 
F0.05,48,288 critical table value (1.40), at least the average of 
one variety was statistically significantly different from the 
others. Therefore, after this point, it was necessary to 
determine which variety or varieties caused the difference. 
For this purpose, the ANOM approach and the Tukey test, 
which was quite common in practice, were used in this 
study. Variety averages were compared with both Tukey 
and ANOM approach at 0.05 significance level. The results 
of the Tukey test and ANOM approach were given in the 
table 6 and figure 3, respectively. 

Table 6 showed that Tukey test results were highly 
complex. Since the number of varieties with common 
letters was considerably large, it was very difficult to select 
varieties based on Tukey test results. For example, the 
varieties with the highest average (31, 45 and 22) shared a 
letter with the 26 varieties that follows itself, and the 
variety with the lowest average (24) shared a letter with the 
22 varieties whose average was higher. On the other hand, 
variety 20 shared letters with all the other varieties. When 
this was the case, it became very complicated to distinguish 
between varieties. 

Therefore, it was more understandable and useful to 
compare with the general average using the ANOM 
method instead of pair-wise comparison. After obtaining 
the results of the analysis of variance, it was quite simple 
to apply the ANOM method. What needs to be done was to 
calculate the UDL and LDL. 
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Table 4. t, 𝐵𝐵𝑡𝑡 , W and adjusted total values 
Treat. t 𝐵𝐵𝑡𝑡 W Adj. Tot. Treat. t 𝐵𝐵𝑡𝑡 W Adj. Tot. Treat. t 𝐵𝐵𝑡𝑡 W Adj. Tot. 
1 88 558 73 88.21 18 87 567 -6 86.98 34 67 561 -98 66.72 
2 95 571 18 95.05 19 94 568 35 94.10 35 61 538 44 61.13 
3 93 579 -60 92.83 20 79 559 2 79.01 36 62 562 -141 61.59 
4 82 559 23 82.07 21 59 544 -18 58.95 37 62 545 -5 61.99 
5 74 564 -73 73.79 22 100 569 69 100.20 38 72 549 33 72.10 
6 83 568 -42 82.88 23 92 587 -131 91.62 39 80 562 -15 79.96 
7 65 550 -24 64.93 24 56 542 -23 55.93 40 74 538 135 74.39 
8 69 556 -44 68.87 25 81 590 -232 80.33 41 88 560 57 88.17 
9 83 583 -162 82.53 26 73 547 56 73.16 42 94 570 19 94.06 
10 76 551 45 76.13 27 62 531 107 62.31 43 91 552 142 91.41 
11 70 543 67 70.19 28 75 562 -50 74.85 44 96 563 89 96.26 
12 96 577 -23 95.93 29 94 567 43 94.12 45 100 557 165 100.48 
13 65 551 -32 64.91 30 69 551 -4 68.99 46 65 542 40 65.12 
14 92 574 -27 91.92 31 102 573 51 102.15 47 62 526 147 62.43 
15 58 543 -17 57.95 32 80 565 -39 79.89 48 98 591 -121 97.65 
16 95 570 26 95.08 33 96 573 9 96.03 49 91 569 6 91.02 
17 75 570 -114 74.67           

G = 3921, ∑Bt = 27447, ∑(t + μW) = 3921, X�... = 10.00 
 
Table 5. Results of the analysis of variance. 

Source d.f. s.s. m.s. F P 
Replications k = 7 18.92    
Treatments (adj.) k2 − 1 = 48 1117.95 23.29 23.29/2.11=11.04 0.000 
Blocks (adj.) k2 − 1 = 48 115.60 2.41   
Intra-block error (k − 1)(k2 − 1) = 288 594.86 2.07   
Total k3 + k2 − 1 = 391 1843.00    

 

