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Developments in Geographic Information Systems and Remote Sensing (RS) technologies and 
innovative approaches emerging in deep learning (DL) supported analysis methods have an 
important place in disaster research as in every field. Convolutional neural networks such as Mask 
RCNN, U-NET, one of the deep learning methods for disaster damage impact assessment and 
classification, have started to show successful results. However, high-resolution geospatial imagery 
and drones provide faster and more accurate detection of structural damage.  In this study, damaged 
building detection was performed using Göktürk-1 satellite images from 6 February 2023 using 
Mask-RCNN architecture. In this study, deep learning methods were used to detect the collapsed 
buildings in the city of Malatya during the 6 February 2023 earthquakes. The study aims to 
emphasize the significance of GIS and remote sensing for the timely and efficient evaluation of 
building damage after a disaster. Considering this, high quality images of Malatya city before and 
after the earthquake were analyzed and data sets were created by masking using Mask RCNN deep 
learning method through ArcGIS Pro 3.4.0 software. According to the results of the research, it 
quickly detected damaged buildings with an accuracy rate of 70% according to satellite images after 
the earthquake. As a result, GIS and deep learning models were used to detect and map the initial 
damage after the earthquake. 
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Introduction 

Cities are settlements formed in a socio-economic 
context where thousands of people live together. Besides, 
the overuse of resource consumption caused by the 
increasing rate of urbanization, insufficient infrastructure, 
disorganized planning, and poor services contribute to pose 
risks in urban areas (Büyüközkan et al., 2022). This 
situation negatively affects the resilience of cities after 
disasters such as earthquakes and brings along social, 
economic, and environmental problems. 

Rapid assessment of infrastructure damage after a 
major disaster plays a crucial part in disaster response 
coordination and recovery efforts (Moradi & Shah-
Hosseini). In this context, the construction of earthquake-
resistant structures is of great importance. However, in 
cities where rapid urbanization and uncontrolled 
construction are common, disasters such as earthquakes 
can result in massive destruction, leading to significant loss 
of life and property. Therefore, pre- and post-disaster 
damage assessments have become a major focus of interest 

among researchers and practitioners working in the field of 
disaster management (Yamazaki & Matsuoka, 2007). 

The first hours after the earthquake are very important. 
It is one of the first tasks to detect the first effects of the 
earthquake in these hours and to establish emergency 
response systems. (Dell’Acqua & Gamba, 2012; Eguchi et 
al., 2009; Nex et al., 2019). GIS and remote sensing 
technologies and the increase in satellite image quality 
have made it possible to use rapid assessment after 
disasters.  (Yamazaki & Matsuoka, 2007). Considering 
this, the analysis of post-earthquake images derived from 
satellite datasets in highly urbanized areas is an effective 
method for visualizing the extent of initial damage. Change 
detection approaches involve post-classification 
comparison methods and image enhancement techniques, 
which are used to identify differences in building 
conditions across different time periods (Dong & Shan, 
2013). 

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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The first stage of post-earthquake emergency planning 
begins with assessing the current situation. Remote sensing 
data collected before and after a disaster offer a rapid 
evaluation of the built environment, making them highly 
valuable. Specifically, the comparison of old images and 
post-earthquake satellite images accelerates damage 
assessment in terms of time and cost. The advanced spatial 
analysis capabilities of GIS facilitate rapid and spatially 
informed decision-making for authorities. In this context, 
analyses based on satellite imagery play a vital role in 
emergency response since numerical data and satellite 
image analyses of pre-disaster settlements reveal post-
disaster changes and provide estimations about affected 
populations. 

After disasters, especially those affecting large areas 
such as earthquakes, floods, and wildfires, GIS and RS-
based analyses have become widely used. High-resolution 
satellite imagery and aerial photographs taken by UAVs 
help detect the impacts of disasters within a few hours. In 
this context, high-resolution SAR satellite images, 
GÖKTÜRK satellites, etc., can quickly identify areas 
affected by disasters. Following analyses based on these 
images, the affected areas can be mapped, providing initial 
findings that serve as a basis for assessing the impacts of 
the disaster (Brunner et al., 2010). 

