Artificial Intelligence-Based Prediction of Some Pomegranate Diseases
DOI:
https://doi.org/10.24925/turjaf.v13i4.946-957.7373Keywords:
Deep Learning, Support Vector Machines, Convolutional Neural Networks, Machine Learning, Pomegranate Disease ClassificationAbstract
The early diagnosis and classification of plant diseases in the agricultural sector is of great importance for reducing crop losses and increasing productivity. Particularly, the pomegranate is a fruit with high economic value, and its diseases can seriously affect both quality and production. In this context, the use of machine learning and deep learning methods for the diagnosis and classification of various pomegranate diseases is being investigated. A total of 5099 pomegranate images collected from farms in the Karnataka state of India have been used. The images are classified into five categories: Early Leaf Burn, Black Spot Disease, Bacterial Blight, Leaf Spot Disease, and Healthy. The dataset has been classified using Support Vector Machines (SVM), Decision Trees (DT), and Convolutional Neural Networks (CNN). The findings show that CNN models provide higher accuracy rates in the detection of pomegranate diseases compared to other machine learning methods. Specifically, the CNN model with two convolutional layers exhibited the best performance with an accuracy rate of 88%. Decision Trees, on the other hand, had lower accuracy rates compared to other models. It has been demonstrated that deep learning and machine learning models can be effectively used for the diagnosis of plant diseases and can increase efficiency in the agricultural sector.
References
Akhtar, F., Partheeban, N., Daniel, A., Sriramulu, S., Mehra, S., & Gupta, N. (2021). Plant disease detection based on deep learning approach. In 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICA-CITE) (pp. 74-77). IEEE. https://doi.org/10.1109/ICACITE51222.2021.9404647.
Anand, V., Gupta, S., Gupta, R., Alshahrani, H., Hamdi, M., Al Reshan, M. S., & Shaikh, A. (2023). Plant Disease Diagnosis Using Transfer Learning Based Models. In 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE) (pp. 337-340). IEEE. https://doi.org/10.1109/CSCE60160.2023.00058.
Armağan, H. (2023). Polinom Çekirdekli SVM Algoritmalarında Hiper-Parametre Optimizasyonu ve Uygulaması. Gazi Journal of Engineering Sciences (GJES)/Gazi Mühendislik Bilimleri Dergisi, 9(4). https://doi.org/10.30855/gmbd.0705S21.
Atasoy, N. A., & Tabak, D. (2018). Destek Vektör Makineleri Kullanarak Yüz Tanıma Uygulaması Geliştirilmesi. Engineering Sciences, 13(2), 119-127. https://doi.org/10.12739/NWSA.2018.13.2.1A0406.
Ayık, Y. Z., Özdemir, A., & Yavuz, U. (2010). Lise türü ve lise mezuniyet başarisinin, kazanılan fakülte ile ilişkisinin veri madenciliği tekniği ile analizi. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 10(2), 441-454.
Berrar, D. (2019). Cross-validation. https://doi.org/10.1016/B978-0-12-809633-8.20349-X
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297. http://dx.doi.org/10.1007/BF00994018.
Dhakate, M., & Ingole, A. B. (2015). Diagnosis of pomegranate plant diseases using neural network. In 2015 fifth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG) (pp. 1-4). IEEE. https://doi.org/10.1109/NCVPRIPG.2015.7490056.
Dutta, K. K., Victor, A., Nathu, A. G., Habib, M. A., & Para-shar, D. (2020). Kannada alphabets recognition using decision tree and random forest models. In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS) (pp. 534-541). IEEE. https://doi.org/10.1109/ICISS49785.2020.9315972.
Gıda ve Tarım Örgütü. (2021). Türkiye gıda israfıyla mücadele eğitimlerine devam ediyor. Erişim tarihi: 06.01.2025. https://www.fao.org/turkiye/news/detail-news/tr/c/1418778/
Gobalakrishnan, N., Pradeep, K., Raman, C. J., Ali, L. J., & Gopinath, M. P. (2020). A systematic review on image processing and machine learning techniques for detecting plant diseases. In 2020 international conference on communication and signal processing (ICCSP) (pp. 0465-0468). IEEE. https://doi.org/10.1109/ICCSP48568.2020.9182046.
Gupta, A., Mishra, S., & Kukreja, V. (2024). Auto-mated Detection and Classification of Pomegranate Diseases Using CNN and Random Forest. In 2024 International Conference on Automation and Computation (AUTOCOM) (pp. 62-66). IEEE. https://doi.org/10.1109/AUTOCOM60220.2024.10486122.
Güran, A., Uysal, M., & Doğrusöz, Ö. (2014). Destek vektör makineleri parametre optimizasyonunun duygu analizi üzerindeki etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 16(48), 86-93. https://doi.org/10.17671/BTD.36087.
Hou, Y., Edara, P., & Sun, C. (2013). Modeling mandatory lane changing using Bayes classifier and decision trees. IEEE Transactions on Intelligent Transportation Systems, 15(2), 647-655. https://doi.org/10.1109/TITS.2013.2285337.
