The Effect of Resveratrol and Catalase on Post-Thaw Angora Buck Semen
DOI:
https://doi.org/10.24925/turjaf.v12i10.1706-1712.6956Keywords:
Buck, Sperm, Resveratrol, Catalase, CryopreservationAbstract
This research aimed to examine the impact of resveratrol and catalase on the motility, plasma membrane integrity, acrosomal membrane integrity, and mitochondrial activity of Ankara buck semen following freeze-thawed process. In this study, semen samples obtained from four mature bucks were divided into four groups: control (C), resveratrol 500 µM/ml (R), catalase 50 IU/ml (CAT), and resveratrol 500 µM/ml + catalase 50 IU/ml (CATR). After dilution with Tris/egg yolk extender, the semen samples were frozen in liquid nitrogen and then thawed for assessment. The CATR group gave the highest values across all evaluated parameters (motility, plasma membrane integrity, acrosomal membrane integrity, and mitochondrial activity) compared to the other groups (61 ± 1.0%, 72.6 ± 0.70%, 70.73 ± 0.67%, 60.9 ± 0.79%, respectively) (p<0.05). In conclusion, the combination of catalase and resveratrol significantly improved the quality of buck semen after freeze-thawed process, thereby contributing to enhanced reproductive outcomes and genetic preservation.
References
Agarwal, A., & Majzoub, A. (2017). Laboratory tests for oxidative stress. Indian Journal of Urology, 33(3). https://journals.lww.com/indianjurol/fulltext/2017/33030/laboratory_tests_for_oxidative_stress.7.aspx
Aitken, R. (1995). Free radicals, lipid peroxidation and sperm function. Reproduction, Fertility and Development, 7(4), 659-668. https://doi.org/https://doi.org/10.1071/RD9950659
Aitken, R. J., & Clarkson, J. S. (1987). Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. Reproduction, 81(2), 459-469. https://doi.org/10.1530/jrf.0.0810459
Aitken, R. J., Whiting, S., Connaughton, H., Curry, B., Reinheimer, T., & van Duin, M. (2020). A novel pathway for the induction of DNA damage in human spermatozoa involving extracellular cell-free DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 821, 111722. https://doi.org/https://doi.org/10.1016/j.mrfmmm.2020.111722
Al-Mutary, M. (2019). Effect of resveratrol supplementation to Triladyl® on the quality of ram chilled semen. The Indian Journal of Animal Sciences, 89(9), 932-937. https://doi.org/https://doi.org/10.56093/ijans.v89i9.93752
Al-Mutary, M. G. (2021). Use of antioxidants to augment semen efficiency during liquid storage and cryopreservation in livestock animals: A review. Journal of King Saud University - Science, 33(1), 101226. https://doi.org/https://doi.org/10.1016/j.jksus.2020.10.023
Asadpour, R., Jafari, R., & Tayefi-Nasrabadi, H. (2011). Effect of various levels of catalase antioxidant in semen extenders on lipid peroxidation and semen quality after the freeze-thawing bull semen. Veterinary Research Forum, 2(4), 218-221. https://vrf.iranjournals.ir/article_1545_b8f10a3b27ca619e7657bd4ce4863847.pdf
Bucak, M. N., Ataman, M. B., Başpınar, N., Uysal, O., Taşpınar, M., Bilgili, A., Öztürk, C., Güngör, Ş., İnanç, M. E., & Akal, E. (2015). Lycopene and resveratrol improve post-thaw bull sperm parameters: sperm motility, mitochondrial activity and DNA integrity. Andrologia, 47(5), 545-552. https://doi.org/https://doi.org/10.1111/and.12301
Bucak, M. N., Bodu, M., Başpınar, N., Güngör, Ş., İli, P., Acibaeva, B., Topraggaleh, T. R., & Dursun, Ş. (2019). Influence of Ellagic Acid and Ebselen on Sperm and Oxidative Stress Parameters during Liquid Preservation of Ram Semen. Cell J, 21(1), 7-13. https://doi.org/10.22074/cellj.2019.5593
Bucak, M. N., Karaşör, Ö. F., Sarı, A., Bodu, M., Ili, P., Narlıçay, S., Ataman, M. B., & Sari, F. (2024). Lipid mixtures (from a liposome kit) and melatonin improve post-thawed Angora goat sperm parameters. Cryobiology, 115, 104897. https://doi.org/https://doi.org/10.1016/j.cryobiol.2024.104897
Bucak, M. N., Keskin, N., Ili, P., Bodu, M., Akalın, P. P., Öztürk, A. E., Özkan, H., Topraggaleh, T. R., Sari, F., Başpınar, N., & Dursun, Ş. (2020). Decreasing glycerol content by co-supplementation of trehalose and taxifolin hydrate in ram semen extender: Microscopic, oxidative stress, and gene expression analyses. Cryobiology, 96, 19-29. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.09.001
Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences CMLS, 61(2), 192-208. https://doi.org/10.1007/s00018-003-3206-5
Das, S., Nandi, P. R., Sarkar, P., Tudu, K. C., Rai, S., Behera, R., Mandal, A., Mondal, M., & Karunakaran, M. (2021). Effect of superoxide dismutase, catalase, and glutathione reductase supplementation on cryopreservation of Black Bengal buck semen. Tropical Animal Health and Production, 53(6), 552. https://doi.org/10.1007/s11250-021-02995-7
de Ligny, W., Smits, R. M., Mackenzie-Proctor, R., Jordan, V., Fleischer, K., de Bruin, J. P., & Showell, M. G. (2022). Antioxidants for male subfertility. Cochrane Database of Systematic Reviews (5). https://doi.org/10.1002/14651858.CD007411.pub5
Evans, G., & Maxwell, W. C. (1987). Salamons' artificial insemination of sheep and goats No. Ed. 2, pp. xi+-194.