Matsuoka and Yamazaki (2005) identified and mapped 
collapsed buildings using satellite imagery following the 
2003 earthquake in Iran. Similarly, Balz and Liao (2010) 
employed SAR satellite imagery after the Sichuan 
earthquake to map the areas affected by the disaster. More 
recently, following the February 6, 2023, Kahramanmaraş 
(Turkey) earthquakes, numerous researchers utilized high-
resolution satellite images, aerial photographs, and 
orthophotos to detect and map structural damage in the 
affected areas. In this context, Wang et al. (2023) used 
Sentinel-1 data to be detecting the structural damage 
caused by the earthquakes in Nurdağı, Kahramanmaraş, 

Hatay, Türkoğlu, and İslahiye. In a similar study, Du et al. 
(2024), Vitale and Milillo (2024), Wu et al. (2024), and Yu 
et al. (2024) employed SAR satellite imagery with new 
methods and analyses to detect building damage caused by 
the earthquake. 

This study aims to identify, and map collapsed 
buildings in the Malatya caused by the February 6, 2023, 
earthquakes using GIS and remote sensing analysis 
methods based on pre- and post-earthquake orthophotos 
and GÖKTÜRK satellite images. ArcGIS Pro software’s 
deep learning tools were utilized for detecting the damaged 
buildings in the study. The Mask R-CNN architecture, one 
of the deep learning methods, was employed in the 
analysis. 
 
Materials and Methods 

 
Study Area and Data Management 
On February 6, 2023, two major earthquakes with 

magnitudes of 7.8 Mw and 7.5 Mw struck approximately 
nine hours apart, centered in the Elbistan and Pazarcık 
districts of Kahramanmaraş. These earthquakes caused 
widespread building collapses and severe structural 
damage in the eleven provinces (Kirici & Soyluk, 2023). 

The designated study area, Malatya, is a mid-sized 
Anatolian city located near the East Anatolian Fault Zone. 
Geographically, Malatya lies between the coordinates 38° 
21’ 19.3032’’ N and 38° 20’ 0.6972’’ E. The total 
population of the province is 742,725, with the Battalgazi 
and Yeşilyurt districts, which form the core of the study 
area, having a combined population of 556,068. According 
to post-earthquake damage assessments conducted 
throughout Malatya, out of 155,658 residential units in the 
province, 5,610 were completely destroyed, 1,840 were 
marked for urgent demolition, 35,620 sustained severe 
damage, and 2,480 were moderately damaged (Şıkoğlu, 
2024). 

 

 
Figure 1. Study Area Before and After Earthquake 

 



Kaya / Turkish Journal of Agriculture - Food Science and Technology, 13(3): 688-696, 2025 

690 
 

 
Figure 2. General architecture of the mask R-CNN (modified from Al Deen Taher & Dang, 2023) 

 

 
Figure 3. Proposed framework for building damage monitoring 

 
The study, pre-earthquake 2020 orthophoto imagery 

provided by the General Directorate of Mapping and the 
post-earthquake Göktürk I-satellite imagery captured on 
February 9, 2023, were used. The pre-earthquake 
orthophoto image has a pixel size of 0.330 meters and 
consists of three bands. The post-earthquake satellite 
image has a pixel size of 0.217 meters and also consists of 
three bands. Both images possess high-resolution values, 
enabling detailed analyses for detecting structural damage 
following the earthquake. As shown in Figure 1, satellite 
images show the Malatya center, which was among the 
most affected areas. The test and training datasets used in 
the study were selected from the city center. 

 

Methods 
GIS and DL algorithms based on artificial neural 

networks were used to detect collapsed buildings following 
the February 6, 2023, earthquakes. ArcGIS Pro 3.4.0 
software was utilized within the scope of the research. 
Deep learning algorithms are widely applied through 
ArcGIS Pro tools to solve spatial problems, detect objects, 
and perform pixel classification (Esri, 2024a).  