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing in-ternal covariate shift. In International conference on machine learning (pp. 448-456). pmlr. https://doi.org/10.48550/arXiv.1502.03167.
Jaworski, M., Duda, P., & Rutkowski, L. (2017). New split-ting criteria for decision trees in stationary data streams. IEEE transactions on neural networks and learning systems, 29(6), 2516-2529. https://doi.org/10.1109/TNNLS.2017.2698204.
Karki, S., Basak, J. K., Tamrakar, N., Deb, N. C., Paudel, B., Kook, J. H., ... & Kim, H. T. (2024). Strawberry disease detection using transfer learning of deep convolutional neural networks. Scientia Horticulturae, 332, 113241. https://doi.org/10.1016/j.scienta.2024.113241.
Kaya, B., & Önal, M. (2021). A CNN Based Method for Detecting Covid-19 from CT Images. Computer Science, (Special), 1-10. https://doi.org/10.53070/BBD.990793.
Kayalı, N. Z., & Omurca, S. İ. (2021). Konvolüsyonel Sinir Ağları (CNN) ile Çin Sayı Örüntülerinin Sınıflandırması. Computer Science, (Special), 184-191. https://doi.org/10.53070/BBD.989668.
Liu, B., Zhang, Y., He, D., & Li, Y. (2017). Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry, 10(1), 11. https://doi.org/10.3390/SYM10010011.
Meng, X., Zhou, Q., Hu, J., Shu, L., & Jiang, P. (2017). A global support vector regression based on sorted k-fold method. In 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 2169-2173). IEEE. https://doi.org/10.1109/IEEM.2017.8290276.
Onan, A. (2015). Şirket iflaslarının tahminlenmesinde karar ağacı algoritmalarının karşılaştırmalı başarım analizi. Bilişim Teknolojileri Dergisi, 8(1). https://doi.org/10.17671/btd.36087.
Pakruddin, B., & Hemavathy, R. (2024a). A comprehensive standardized dataset of numerous pomegranate fruit diseases for deep learning. Data in Brief, 54, 110284. https://doi.org/10.1016/j.dib.2024.110284.
Pakruddin, B., & Hemavathy, R. (2024b). Development of a Pomegranate Fruit Disease Detection and Classification Model using Deep Learning. Indian Journal of Agricultural Research, 58.
Pawara, S., Nawale, D., Patil, K., & Mahajan, R. (2018). Early detection of pomegranate disease using machine learning and internet of things. In 2018 3rd International Conference for Convergence in Technology (I2CT) (pp. 1-4). IEEE. https://doi.org/10.1109/I2CT.2018.8529583.
Rana, H. S., Manjunatha, N., Pokhare, S. S., Marathe, R. A., & Rajan, J. (2024). Convolutional Neural Network Based Approach for Automatic Detection of Diseases from Pomegranate Plants. In 2024 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER) (pp. 66-72). IEEE. https://doi.org/10.1109 / DISCOVER62353.2024.10750668
Sharath, D. M., Kumar, S. A., Rohan, M. G., & Prathap, C. (2019). Image based plant disease detection in pomegranate plant for bacterial blight. In 2019 international conference on communication and signal processing (ICCSP) (pp. 0645-0649). IEEE. https://doi.org/ 10.1109/ICCSP.2019.8698007.
Sharath, D. M., Rohan, M. G., Kumar, S. A., & Prathap, C. (2020). Disease detection in pomegranate using image processing. In 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184) (pp. 994-999). IEEE. https://doi.org/ 10.1109/ICOEI48184.2020.9142972.
Silviya, S. A., Sriman, B., Shamini, P. B., Elangovan, A., & Keerthana, N. V. (2022). Deep learning-based plant leaf disease detection and classification. In 2022 4th international conference on inventive research in computing applications (ICIRCA) (pp. 702-710). IEEE. https://doi.org/ 10.1109/ICIRCA54612.2022.9985548.
Singh, U. P., Chouhan, S. S., Jain, S., & Jain, S. (2019). Multilayer convolution neural network for the classification of mango leaves infected by anthracnose dis-ease. IEEE access, 7, 43721-43729. https://doi.org/ 10.1109/ACCESS.2019.2907383.
Tiwari, V., Joshi, R. C., & Dutta, M. K. (2021). Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecological Informatics, 63, 101289. https://doi.org/10.1016/j.ecoinf.2021.101289.
Wakhare, P., Neduncheliyan, S., & Mane, P. B. (2023). Machine Learning for Accurate and Efficient Pomegranate Fruit Disease Detection: A Novel Approach to Improve Crop Yield and Quality. In 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCUBEA58933.2023.10391966
Yakut, Y. B. E. T. Y., Yakut, E., & Yavuz, S. (2014). Yapay Sinir Ağlari Ve Destek Vektör Makineleri Yöntemleriyle Borsa Endeksi Tahmini. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 19(1), 139-157.
Yılmaz, A. (2021). Çok kanallı CNN mimarisi ile X-Ray görüntülerinden COVID-19 tanısı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4), 1761-1774. https://doi.org/10.17341/gazimmfd.746883.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.