Applications of Nanotechnology in Food Processing, Packaging and Food Safety Risks
DOI:
https://doi.org/10.24925/turjaf.v13i5.1344-1353.7407Keywords:
Nanotechnology, Food Processing, Food Packaging, Food Hazard, Food SafetyAbstract
While nanotechnology is widely applied in diverse fields like agriculture, biochemistry, and medicine, it remains a rapidly advancing discipline that introduces more complex applications in food systems compared to traditional technologies. The rapid advancement of nanotechnology has brought significant changes to multiple aspects of food science, including processing, packaging, storage, transportation, functionality, and safety. Various nanostructured materials, ranging from inorganic metals, metal oxides, and their composites to bioactive agents incorporated into organic nanoparticles, have been employed within the food industry. Regardless of the substantial advantages of nanotechnology, there are growing concerns about its use, mainly related to the potential accumulation of nanostructured materials in the human body and the environment, leading to various health and safety risks. Therefore, it is crucial to consider safety and health concerns and adhere to regulatory policies while manufacturing, processing, intelligent packaging, and consuming nano-enhanced food products. This review aims to provide a fundamental understanding of nanotechnology applications in food packaging and processing industries while identifying prospects and potential risks associated with nanostructured materials. Additionally, it delves into the health, risk, and hazard aspects of nanoparticles in food and their role in food safety assessments, highlighting specific areas of concern.
References
Abbaspour, A., Norouz-Sarvestani, F., Noori, A. and Soltani, N. (2015). Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 68, 149–155. https://doi.org/10.1016/j.bios.2014.12.040
Abramenko, N. B., Demidova, T. B., Abkhalimov, Е. V., Ershov, B. G., Krysanov, E. Yu. and Kustov, L. M. (2018). Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. Journal of Hazardous Materials, 347, 89–94. https://doi.org/10.1016/j.jhazmat.2017.12.060
Adabi, M., Naghibzadeh, M., Adabi, M., Zarrinfard, M. A., Esnaashari, S. S., Seifalian, A. M., Faridi-Majidi, R., Tanimowo Aiyelabegan, H. and Ghanbari, H. (2017). Biocompatibility and nanostructured materials: applications in nanomedicine. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 833–842. https://doi.org/10.1080/21691401.2016.1178134
Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M. and Anjum, A. A. (2021). Biogenic Synthesis, Characterization and Antibacterial Potential Evaluation of Copper Oxide Nanoparticles Against Escherichia coli. Nanoscale Research Letters, 16(1). https://doi.org/10.1186/s11671-021-03605-z
Alkhathlan, A. H., AL-Abdulkarim, H. A., Khan, M., Khan, M., AlDobiy, A., Alkholief, M., Alshamsan, A., Alkhathlan, H. Z. and Siddiqui, M. R. H. (2020). Ecofriendly Synthesis of Silver Nanoparticles Using Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin) and Comparison of Their Antibacterial Potential. Sustainability, 12(24), 10523. https://doi.org/10.3390/su122410523
Arfat, Y. A., Ahmed, J., Hiremath, N., Auras, R. and Joseph, A. (2017). Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocolloids, 62, 191–202. https://doi.org/10.1016/j.foodhyd.2016.08.009
Arora, A. and Padua, G. W. (2010). Review: Nanocomposites in Food Packaging. Journal of Food Science, 75(1). https://doi.org/10.1111/j.1750-3841.2009.01456.x
Baldim, I., Rosa, D. M., Souza, C. R. F., Da Ana, R., Durazzo, A., Lucarini, M., Santini, A., Souto, E. B. and Oliveira, W. P. (2020). Factors Affecting the Retention Efficiency and Physicochemical Properties of Spray Dried Lipid Nanoparticles Loaded with Lippia sidoides Essential Oil. Biomolecules, 10(5), 693. https://doi.org/10.3390/biom10050693
Baranwal, A., Mahato, K., Srivastava, A., Maurya, P. K. and Chandra, P. (2016). Phytofabricated metallic nanoparticles and their clinical applications. RSC Advances, 6(107), 105996–106010. https://doi.org/10.1039/C6RA23411A
Castillo-García, M. L., Aguilar-Caballos, M. P. and Gómez-Hens, A. (2015). A europium- and terbium-coated magnetic nanocomposite as sorbent in dispersive solid phase extraction coupled with ultra-high performance liquid chromatography for antibiotic determination in meat samples. Journal of Chromatography A, 1425, 73–80. https://doi.org/10.1016/j.chroma.2015.11.048
Chandra, P., Noh, H.-B., Won, M.-S. and Shim, Y.-B. (2011). Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosensors and Bioelectronics, 26(11), 4442–4449. https://doi.org/10.1016/j.bios.2011.04.060
Chellaram, C., Murugaboopathi, G., John, A. A., Sivakumar, R., Ganesan, S., Krithika, S. and Priya, G. (2014). Significance of Nanotechnology in Food Industry. APCBEE Procedia, 8, 109–113. https://doi.org/10.1016/j.apcbee.2014.03.010
Cho, Y.-M., Mizuta, Y., Akagi, J., Toyoda, T., Sone, M. and Ogawa, K. (2018). Size-dependent acute toxicity of silver nanoparticles in mice. Journal of Toxicologic Pathology, 31(1), 73–80. https://doi.org/10.1293/tox.2017-0043
Chung, I.-M., Rajakumar, G., Gomathi, T., Park, S.-K., Kim, S.-H. and Thiruvengadam, M. (2017). Nanotechnology for human food: Advances and perspective. Frontiers in Life Science, 10(1), 63–72. https://doi.org/10.1080/21553769.2017.1365775
