Optimization approaches for higher production of single cell protein from Sugarcane Bagasse by Aspergillus niger: Potential Industrial Use and Environmental Management
DOI:
https://doi.org/10.24925/turjaf.v13i4.866-873.7228Keywords:
Single-cell protein, Aspergillus niger, Sugarcane bagasse, Biomass Production, OptimizationAbstract
The global dilemma of waste management and food scarcity require novel solutions that fulfill both environmental concerns and nutritional requirements. To address these significant problems in a sustainable manner, this research investigates the possibility of producing single cell protein (SCP) from sugarcane bagasse, an abundant industrial waste product in the presence of Aspergillus niger strain. The production of SCP was further optimized by inducing variations in Physico-chemical properties to increase the protein yield. These parameters include temperature, pH, fermentation time, inoculum size, carbon and nitrogen sources. The results of this study revealed that A. niger showed maximum production of biomass (24.0±0.02%) at the temperature of 25°C after 7 days of incubation time with the pH adjusted to 5. In conclusion, this multidisciplinary strategy emphasizes how essential biotechnology is to be advancing the idea of how sugarcane bagasse could potentially be used as a beneficial asset to help feed the world's expanding population.
References
Abdelghany, T., El-Naggar, M. A., Ganash, M. A., & Al Abboud, M. A. (2017). PCR identification of Aspergillus niger with using natural additives for controlling and detection of malformins and maltoryzine production by HPLC. BioNanoScience, 7, 588–596.
Adav, S. S., Li, A. A., Manavalan, A., Punt, P., & Sze, S. K. (2010). Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. Journal of Proteome Research, 9, 3932–3940.
Alshannaq, A. F., & Yu, J.-H. (2020). A liquid chromatographic method for rapid and sensitive analysis of aflatoxins in laboratory fungal cultures. Toxins, 12, 93.
Anupama, R. P., & Ravindra, P. (2000). Value-added food: single cell protein. Biotechnology advances, 18, 459–479.
Azarm, A., Zia, M., Madani, M., Shakib, P., & Mohajer, R. (2022). Detection of Aflatoxins in Peanut Samples Using HPLC in Isfahan, Iran. Herbal Medicines Journal (Herb Med J), 7, 145–149.
Bajaya, T., Ghasolia, R., Bajya, M., & Shivran, M. (2022). Variability and Virulence Analysis of Aspergillus niger Isolates Causing Collar Rot of Groundnut. Legume Research: An International Journal, 45.
Bajpai, P. (2017). Single cell protein production from lignocellulosic biomass. Springer.
Bekatorou, A., Psarianos, C., & Koutinas, A. A. (2006). Production of food grade yeasts. Food Technology & Biotechnology, 44.
Clapp, J. (2023). Concentration and crises: exploring the deep roots of vulnerability in the global industrial food system. The Journal of Peasant Studies, 50, 1–25.
Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T., & Kvesitadze, G. (2008). Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource technology, 99, 457–462.
Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged culture fermentation of “higher fungi”: the macrofungi. Advances in applied microbiology, 63, 33–103.
García-Garibay, M., Gómez-Ruiz, L., Cruz-Guerrero, A., & Bárzana, E. (2014). Single cell protein: Yeasts and Bacteria. In Encyclopedia of Food Microbiology (pp. 425–430). Elsevier.
Guo, H.-n., Wu, S.-b., Tian, Y.-j., Zhang, J., & Liu, H.-t. (2021). Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresource technology, 319, 124114.
Ibrahim, F., Jalal, H., Khan, A., Asghar, M., Iqbal, J., Ahmed, A., & Nadeem, G. (2016). Prevalence of aflatoxigenic Aspergillus in food and feed samples from Karachi. J. Infect. Mol. Biol. Preval, 4, 1–8.
Koukoumaki, D. I., Tsouko, E., Papanikolaou, S., Ioannou, Z., Diamantopoulou, P., & Sarris, D. (2023). Recent advances in the production of single cell protein from renewable resources and applications. Carbon Resources Conversion.
Labuza, T. P., Le Roux, J., Fan, T., & Tannenbaum, S. (1970). Engineering factors in single‐cell protein production. II. Spray drying and cell viability. Biotechnology and Bioengineering, 12, 135–140.
Mimoune, N. A., Riba, A., Verheecke, C., Mathieu, F., & Sabaou, N. (2016). Fungal contamination and mycotoxin production by Aspergillus spp. in nuts and sesame seeds. The Journal of Microbiology, Biotechnology and Food Sciences, 5, 301.
Mondal, A. K., Sengupta, S., Bhowal, J., & Bhattacharya, D. (2012). Utilization of fruit wastes in producing single cell protein. International Journal of Science, Environment and Technology, 1, 430–438.
Nangul, A., & Bhatia, R. (2013). Microorganisms: a marvelous source of single cell proteins. Journal of microbiology, biotechnology and food sciences, 3, 15–18.
Nasseri, A., Rasoul-Amini, S., Morowvat, M., & Ghasemi, Y. (2011). Single cell protein: production and process. American Journal of food technology, 6, 103–116.
Rajendran, S., Kapilan, R., & Vasantharuba, S. (2018). Single cell protein production from papaw and banana fruit juices using baker’s yeast. American-Euroasian J. Agric. & Environ. Sci, 18, 168–172.
Razzaq, Z. U., Khan, M. K., Maan, A. A., & Rahman, S. U. (2020). Characterization of single cell protein from Saccharomyces cerevisiae for nutritional, functional and antioxidant properties. Journal of food measurement and Characterization, 14, 2520–2528.
Riesute, R., Salomskiene, J., Moreno, D. S., & Gustiene, S. (2021). Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends in Food Science & Technology, 108, 1–10.
Ritala, A., Häkkinen, S. T., Toivari, M., & Wiebe, M. G. (2017). Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in microbiology, 8, 2009.
Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5, 1–15.
Samson, R. A., Visagie, C. M., Houbraken, J., Hong, S.-B., Hubka, V., Klaassen, C. H., & Tanney, J. B. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in mycology, 78, 141–173.
Shi, C., He, J., Yu, J., Yu, B., Mao, X., Zheng, P., & Chen, D. (2016). Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal. PloS one, 11, e0153230.
Susca, A., Stea, G., Mulé, G., & Perrone, G. (2007). Polymerase chain reaction (PCR) identification of Aspergillus niger and Aspergillus tubingensis based on the calmodulin gene. Food Additives and Contaminants, 24, 1154–1160.
Thiviya, P., Kapilan, R., & Madhujith, T. (2019). Production of single cell protein from pineapple peel waste using palmyrahtoddy yeast.
Ukaegbu-Obi, K. M. (2016). Single cell protein: A resort to global protein challenge and waste management. J Microbiol Microb Technol, 1, 5.
Vethathirri, R. S., Santillan, E., & Wuertz, S. (2021). Microbial community-based protein production from wastewater for animal feed applications. Bioresource Technology, 341, 125723.
Wada, O. Z., Vincent, A. S., & Mackey, H. R. (2022). Single-cell protein production from purple non-sulphur bacteria-based wastewater treatment. Reviews in Environmental Science and Bio/Technology, 21, 931–956.
Xu, M., Yang, J., Wu, J., Chi, Y., & Xie, L. (2015). First report of Aspergillus niger causing root rot of peanut in China. Plant Disease, 99, 284–284.
Zaki, M., & Said, S. (2018). Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation. IOP Conference Series: Materials science and engineering.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.