Falchi, L., Pau, S., Pivato, I., Bogliolo, L., & Zedda, M. T. (2020). Resveratrol supplementation and cryopreservation of buck semen. Cryobiology, 95, 60-67. https://doi.org/https://doi.org/10.1016/j.cryobiol.2020.06.005
FAO. (2023). FAO Statistical Yearbook 2023. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/28cfd24e-81a9-4ebc-b2b5-4095fe5b1dab/content/cc8166en.html
Fernández‐Santos, M. R., Domínguez‐Rebolledo, A. E., Esteso, M. C., Garde, J. J., & Martínez‐Pastor, F. (2009). Catalase supplementation on thawed bull spermatozoa abolishes the detrimental effect of oxidative stress on motility and DNA integrity. International Journal of Andrology, 32(4), 353-359. https://doi.org/10.1111/j.1365-2605.2008.00871.x
Garner, D. L., & Johnson, L. A. (1995). Viability Assessment of Mammalian Sperm Using SYBR-14 and Propidium Iodide1. Biology of Reproduction, 53(2), 276-284. https://doi.org/10.1095/biolreprod53.2.276
Garner, D. L., Thomas, C. A., Joerg, H. W., DeJarnette, J. M., & Marshall, C. E. (1997). Fluorometric Assessments of Mitochondrial Function and Viability in Cryopreserved Bovine Spermatozoa1. Biology of Reproduction, 57(6), 1401-1406. https://doi.org/10.1095/biolreprod57.6.1401
Gülçin, İ. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative Food Science & Emerging Technologies, 11(1), 210-218. https://doi.org/https://doi.org/10.1016/j.ifset.2009.07.002
Gungor, S., Ata, A., & Inanc, M. E. (2018). Effects of trehalose and catalase on the viability and kinetic parameters of cryopreserved ram sperm. Acta Scientiae Veterinariae, 46, 7-7. https://doi.org/https://doi.org/10.22456/1679-9216.83865
Hussein, A., Aseffa, S., Kuraz, B., & Bedaso, B. (2023). Breeding and milking managements and Goat production constraints in Siltie Zone SNNPR, Ethiopia. Heliyon, 9(12). https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e22573
John Aitken, R., Clarkson, J. S., & Fishel, S. (1989). Generation of Reactive Oxygen Species, Lipid Peroxidation, and Human Sperm Function. Biology of Reproduction, 41(1), 183-197. https://doi.org/10.1095/biolreprod41.1.183
Karaşör, Ö. F., Bucak, M. N., Cenariu, M., Bodu, M., Taşpınar, M., & Taşpınar, F. (2022). The Effects of Different Doses of ROCK Inhibitor, Antifreeze Protein III, and Boron Added to Semen Extender on Semen Freezeability of Ankara Bucks. Molecules, 27(22), 8070. https://www.mdpi.com/1420-3049/27/22/8070
Khalique, M. A., Rehman, H., Andrabi, S. M. H., Majeed, K. A., Ahmad, N., Fayyaz, M. H., Haider, M. S., Naz, S. S., Qureshi, I. Z., & Sulaiman, S. (2023). Antioxidant effects of zinc-oxide nanoparticles on post-thaw quality and in vivo fertility of Beetal buck spermatozoa. Small Ruminant Research, 225, 107012. https://doi.org/https://doi.org/10.1016/j.smallrumres.2023.107012
Kirkman, H. N., & Gaetani, G. F. (2007). Mammalian catalase: a venerable enzyme with new mysteries. Trends in biochemical sciences, 32(1), 44-50. https://doi.org/https://doi.org/10.1016/j.tibs.2006.11.003
Kumar, M., Kumar, A., Sachan, V., Agarwal, J., Saxena, A., Singh, A., Gupta, S., & Swain, D. (2022). Effect of Resveratrol Supplementation on the Semen Quality of Cryopreserved Hariana Bull Semen. Ruminant Science, 11(2), 475-478. https://www.anandpub.com/custom_post/43-title-effect-of-resveratrol-supplementation-on-the-semen-quality-of-cryopreserved-hariana-bull-semen/