A two-stage deep learning network was designed to 
address the building damage assessment problem, which 
involved building detection and damage grading. In the 
first stage, the semantic segmentation method was 
employed to segment buildings, drawing on methods used 
in previous studies. In the second stage, the damage levels 
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of the identified buildings were classified. The ArcGIS Pro 
software utilized the Mask R-CNN deep learning method 
for the analysis. Mask R-CNN is a model capable of 
performing both object detection and object segmentation 
simultaneously, making it particularly effective for damage 
assessment scenarios where understanding the extent of 
damage is crucial (Esri, 2024b). The deep learning 
workflow used in the study is illustrated in Figure 2. Mask 
R-CNN consists of two stages. The first stage is similar to 
Faster R-CNN, where the Region Proposal Network (RPN) 
suggests a series of Regions of Interest (ROIs) along with 
probability scores indicating whether the regions contain 
objects. The key difference is that Mask R-CNN uses 
ROIAlign, an enhanced version of the ROIPool operation. 
In the second stage, the Faster R-CNN classifier is 
combined with an additional mask prediction head to 
predict both the class of the object within the ROIs and the 
corresponding mask (Al Deen Taher & Dang, 2023). The 
proposed analytical framework is based on the ArcGIS Pro 
3.4.0 Mask R-CNN implementation and can be used with 
the licensed ArcGIS Pro software. 

The Mask R-CNN algorithm was used because of its 
fast and high learning capability based on test data, which 
facilitates the processing of large data. Figure 3 shows the 
general workflow diagram of the method proposed in the 
research. 

 

Pre-processing 
Pre- and post-earthquake satellite images obtained from 

the February 6, 2023 earthquake were aligned using 
ArcGIS Pro software (Figure 4). Both satellite images were 
enhanced using the pan-sharpening method to improve 
spatial resolution. At this stage, buildings were classified 
based on their damage status. In the classification, 
buildings were labeled as ‘0’ for damaged and ‘1’ for 
undamaged. Additionally, roads and parks were also 
labeled. During the data labeling process, collapsed 
buildings were marked in red, undamaged buildings in 
yellow, roads in blue, and green areas in green. To increase 
accuracy, data processing was conducted in the 
UTM/WGS84 coordinate system. Next, the Label Objects 
for Deep Learning tool was used to prepare the training 
datasets from the post-earthquake satellite image for model 
training. The prepared dataset was then exported using the 
Export Training Data for Deep Learning tool. Finally, the 
data was used to train the Mask R-CNN model using the 
ArcGIS Pro deep learning library. 

Network Architecture 
Mask R-CNN is a deep learning model used for object-

based boundary detection. The model was developed based 
on the Faster R-CNN model. Faster R-CNN consists of 
region-based convolutional neural networks (Region-
based CNNs) that return a bounding box, a class label, and 
a confidence score for each object (Esri, 2024). 

 
Table 1. Technical specifications of Göktürk-1 satellite image 

Launch date 9 February 2023 
Orbit ~ 681 km 
Time of crossing the equator 10:30 (Local time of ascending node) 
Resolution 2 m 
Radiometric Resolution 11 Bit 

Spectral band 

0.45–0.52(Blue), 
0.52–0.60 (Green),  
0.63–0.69 (Red),  
0.76–0.90 (Infrared)  

 

 
Figure 4. Creating a data set on ArcGIS Pro. 
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Figure 5. Mask R-CNN algorithm structure (Modified from Zhan et al., 2022) 

 
Table 2. Summary statistics of training data 

Feature Value CN CV NI NF MA AA MA 
Total Number of Images 414 × 3 × 256 × 256 pixels Damaged 0 208 257 0 440.5 3000.69 
Total Number of Features 532 Undamaged 1 206 275 0.02 302.83 2762.93 
Features per Image Min: 1, Average: 1.29, Max: 4        
CN: Class Name; CV: Class Value; NI: Number of Images; NF: Number of Features; MA: Min Area (m²); AA: Average Area (m²); MA: Max Area (m²) 

 
The workflow of Mask R-CNN is as follows: 

• ‘Mask R-CNN processes the image through a residual 
network to extract features and create multi-scale 
feature maps. 

• Side-joining is performed, and the feature maps at 
each stage are doubled by performing a tensor 
summation with adjacent lower layers. 

• The feature maps are fed into the Region Proposal 
Network (RPN) to generate candidate regions of 
varying sizes. These candidate regions are transferred 
along with the feature maps to the Region of Interest 
Align (RoI Align) layer, producing bounding boxes. 

