Yield Stability Evaluation of Antioxidant-Enriched Rice (Oryza sativa L.) Genotypes at Multi-Environments Using AMMI and GGE Biplot Model

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i5.1152-1162.7391

Keywords:

Antioxidant, AMMI, GGE, GEI, Stability, Yield

Abstract

Bangladesh Rice Research Institute (BRRI) have developed many high valued rice varieties and advanced rice genotypes including anti-oxidant properties Cyanidin-3-O-glucoside (C3G), phenolic compounds. This study evaluated the performance and stability of two antioxidant-enriched rice genotypes BR12836-4R-63 (V1) and BR12836-4R-312 (V2), along with two released varieties BRRI dhan34 (V3) and BRRI dhan70 (V4) as checks across ten agro-ecological zones in Bangladesh (Satkhira, Bogura, Cumilla, Feni, Gopalganj, Barisal, Rajshahi, Rangpur, Kushtia, and Gazipur) during the 2023 wet (Aman) season. The study was conducted using randomized complete block design (RCBD) with three replications in all the regions. Yield performance and stability of the genotypes were analyzed using AMMI and GGE biplot models. Significant genotype-environment interactions (GEI) were observed, particularly for grain yield (GY), plant height (PHT), and thousand-grain weight (TGW). The highest grain yield was recorded for V4 (3.6 t ha⁻¹), followed by V2 (3.4 t ha⁻¹) and V1 (3.1 t ha⁻¹), with the lowest yield observed in V3 (2.9 t ha⁻¹). Additionally, V2 exhibited a shorter growth duration (130 days) than the check varieties, suggesting its potential for early-maturity breeding programs. The AMMI analysis revealed that V4 and V2 were the most stable and high-yielding genotypes, whereas V1 and V3 showed poor adaptability. The GGE biplot identified BRRI dhan70 (V4) as the stable and adaptable genotype, while BR12836-4R-312 (V2) demonstrated strong performance in specific environments, particularly in Cumilla, Feni, and Rajshahi. The findings suggest that the advanced line BR12836-4R-312 would be released through national system of Bangladesh as anti-oxidant enriched rice variety.

References

Ahmed, M., Haq, M. E., Hossain, M., Shefat-Al-Maruf, M., & Hasan, M. M. (2017). Performance of Four Different Rice Cultivars under Drought Stress in the North-Western Part of Bangladesh. International Journal of Agriculture and Forestry, 2017, 134–139. https://doi.org/10.5923/j.ijaf.20170706.03

Bangladesh Rice Knowledge Bank | Bangladesh Rice Knowledge Bank. (n.d.). Retrieved October 12, 2024, from https://knowledgebank-brri.org/

Bangladesh Rice Research Institute, (n.d.). Retrieved October 12, 2024, from https://brri.gov.bd/site/page/2ded3c9f-593b-4434-9dda-20e6f77d47ab

Biswash, M., Kabir, H., Morshed, M., Khatun, M., Ahmed, K., Mir Hossain, M., Hasan, M. M., Zahan, A., Shamsunnaher, F., Islam, R., & Islam, A. (2023). Adaptation of some cold tolerant Rice genotypes in Haor areas of Bangladesh. International Journal of Biosciences (IJB), 22, 33–40. https://doi.org/10.12692/ijb/22.2.33-40

Chen, Z., Wang, Q., Ma, J., Zou, P., & Jiang, L. (2020). Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system. Scientific Reports, 10(1), 10432. https://doi.org/10.1038/s41598-020-67110-6

Climate Information Management System. (n.d.). Retrieved December 1, 2024, from http://apps.barc.gov.bd/climate/dashboard

Dewan, M., Haq, M., Hasan, M. M., Tareq, Z., & Haq, M. E. (2017). Genotype x environment interaction effects on the field performance of stem amaranth (Amaranthus tricolor L.) abstract. Bangladesh Journal of Plant Breeding and Genetics, 30, 21–31.

Donoso-Ñanculao, G., Paredes, M., Becerra, V., Arrepol, C., & Balzarini, M. (2016). GGE biplot analysis of multi-environment yield trials of rice produced in a temperate climate. Chilean Journal of Agricultural Research, 76(2), 152–157.