Leonard, S. S., Xia, C., Jiang, B.-H., Stinefelt, B., Klandorf, H., Harris, G. K., & Shi, X. (2003). Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochemical and Biophysical Research Communications, 309(4), 1017-1026. https://doi.org/https://doi.org/10.1016/j.bbrc.2003.08.105
Li, C.-Y., Zhao, Y.-H., Hao, H.-S., Wang, H.-Y., Huang, J.-M., Yan, C.-L., Du, W.-H., Pang, Y.-W., Zhang, P.-P., Liu, Y., Zhu, H.-B., & Zhao, X.-M. (2018). Resveratrol significantly improves the fertilisation capacity of bovine sex-sorted semen by inhibiting apoptosis and lipid peroxidation. Scientific reports, 8(1), 7603. https://doi.org/10.1038/s41598-018-25687-z
Longobardi, V., Zullo, G., Salzano, A., De Canditiis, C., Cammarano, A., De Luise, L., Puzio, M. V., Neglia, G., & Gasparrini, B. (2017). Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology, 88, 1-8. https://doi.org/https://doi.org/10.1016/j.theriogenology.2016.09.046
Lv, C., Larbi, A., Wu, G., Hong, Q., & Quan, G. (2019). Improving the quality of cryopreserved goat semen with a commercial bull extender supplemented with resveratrol. Animal Reproduction Science, 208, 106127. https://doi.org/https://doi.org/10.1016/j.anireprosci.2019.106127
Mishra, B., Alam, M., Khandokar, M., Mazumder, S., & Munsi, M. (2010). Qualities of goat semen in Tris-Citrate-Glucose extender containing glutathione. The Bangladesh Veterinarian, 27(2), 46-55. https://doi.org/10.3329/bvet.v27i2.7554
Nagy, S., Jansen, J., Topper, E. K., & Gadella, B. M. (2003). A Triple-Stain Flow Cytometric Method to Assess Plasma- and Acrosome-Membrane Integrity of Cryopreserved Bovine Sperm Immediately after Thawing in Presence of Egg-Yolk Particles1. Biology of Reproduction, 68(5), 1828-1835. https://doi.org/10.1095/biolreprod.102.011445
Najafi, A., Daghigh Kia, H., Hamishehkar, H., Moghaddam, G., & Alijani, S. (2019). Effect of resveratrol-loaded nanostructured lipid carriers supplementation in cryopreservation medium on post-thawed sperm quality and fertility of roosters. Animal Reproduction Science, 201, 32-40. https://doi.org/https://doi.org/10.1016/j.anireprosci.2018.12.006
Ourique, G. M., Finamor, I. A., Saccol, E. M. H., Riffel, A. P. K., Pês, T. S., Gutierrez, K., Gonçalves, P. B. D., Baldisserotto, B., Pavanato, M. A., & Barreto, K. P. (2013). Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. Reproductive Toxicology, 37, 31-39. https://doi.org/https://doi.org/10.1016/j.reprotox.2013.01.006
Pellicer-Rubio, M.-T., Magallon, T., & Combarnous, Y. (1997). Deterioration of Goat Sperm Viability in Milk Extenders is due to a Bulbourethral 60-Kilodalton Glycoprotein with Triglyceride Lipase Activity1. Biology of Reproduction, 57(5), 1023-1031. https://doi.org/10.1095/biolreprod57.5.1023
Percy, M. E. (1984). Catalase: an old enzyme with a new role? Canadian Journal of Biochemistry and Cell Biology, 62(10), 1006-1014. https://doi.org/10.1139/o84-129 %M 6095974
Pervaiz, S., & Holme, A. L. (2009). Resveratrol: Its Biologic Targets and Functional Activity. Antioxidants & Redox Signaling, 11(11), 2851-2897. https://doi.org/10.1089/ars.2008.2412
Purdy, P. (2006). A review on goat sperm cryopreservation. Small Ruminant Research, 63(3), 215-225. https://doi.org/https://doi.org/10.1016/j.smallrumres.2005.02.015
Raheem, K. A., Basiru, A., Raji, L. O., & Odetokun, I. A. (2024). Productive performance of goat. Trends in Clinical Diseases, Production and Management of Goats, 163-177. https://doi.org/https://doi.org/10.1016/B978-0-443-23696-9.00001-8
Ranjan, R., Kumar, M., Gangwar, C., & Kharche, S. D. (2022). Developments in Goat Semen Cryopreservations. Animal Reproduction Update, 1(1), 41-45. https://doi.org/10.48165/aru.2021.1205