• The bounding boxes are classified, and their positions 
are refined. A high-quality instance segmentation 
mask is generated for the detected object.’ (Zhan et al., 
2022). 

 
Model Training 
The model training was conducted on a system 

equipped with a 13th generation Intel(R) Core(TM) i7-
13700H 2.40 GHz processor, an NVIDIA GeForce RTX 
4060Ti graphics card, and 32 GB of RAM. For the study, 
the Train Deep Learning Model tool in ArcGIS Pro, which 
runs on the Keras deep learning framework, was used for 
the Mask R-CNN model. This tool utilizes the dataset 
created by the Export Training Data for Deep Learning tool 
and generates definitions based on the observed features. It 

iteratively processes the provided data to ensure the 
generated definitions align with the dataset (Arnold, 2023). 
While preparing the training data in the Export Training 
Data for Deep Learning tool, a coverage limitation was 
applied, and a damage classification layer was created. A 
total of 414 training samples were used, consisting of 208 
samples representing collapsed buildings after the 
earthquake and 206 representing other structures. The 
Train Deep Learning Model tool was configured with 
ResNet50 as the backbone model. 

 
Results 
In this study, post-earthquake damage assessment was 

conducted using deep learning algorithms applied to 
satellite imagery within ArcGIS Pro 3.4.0 software. The 
Mask R-CNN model was leveraged, trained with the 
ResNet50 backbone architecture. For training the Mask R-
CNN approach for building damage detection, 20 epochs 
were defined. Although ArcGIS Pro offers the maximum 
epochs value as an optional setting, it was set to 20 by 
default in this study to ensure balanced training of the data. 
Increasing this value could lead to overfitting. 
Additionally, raising the number of epochs prolongs the 
data analysis process. Considering the critical importance 
of the first 72 hours following a disaster such as an 
earthquake, keeping the number of epochs reasonable and 
expediting the analysis process is crucial. 
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Figure 6. The relationship between the loss of training data and epochs 

 
Figure 7. Deep learning result map generated using Mask R-CNN algorithm 

 
The accuracy rate of the analyses conducted in the 

context of the study was calculated as 71%. This indicates 
that the proposed method in the article is sufficiently 
accurate. However, in analyses performed using methods 
such as deep learning after a disaster like an earthquake, a 
higher confidence interval is generally expected. Since this 
study focuses on identifying collapsed buildings after an 
earthquake, each vector data point during the assessment 
was scored with an accuracy rate ranging from 0 to 100. 

The closer the accuracy rate is to 100, the greater the 
damage in that area caused by the earthquake. When Figure 
7 is examined, it is evident that the city center and its 
surroundings were significantly affected by the earthquake. 
Based on the analyses, areas with an accuracy rate of 80 or 
higher were determined to be completely destroyed. The 
undamaged data from the map basemaps represent the 
rasterized version of the existing building stock. 
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Figure 8. Visualization problems 

 
In the satellite image-based analyses conducted using 

the Mask R-CNN algorithm, it was observed that some 
classifications were incorrectly labeled by the algorithm. 
The primary reason for this issue is that the analysis was 
performed solely based on the rooftops of the buildings. 
Additionally, the presence of snow cover in the satellite 
imagery used in the analysis further complicated the 
model’s learning process (Figure 8). 

 
Discussion 

 
The analyses conducted on pre- and post-earthquake 

images demonstrate that the identified collapsed buildings 
closely match the actual damage results. However, since 
the images used do not contain information on the 
structural components of buildings (e.g., columns, beams), 
the detected damage is limited to the roof. Therefore, 
significant differences may exist between the damage 
identified using satellite imagery and the actual structural 
damage. Nevertheless, the purpose of this study is to 
rapidly identify collapsed buildings after an earthquake, 
estimate the number of structures requiring inspection, and 
assess the number of affected individuals to initiate an 
effective search and rescue process. 