Table 6. Results of the Tukey test. 
Variety 𝑋𝑋� Grouping Variety 𝑋𝑋� Grouping Variety 𝑋𝑋� Grouping 
31 12.77 a      1 11.03 a b c d e f g     38 9.01 d e f g h i j k 
45 12.56 a      41 11.02 a b c d e f g     11 8.77  e f g h i j k 
22 12.53 a      18 10.87 a b c d e f g     30 8.62   f g h i j k 
48 12.21 a b     6 10.36 a b c d e f g h    8 8.61   f g h i j k 
44 12.03 a b c    9 10.32 a b c d e f g h    34 8.34    g h i j k 
33 12.00 a b c    4 10.26 a b c d e f g h i   46 8.14    g h i j k 
12 11.99 a b c    25 10.04 a b c d e f g h i j  7 8.12    g h i j k 
16 11.88 a b c d   39 9.99 a b c d e f g h i j  13 8.11    g h i j k 
2 11.88 a b c d   32 9.99 a b c d e f g h i j  47 7.80     h i j k 
29 11.77 a b c d   20 9.88 a b c d e f g h i j k 27 7.79     h i j k 
19 11.76 a b c d   10 9.52  b c d e f g h i j k 37 7.75     h i j k 
42 11.76 a b c d   28 9.36  b c d e f g h i j k 36 7.70     h i j k 
3 11.60 a b c d e  17 9.33  b c d e f g h i j k 35 7.64     h i j k 
14 11.49 a b c d e f 40 9.30  b c d e f g h i j k 21 7.37      i j k 
23 11.45 a b c d e f 5 9.22   c d e f g h i j k 15 7.24       j k 
43 11.43 a b c d e f 26 9.15   c d e f g h i j k 24 6.99        k 
49 11.38 a b c d e f                        

 

LDL=10.00-3.31�2.11(72-1) (73+72)⁄ =8.32  

UDL=10.00+3.31�2.11(72-1) (73+72)⁄ =11.68  
3.31 value was found easily from table 8 in appendix 

B. Then, the varieties that were outside and within the 
decision lines were determined. Thus, varieties were 
divided into three groups as statistically superior, equal, 
and inferior to the overall average. 

The ANOM method does not compare the average of 
varieties with each other. It compares the average of 
varieties with the overall average. Therefore, this situation 
should not be overlooked in the interpretations. When the 
ANOM chart was examined, it was seen that the varieties 
numbered 2, 12, 16, 19, 22, 29, 31, 33, 42, 44, 45 and 48 

were statistically significantly higher than the overall 
average. Varieties numbered 7, 13, 15, 21, 24, 27, 35, 36, 
37, 46 and 47were statistically significantly smaller than 
the overall average. 

However, the differences of the other varieties from the 
overall average were not statistically significant. The 
ANOM chart provided information not only about 
statistical significance but also about practical significance. 
For example, it was seen that varieties numbered 3, 14, 23, 
43 and relatively 49 were very close to UDL, and varieties 
numbered 8, 11, 30 and 34 to LDL. Therefore, the varieties 
in question were very close to statistical significance 
compared to other varieties. This situation can be of 
practical significance. As can be seen, the ANOM method 
has allowed statistical inferences in a very simple and 
understandable way. 
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Figure 3. ANOM Chart for example of the balanced 

lattice design. 
 
 

Conclusion 
 
Multiple comparison tests have an important place in 

comparing group averages. When the number of groups is 
small, it is easy and understandable pair-wise comparisons. 
However, the increase in the number of groups compared 
brings some problems. For example, Fisher’s LSD test is 
widely used in practice. However, the LSD (Hayter, 1986) 
and Duncan tests (Hsu, 1996; Tukey, 1991) are very 
negatively affected by the increase in the number of 
groups. In the lattice designs, the number of groups is 
generally higher than the classical trial designs (completely 
randomized design, randomized block design, etc.). 
Simulation experiments in this study also, showed that the 
actual type I errors of LSD and Duncan tests were 
frighteningly high. This means that as the number of 
groups increases, the LSD and Duncan tests are more likely 
to find a result that there is a difference between the group 
averages while there is actually no difference between the 
group averages. For example, in every experiment set up in 
8x8 balanced lattice design, the LSD test will certainly find 
that at least one group mean is different from the others, 
even though there is actually no difference between the 
group averages (Table 1). The Duncan test is almost 
exactly the same to the LSD test. Therefore, using the LSD 
and Duncan tests will cause misleading results. On the 
other hand, ANOM approach and Tukey test have almost 
excellent performance in terms of preserving the actual 
type I error rate. Regardless of the number of groups, both 
tests are very reliable. However, another problem is that 
arises with the increase in the number of groups is the 
difficulties in interpreting the results. When the number of 
groups increases, the number of pair-wise comparisons 
also increases significantly. The rapid increase in the 
number of pair-wise comparisons makes very complex and 
difficult to the interpretation of the results. At this point, it 
can be a very useful and reliable solution to compare the 
group averages with the overall average using the ANOM 
approach rather than comparing them with each other. 
Since the results of the ANOM can be presented 
graphically, both statistical and practical significance can 
be easily understood. As a result, the use of the ANOM test 
can be recommended when the number of groups 
compared is large so that researchers can easily understand 
reliable results. 
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Appendices 
A. Plan and Data for 7×7 The Balanced Lattice Design 