Esan, V. I., Oke, G. O., Ogunbode, T. O., & Obisesan, I. A. (2023). AMMI and GGE biplot analyses of Bambara groundnut [Vigna subterranea (L.) Verdc.] for agronomic performances under three environmental conditions. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.997429

Feeding the world: Revolutionary rice. (n.d.). The Queen’s College, Oxford. Retrieved October 12, 2024, from https://www.queens.ox.ac.uk/research-at-queens/how-do-we-feed-the-world-2/

fpmuMR 2021.pdf. (n.d.). Retrieved October 11, 2024, from https://mofood.portal.gov.bd/sites/default/files/files/mofood.portal.gov.bd/page/93378623_f485_4faf_926d_9f035304fbcc/fpmuMR%202021.pdf

Gauch R., H., & Zobel, W. (1996). AMMI Analysis of Yield Trials. In H. G. Gauch & M. Kang (Eds.), Genotype-by-Environment Interaction (pp. 85–122). CRC Press. https://doi.org/10.1201/9781420049374.ch4

Ghasemzadeh, A., Karbalaii, M. T., Jaafar, H. Z. E., & Rahmat, A. (2018). Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal, 12(1), 17. https://doi.org/10.1186/s13065-018-0382-9

Islam, M. A. (2020). A Time Series Analysis for Supply Response Scenario of Food Grains in Bangladesh: The Quest of Structural Changes. Journal of Agriculture, Food and Environment (JAFE) | ISSN (Online Version): 2708 - 5694, 1(3), Article 3. https://doi.org/10.47440/JAFE.2020.1302

Kabir, M., Salam, M., Islam, A., Sarkar, M., Mamun, M., Rahman, M., Nessa, B., Kabir, M., Shozib, H., Hossain, Md. B., Chowdhury, A., Nasim, M., Iftekharuddaula, K., Hossain, M., Bhuiyan, M., Karmakar, B., Rahman, M., Haque, M. M., Khatun, M., & Rahman, N. Md. F. (2021). Doubling Rice Productivity in Bangladesh: A Way to Achieving SDG 2 and Moving Forward. Bangladesh Rice Journal, 24, 1–47. https://doi.org/10.3329/brj.v24i2.53447

Kader, Md. A., Haq, M. E., Majumder, R., & Hore, T. (2020). Early Maturing Drought Tolerant Rice Variety BRRI dhan71 Suitable for Drought Prone Environment in Bangladesh. International Journal of Plant & Soil Science, 32, 1–11.

Karmakar, B., Ahmed, B., Biswash, M., & Hasan, M. M. (2020). Adaptation of Promising Rice Genotypes for Transplant Aus Season.

Karmakar, B., Mamun, M., Rahman, M., Islam, M., Islam, M., Mukul, M., Shamsunnaher, F., Zahan, A., Barua, R., Biswash, M., Parveen, S., Akter, S., Shaikh, N., & Ahmed, B. (2019). Adaptation of Promising Rice Genotypes for Broadcast Aus Season. Bangladesh Rice J., vol 23, no. 2, page no. 35-48, (DOI:10.3329/brj.v23i2.48246). (p. 48).

Kaya, Y., Akçura, M., & Taner, S. (2006). GGE-biplot analysis of multi-environment yield trials in bread wheat. Turkish Journal of Agriculture and Forestry, 30(5), 325–337.

Lakew, T., Dessie, A., Tariku, S., & Abebe, D. (2017). Evaluation of performance and yield stability analysis based on AMMI and GGE models in introduced upland rice genotypes tested across Northwest Ethiopia. Int. J. Res. Stud. Agric. Sci, 3, 17–24.