In Türkiye, post-earthquake damage assessments are 
primarily conducted based on external and, if necessary, 
internal evaluations according to ATC-20 assessment 
criteria (ATCouncil, 2005; Özerol Özman et al., 2024). 
While this method is effective for long-term structural 
damage assessment, its impact during the immediate 
response phase is limited (Lozano et al., 2023). Traditional 
post-disaster assessments rely heavily on visual 
inspections by trained field teams, leading to inefficiencies, 
prolonged assessment timelines, and risks to personnel due 
to hazardous materials and debris exposure (Braik & 
Koliou, 2024; Korkmaz, 2009). However, advanced 
technologies such as remote sensing, artificial intelligence 
(AI), and data analytics hold the potential to revolutionize 
damage assessment processes (Braik & Koliou, 2024). In 
this context, Kaplan and Kaplan (2021) demonstrated that 
structural damage estimation supported by remote sensing 
data could reduce the number of buildings requiring expert 
inspection by approximately 50% after the 2020 Samos 
earthquake. Detecting and mapping the adverse effects of 
a disaster using traditional methods is quite challenging 

(Mahabir et al., 2018). Compared to conventional methods, 
GIS and remote sensing significantly reduce the time 
required for such assessments (Arikan İspir & Yildiz, 
2025). In their study, Braik and Koliou (2024) utilized deep 
learning methods for the detection and analysis of damaged 
buildings, producing highly accurate maps. In many 
studies, an accuracy rate of 70% is considered successful 
(Arikan İspir & Yildiz, 2025; Atik, 2023; Pan et al., 2020). 
Similar results were obtained in this study, where post-
earthquake satellite imagery identified collapsed buildings 
with 71% accuracy. 

While the research provides promising results for large-
scale damage mapping, there is still room for improvement 
in terms of image quality and analysis duration. Despite the 
high resolution of the Göktürk satellite image used in the 
study, the analysis was limited to identifying only 
collapsed buildings, restricting the scope of general 
damage assessment. 
 
Conclusion 

 
The earthquakes on February 6, 2023, which caused 

massive destruction in densely populated 11 urban areas, 
have highlighted the need for GIS-based analysis. GIS 
plays key role not only in numerous fields but also in 
identifying areas suitable for settlement and regions with 
high damage risk by considering the influence and 
interaction of geographical factors (Sönmez, 2011). With 
advancements in GIS and remote sensing technologies and 
the emergence of innovative approaches in AI-supported 
analytical methods, disaster research has also significantly 
benefited. For disasters such as earthquakes, industrial 
accidents, and fires, determining the affected areas 
immediately after the event is critical. For this reason, GIS, 
remote sensing and deep learning methods that enable 
holistic evaluation of the disaster area after disasters that 
cause great destruction such as earthquakes can offer 
effective solutions. 

After disasters, the primary and most crucial data 
sources are existing geographic datasets and remote 
sensing imagery. These datasets can be used to identify 
affected areas and perform earthquake impact analyses 
based on the images. UAVs and drones play a significant 
role in this process (Maraş & Sarıyıldız, 2023). In this 
study, similar images were used to detect and map 
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destroyed buildings after the earthquake. ArcGIS Pro 3.4.0 
software was utilized for the detection of collapsed 
buildings using post-disaster remotely sensed imagery with 
deep learning-based Mask R-CNN architecture. To 
validate the method used, a building damage detection 
dataset was created using GÖKTÜRK satellite images 
obtained three days after the February 6, 2023, 
Kahramanmaraş earthquake, pre-earthquake orthophotos 
from 2020, and geographic vector data. Subsequently, the 
dataset of collapsed and intact buildings was trained and 
validated using the Mask R-CNN architecture in the 
ArcGIS Pro deep learning tool “Train Deep Learning 
Model.” The analysis results demonstrated that the Mask 
R-CNN model, combined with the ResNet-50 backbone 
and trained with two different batch sizes for 20 epochs, 
produced results close to accuracy. 

The key contributions of this study are (i) the rapid 
damage assessment based on GIS and RS datasets after a 
disaster and (ii) providing information that can help 
identify priority areas for search and rescue efforts and 
accelerate early intervention processes. As a result, the 
study has proven that GIS and deep learning models can 
facilitate the initial detection and mapping of earthquake-
induced damage, supporting decision-makers effectively. 
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