Table 7. Plan and data for 7×7 balanced lattice design. 
Block Replication I Totals Block Replication II Totals 

(1) (1) (2) (3) (4) (5) (6) (7) 
 

(8) (1) (8) (15) (22) (29) (36) (43) 
 

12 14 11 9 10 11 9 76 11 8 7 13 11 6 10 66 

(2) (8) (9) (10) (11) (12) (13) (14) 
 

(9) (2) (9) (16) (23) (30) (37) (44) 
 

11 12 10 10 10 7 14 74 12 8 12 12 10 7 14 75 

(3) (15) (16) (17) (18) (19) (20) (21) 
 

(10) (3) (10) (17) (24) (31) (38) (45) 
 

7 13 9 11 14 11 7 72 11 8 8 5 12 10 14 68 

(4) (22) (23) (24) (25) (26) (27) (28) 
 

(11) (4) (11) (18) (25) (32) (39) (46) 
 

12 13 8 11 10 9 10 73 11 9 12 9 11 9 8 69 

(5) (29) (30) (31) (32) (33) (34) (35) 
 

(12) (5) (12) (19) (26) (33) (40) (47) 
 

9 9 15 9 13 8 10 73 7 11 11 11 11 6 7 64 

(6) (36) (37) (38) (39) (40) (41) (42) 
 

(13) (6) (13) (20) (27) (34) (41) (48) 
 

10 9 10 9 8 11 10 67 8 9 8 6 10 14 13 68 

(7) (43) (44) (45) (46) (47) (48) (49) 
 

(14) (7) (14) (21) (28) (35) (42) (49) 
 

10 9 13 8 9 10 10 69 6 10 7 9 9 13 12 66 
        

504         
476 

 Replication III 
  Replication IV 

 

(15) (1) (9) (17) (25) (33) (41) (49) 
 

(22) (1) (37) (24) (11) (47) (34) (21) 
 

11 10 12 10 15 11 13 82 12 8 8 9 6 6 8 57 

(16) (43) (2) (10) (18) (26) (34) (42) 
 

(23) (15) (2) (38) (25) (12) (48) (35) 
 

11 12 10 10 8 6 13 70 9 12 9 11 15 13 8 77 

(17) (36) (44) (3) (11) (19) (27) (35) 
 

(24) (29) (16) (3) (39) (26) (13) (49) 
 

7 10 9 10 11 10 8 65 13 10 10 13 7 9 13 75 

(18) (29) (37) (45) (4) (12) (20) (28) 
 

(25) (43) (30) (17) (4) (40) (27) (14) 
 

11 7 12 10 13 10 8 71 13 8 8 10 11 6 9 65 

(19) (22) (30) (38) (46) (5) (13) (21) 
 

(26) (8) (44) (31) (18) (5) (41) (28) 
 

13 8 11 9 10 7 5 63 8 12 14 11 8 13 9 75 

(20) (15) (23) (31) (39) (47) (6) (14) 
 

(27) (22) (9) (45) (32) (19) (6) (42) 
 

8 11 12 10 7 13 11 72 11 8 14 12 12 10 13 80 

(21) (8) (16) (24) (32) (40) (48) (7) 
 

(28) (36) (23) (10) (46) (33) (20) (7) 
 

7 13 7 12 11 11 8 69 9 11 10 8 14 12 8 72 
        

492         
501 

 Replication V 
  Replication VI 

 

(29) (1) (30) (10) (39) (19) (48) (28) 
 

(36) (1) (23) (45) (18) (40) (13) (35) 
 

11 7 10 11 12 13 8 72 10 10 12 11 12 6 7 68 

(30) (22) (2) (31) (11) (40) (20) (49) 
 

(37) (29) (2) (24) (46) (19) (41) (14) 
 

13 11 12 7 9 8 9 69 12 12 8 7 11 9 13 72 

(31) (43) (23) (3) (32) (12) (41) (21) 
 

(38) (8) (30) (3) (25) (47) (20) (42) 
 

14 11 13 7 11 10 9 75 9 8 13 11 10 10 12 73 

(32) (15) (44) (24) (4) (33) (13) (42) 
 

(39) (36) (9) (31) (4) (26) (48) (21) 
 