Lu, A., Duan, P., Xie, J., Gao, H., Chen, M., Gong, Y., Li, J., & Xu, H. (2022). Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. European Journal of Pharmacology, 934, 175299. https://doi.org/10.1016/j.ejphar.2022.175299

Malabayabas, A. J. B., Kajisa, K., Mazid, M. A., Palis, F. G., & Johnson, D. E. (2014). Impacts of direct-seeded and early-maturing varieties of rice on mitigating seasonal hunger for farming communities in northwest Bangladesh. International Journal of Agricultural Sustainability, 12(4), 459–470. https://doi.org/10.1080/14735903.2014.927980

Mendoza-Sarmiento, D., Mistades, E. V., & Hill, A. M. (2023). Effect of Pigmented Rice Consumption on Cardiometabolic Risk Factors: A Systematic Review of Randomized Controlled Trials. Current Nutrition Reports, 12(4), 797–812. https://doi.org/10.1007/s13668-023-00496-7

Rahman, M., Shahidul, M., Bir, H., Islam, M., Mohammad, M. A., Mohammad, N.-N., Nurun-Nabi Mazumder, Nain, J., Islam, M., Islam, M., Oh, T.-K., & Park, K. (2018). Impact of short duration and high yielding aman rice varieties in Manga areas of Bangladesh. Bioscience Research, 15.

Sandhu, N., Yadaw, R. B., Chaudhary, B., Prasai, H., Iftekharuddaula, K., Venkateshwarlu, C., Annamalai, A., Xangsayasane, P., Battan, K. R., Ram, M., Cruz, M. T. S., Pablico, P., Maturan, P. C., Raman, K. A., Catolos, M., & Kumar, A. (2019). Evaluating the Performance of Rice Genotypes for Improving Yield and Adaptability Under Direct Seeded Aerobic Cultivation Conditions. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00159

Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., & Abbasian, A. (2017a). Evaluation of Genotype × Environment Interaction in Rice Based on AMMI Model in Iran. Rice Science, 24(3), 173–180. https://doi.org/10.1016/j.rsci.2017.02.001

Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., & Abbasian, A. (2017b). Evaluation of Genotype × Environment Interaction in Rice Based on AMMI Model in Iran. Rice Science, 24(3), 173–180. https://doi.org/10.1016/j.rsci.2017.02.001

Sharma, N., & KHANNA, R. (2020). Rice Grain Quality: Current Developments and Future Prospects. https://doi.org/10.5772/intechopen.89367

Sultana, S., Faruque, M., & Islam, M. R. (2022). Rice grain quality parameters and determination tools: A review on the current developments and future prospects. International Journal of Food Properties, 25(1), 1063–1078. https://doi.org/10.1080/10942912.2022.2071295

Team, R. C. (2020). R A language and environment for statistical computing, R Foundation for Statistical. In Computing. https://cir.nii.ac.jp/crid/1370298755636824325

Yan, W., & Kang, M. S. (2002a). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press. https://doi.org/10.1201/9781420040371

Yan, W., & Kang, M. S. (2002b). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press. https://doi.org/10.1201/9781420040371

Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007). GGE Biplot vs. AMMI Analysis of Genotype‐by‐Environment Data. Crop Science, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374

Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623–645. https://doi.org/10.4141/P05-169

Zafar, S., & Jianlong, X. (2023). Recent Advances to Enhance Nutritional Quality of Rice. Rice Science, 30(6), 523–536. https://doi.org/10.1016/j.rsci.2023.05.004

Zhao, H., Mo, Z., Lin, Q., Pan, S., Duan, M., Tian, H., Wang, S., Tang, X., Zhao, H., Mo, Z., Lin, Q., Pan, S., Duan, M., Tian, H., Wang, S., & Tang, X. (2020). Relationships between grain yield and agronomic traits of rice in southern China. Chilean Journal of Agricultural Research, 80(1), 72–79. https://doi.org/10.4067/S0718-58392020000100072

Downloads

Published

21.05.2025

How to Cite

Mukul , M. H. R., Hasan, M. M., Shamsunnaher, Zahan, A., Morshed, M. N., Ahmed, K. K., Biswash, M. R., Maniruzzaman, S., Kabir, M. H., & Karmakar, B. (2025). Yield Stability Evaluation of Antioxidant-Enriched Rice (Oryza sativa L.) Genotypes at Multi-Environments Using AMMI and GGE Biplot Model. Turkish Journal of Agriculture - Food Science and Technology, 13(5), 1152–1162. https://doi.org/10.24925/turjaf.v13i5.1152-1162.7391

Issue

Section

Research Paper