Ranjan, R., Singh, P., Gangwar, C., Singh, S., Swain, D., & Kharche, S. (2021). Fortification of catalase improves post thaw fertility of goat semen. Iranian Journal of Applied Animal Science, 11(3), 587-593. https://sanad.iau.ir/journal/ijas/Article/684795?jid=684795
Said, T. M., Fischer-Hammadeh, C., Hamad, M., Refaat, K., & Hammadeh, M. E. (2012). Oxidative Stress, DNA Damage, and Apoptosis in Male Infertility. In A. Agarwal, R. J. Aitken, & J. G. Alvarez (Eds.), Studies on men's health and fertility (pp. 433-448). Humana Press. https://doi.org/10.1007/978-1-61779-776-7_20
Shabani Nashtaei, M., Amidi, F., Sedighi Gilani, M. A., Aleyasin, A., Bakhshalizadeh, S., Naji, M., & Nekoonam, S. (2017). Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5’ AMP-activated protein kinase activation. Andrology, 5(2), 313-326. https://doi.org/https://doi.org/10.1111/andr.12306
Shafiei, M., Forouzanfar, M., Hosseini, S. M., & Nasr Esfahani, M. H. (2015). The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen. Theriogenology, 83(8), 1321-1327. https://doi.org/https://doi.org/10.1016/j.theriogenology.2015.01.018
Shah, S. A. H., Andrabi, S. M. H., & Qureshi, I. Z. (2016). Effect of equilibration times, freezing, and thawing rates on post-thaw quality of buffalo (Bubalus bubalis) bull spermatozoa. Andrology, 4(5), 972-976. https://doi.org/https://doi.org/10.1111/andr.12214
Sias, B., Ferrato, F., Pellicer-Rubio, M.-T., Forgerit, Y., Guillouet, P., Leboeuf, B., & Carrière, F. (2005). Cloning and seasonal secretion of the pancreatic lipase-related protein 2 present in goat seminal plasma. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1686(3), 169-180. https://doi.org/https://doi.org/10.1016/j.bbalip.2004.09.008
Simon, L., Emery, B., & Carrell, D. T. (2019). Sperm DNA Fragmentation: Consequences for Reproduction. In E. Baldi & M. Muratori (Eds.), Genetic Damage in Human Spermatozoa (pp. 87-105). Springer International Publishing. https://doi.org/10.1007/978-3-030-21664-1_6
Tremellen, K. (2008). Oxidative stress and male infertility—a clinical perspective. Human Reproduction Update, 14(3), 243-258. https://doi.org/10.1093/humupd/dmn004
Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in Cryopreservation of Bull Sperm [Review]. Frontiers in Veterinary Science, 6. https://doi.org/10.3389/fvets.2019.00268
Zamanian, M. Y., Parra, R. M. R., Soltani, A., Kujawska, M., Mustafa, Y. F., Raheem, G., Al-Awsi, L., Lafta, H. A., Taheri, N., Heidari, M., Golmohammadi, M., & Bazmandegan, G. (2023). Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson’s disease: an overview and update on new developments. Molecular Biology Reports, 50(6), 5455-5464. https://doi.org/10.1007/s11033-023-08409-1
Zhou, J., Yang, Z., Shen, R., Zhong, W., Zheng, H., Chen, Z., Tang, J., & Zhu, J. (2021). Resveratrol Improves Mitochondrial Biogenesis Function and Activates PGC-1α Pathway in a Preclinical Model of Early Brain Injury Following Subarachnoid Hemorrhage [Original Research]. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.620683
Zhu, Z., Li, R., Fan, X., Lv, Y., Zheng, Y., Hoque, S. A. M., Wu, D., & Zeng, W. (2019). Resveratrol Improves Boar Sperm Quality via 5 ′AMP-Activated Protein Kinase Activation during Cryopreservation. Oxidative Medicine and Cellular Longevity, 2019(1), 5921503. https://doi.org/https://doi.org/10.1155/2019/5921503
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.