6 13 7 10 12 8 10 66 9 13 15 10 10 13 7 77 

(33) (36) (16) (45) (25) (5) (34) (14) 
 

(40) (15) (37) (10) (32) (5) (27) (49) 
 

7 15 13 8 11 9 14 77 7 9 11 9 10 8 10 64 

(34) (8) (37) (17) (46) (26) (6) (35) 
 

(41) (43) (16) (38) (11) (33) (6) (28) 
 

10 7 9 7 11 10 7 61 9 13 9 9 11 10 10 71 

(35) (29) (9) (38) (18) (47) (27) (7) 
 

(42) (22) (44) (17) (39) (12) (34) (7) 
 

12 9 8 9 7 9 8 62 14 12 11 8 12 9 10 76 
        

482         
501 

 Replication VII 
  Replication VIII 

 

(43) (1) (16) (31) (46) (12) (27) (42) 
 

(50) (1) (44) (38) (32) (26) (20) (14) 
 

11 10 10 10 12 7 10 70 10 13 7 10 9 9 9 67 

(44) (36) (2) (17) (32) (47) (13) (28) 
 

(51) (8) (2) (45) (39) (33) (27) (21) 
 

8 12 7 10 8 11 12 68 8 10 11 9 10 7 9 64 

(45) (22) (37) (3) (18) (33) (48) (14) 
 

(52) (15) (9) (3) (46) (40) (34) (28) 
 

14 7 15 11 10 12 12 81 8 12 11 8 9 9 9 66 

(46) (8) (23) (38) (4) (19) (34) (49) 
 

(53) (22) (16) (10) (4) (47) (41) (35) 
 

8 13 8 12 11 10 12 74 10 9 8 10 8 10 6 61 

(47) (43) (9) (24) (39) (5) (20) (35) 
 

(54) (29) (23) (17) (11) (5) (48) (42) 
 

13 11 5 11 10 11 6 67 15 11 11 7 8 13 13 78 

(48) (29) (44) (10) (25) (40) (6) (21) 
 

(55) (36) (30) (24) (18) (12) (6) (49) 
 

11 13 9 12 8 10 7 70 6 9 8 12 12 11 12 70 

(49) (15) (30) (45) (11) (26) (41) (7) 
 

(56) (43) (37) (31) (25) (19) (13) (7) 
 

6 10 11 9 7 10 7 60 11 8 12 9 12 8 9 69         
490 

        
406 

 
B. Critical Table Values For The Balanced, Simple And Triple Lattice Designs 

Table 8. Critical table values for the balanced lattice designs. 

𝛼𝛼 Experimental Design (k×k) 
3×3 4×4 5×5 7×7 8×8 9×9 

0.25 2.2751 2.4262 2.5611 2.7695 2.8517 2.9231 
0.10 2.7853 2.8308 2.9230 3.0939 3.1655 3.2284 
0.05 3.1405 3.1007 3.1631 3.3089 3.3743 3.4338 
0.01 5.0886 3.6700 3.6618 3.7588 3.8135 3.8609 
0.001 13.3087 4.4066 4.3034 4.3336 4.3662 4.4042 
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Table 9. Critical table values for the simple lattice designs. 

𝛼𝛼 E×perimental Design (k×k) 
3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 12×12 

0.25 2.7140 2.6684 2.7264 2.7971 2.8668 2.9305 2.9896 3.0429 3.1374 
0.10 3.7789 3.3168 3.2366 3.2391 3.2679 3.3035 3.3420 3.3807 3.4543 
0.05 4.6933 3.7992 3.5929 3.5421 3.5368 3.5544 3.5804 3.6088 3.6682 
0.01 7.3911 4.9533 4.3986 4.1980 4.1176 4.0866 4.0815 4.0877 4.1174 
0.001 13.4869 6.8589 5.5596 5.0874 4.8944 4.7884 4.7355 4.7106 4.6985 

 
Table 10. Critical table values for the simple lattice designs. 

𝛼𝛼 E×perimental Design (k×k) 
3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 12×12 

0.25 2.3578 2.4961 2.6173 2.7200 2.8077 2.8839 2.9514 3.0111 3.1133 
0.10 2.9586 2.9637 3.0266 3.0954 3.1611 3.2208 3.2754 3.2556 3.4138 
0.05 3.4002 3.2869 3.3020 3.3458 3.3972 3.4467 3.4926 3.5369 3.6172 
0.01 4.4253 3.9976 3.8894 3.8790 3.8919 3.9191 3.9509 3.9817 4.0433 
0.001 6.0289 4.9666 4.6716 4.5706 4.5371 4.5312 4.5385 4.5519 4.5900 

 
C. The R Code Of The ‘ANOMLattice′ Function 

ANOMLattice=function(block,treat,rep,response,alpha){ 
    nr=nlevels(factor(rep)) 
    k=nlevels(factor(block))/nr 
    corr=matrix(NA,k^2,k^2) 
    for (i in 1:k^2) { 
        for(j in 1:k^2){ 
            corr[i,j]=1 
            if (i!=j){corr[i,j]=-(1/((k^2)-1))}}} 
y=response 
sink("NUL") 
output=PBIB.test(block,treat,rep,y,k=k,method = "VC") 
sink() 
nr=output$parameters$r 
Eb=output$ANOVA$`Mean Sq`[3] 
Ee=output$ANOVA$`Mean Sq`[4] 
 
if(nr==(k+1)){ 
Mu=(Eb-Ee)/(k*k*Eb) 
Ee1=Ee*(1+k*Mu) 
title="ANOM Chart for Balanced Lattice" 
v=(k-1)*((k^2)-1)} 
else{Mu=(Eb-Ee)/(k*(nr-1)*Eb) 
    Ee1=Ee*(1+(nr*k*Mu)/(k+1)) 
title="ANOM Chart for Partially Balanced Lattice" 
v=(k-1)*(nr*k-k-1)} 
Gmean=output$statistics$Mean 
h=qmvt(1-alpha,df=v,corr=corr,tail = "both")$quantile 
LDL=Gmean-h*sqrt(Ee1)*sqrt(((k^2)-1)/((k^2)*nr)) 
UDL=Gmean+h*sqrt(Ee1)*sqrt(((k^2)-1)/((k^2)*nr)) 
labeludl=paste('UDL=',format(round(UDL,2),nsmall=2)) 
labelavg=paste('Avg.=',format(round(Gmean,2),nsmall=2)) 
labelldl=paste('LDL=',format(round(LDL,2),nsmall=2)) 
a1=expression(alpha) 
a2=paste("=",format(round(alpha,2),nsmall=2)) 
Xmean=output$means[,2] 
color=NULL 
label=NULL 
alig=NULL 
shape=NULL 
XX=as.character(rep(1:k^2)) 
XX=factor(XX,levels = XX) 
YY=Xmean[1:k^2] 
ZZ=data.frame(XX,YY) 
for (i in 1:k^2) { 
    if ((Xmean[i]>=UDL)||(Xmean[i]<=LDL)){ 
        color[i]='red' 
        shape[i]=8 
    }else{color[i]='black';shape[i]=19} 
     
    if (Xmean[i]>mean(Xmean)){alig[i]=-0.7} 
    if (Xmean[i]<mean(Xmean)){alig[i]=1.5} 
} 
font='Times' 
chart=ggplot(ZZ, aes(x=XX, y=Xmean)) + 
    ylab("Adjusted Average")+ 
    xlab(substitute(treat))+ 
    geom_segment(aes(xend=XX), yend=Gmean, colour="gray50") + 
    geom_hline(yintercept = c(LDL,UDL,Gmean), 
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               colour=c('blue','blue','black'))+ 
    scale_y_continuous(sec.axis = sec_axis(~ ., breaks = c(LDL,Gmean,UDL), 
                      labels = c(labelldl,labelavg,labeludl)))+ 
    geom_point(shape=shape,size=1,color= color)+ 
    geom_text(size=3,aes(label=XX,family=font),vjust=alig)+ 
    theme_bw() + 
    theme(panel.grid.major.y = element_blank(), # No horizontal grid lines 
          legend.position=c(1, 0.55), # Put legend inside plot area 
          legend.justification=c(1, 0.5), 
          plot.margin = unit(c(0.2,0.2,0.2,0.2), "cm"), 
          axis.title = element_text(family = font), 
          axis.text.x = element_text(colour='black',size = 6, 
                                     hjust = .5,vjust = .5, 
                                     family = font), 
          axis.text.y = element_text(colour='black', 
                                     hjust = .5,vjust = .5, 
                                     family = font))+ 
    ggtitle(label = paste(title,sep=" ","\u03b1",a2))+ 
    theme(plot.title = element_text(hjust=0.5, 
        family = font))+ 
    coord_cartesian(clip = "off") 
return(chart) 
} 

 
 