Coulibaly, G. N., Bae, S., Kim, J., Assadi, A. A. and Hanna, K. (2019). Enhanced removal of antibiotics in hospital wastewater by Fe–ZnO activated persulfate oxidation. Environmental Science: Water Research & Technology, 5(12), 2193–2201. https://doi.org/10.1039/C9EW00611G
Das, K. and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2. https://doi.org/10.3389/fenvs.2014.00053
Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R. and Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381–400. https://doi.org/10.1016/j.foodres.2015.01.005
Deka, C., Aidew, L., Devi, N., Buragohain, A. K. and Kakati, D. K. (2016). Synthesis of curcumin-loaded chitosan phosphate nanoparticle and study of its cytotoxicity and antimicrobial activity. Journal of Biomaterials Science, Polymer Edition, 27(16), 1659–1673. https://doi.org/10.1080/09205063.2016.1226051
Dera, M. W. and Teseme, W.B. (2020). Review on the Application of Food Nanotechnology in Food Processing. American Journal of Engineering and Technology Management, 5(2), 41. https://doi.org/10.11648/j.ajetm.20200502.12
Devatha, C. P. and Thalla, A. K. (2018). Green Synthesis of Nanomaterials. In Synthesis of Inorganic Nanomaterials (pp. 169–184). Elsevier. https://doi.org/10.1016/B978-0-08-101975-7.00007-5
Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24. https://doi.org/10.1016/j.jcis.2011.07.017
Ezhilarasi, P. N., Karthik, P., Chhanwal, N. and Anandharamakrishnan, C. (2013). Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food and Bioprocess Technology, 6(3), 628–647. https://doi.org/10.1007/s11947-012-0944-0
Fang, Z., Zhao, Y., Warner, R. D. and Johnson, S. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60–71. https://doi.org/10.1016/j.tifs.2017.01.002
Ferfera-Harrar, H., Berdous, D. and Benhalima, T. (2018). Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles synthesized using Curcuma longa for antibacterial applications. Polymer Bulletin, 75(7), 2819–2846. https://doi.org/10.1007/s00289-017-2183-z
Fujishima, A., Rao, T. N. and Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2
Ghaani, M., Cozzolino, C. A., Castelli, G. and Farris, S. (2016). An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology, 51, 1–11. https://doi.org/10.1016/j.tifs.2016.02.008
Ghanbarzadeh, B., Oleyaei, S. A. and Almasi, H. (2015). Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications. Critical Reviews in Food Science and Nutrition, 55(12), 1699–1723. https://doi.org/10.1080/10408398.2012.731023
Gong, X., Huang, D., Liu, Y., Peng, Z., Zeng, G., Xu, P., Cheng, M., Wang, R. and Wan, J. (2018). Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology, 38(3), 455–468. https://doi.org/10.1080/07388551.2017.1368446
Grumezescu, A. M. and Holban, A. M. (2018). Impact of nanoscience in the food industry (Vol. 12). Academic Press.
Guía-García, J. L., Charles-Rodríguez, A. V., Reyes-Valdés, M. H., Ramírez-Godina, F., Robledo-Olivo, A., García-Osuna, H. T., Cerqueira, M. A. and Flores-López, M. L. (2022). Micro and nanoencapsulation of bioactive compounds for agrifood applications: A review. Industrial Crops and Products, 186, 115198. https://doi.org/10.1016/j.indcrop.2022.115198
Han, C., Yang, C., Li, X., Liu, E., Meng, X. and Liu, B. (2022). DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo. Food Chemistry, 368, 130859. https://doi.org/10.1016/j.foodchem.2021.130859
He, X., Aker, W. G. and Hwang, H.-M. (2014). An in vivo study on the photo-enhanced toxicities of S-doped TiO2 nanoparticles to zebrafish embryos (Danio rerio) in terms of malformation, mortality, rheotaxis dysfunction, and DNA damage. Nanotoxicology, 8(sup1), 185–195. https://doi.org/10.3109/17435390.2013.874050
He, X. and Hwang, H.-M. (2016). Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 24(4), 671–681. https://doi.org/10.1016/j.jfda.2016.06.001
Holzinger, M., Le Goff, A. and Cosnier, S. (2014). Nanomaterials for biosensing applications: a review. Frontiers in Chemistry, 2. https://doi.org/10.3389/fchem.2014.00063
Jayarambabu, N., Akshaykranth, A., Venkatappa Rao, T., Venkateswara Rao, K. and Rakesh Kumar, R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259, 126813. https://doi.org/10.1016/j.matlet.2019.126813
Johnston, C. T. (2010). Probing the nanoscale architecture of clay minerals. Clay Minerals, 45(3), 245–279. https://doi.org/10.1180/claymin.2010.045.3.245
Jose, A. and Ray, J. G. (2018). Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala, South India. Environmental Science and Pollution Research, 25(8), 7946–7953. https://doi.org/10.1007/s11356-017-1112-x
Judith Vijaya, J., Jayaprakash, N., Kombaiah, K., Kaviyarasu, K., John Kennedy, L., Jothi Ramalingam, R., Al-Lohedan, H. A., V.M., M.-A. and Maaza, M. (2017). Bioreduction potentials of dried root of Zingiber officinale for a simple green synthesis of silver nanoparticles: Antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 177, 62–68. https://doi.org/10.1016/j.jphotobiol.2017.10.007
Karimi, N., Ghanbarzadeh, B., Hajibonabi, F., Hojabri, Z., Ganbarov, K., Kafil, H. S., Hamishehkar, H., Yousefi, M., Mokarram, R. R., Kamounah, F. S., Yousefi, B. and Moaddab, S. R. (2019). Turmeric extract loaded nanoliposome as a potential antioxidant and antimicrobial nanocarrier for food applications. Food Bioscience, 29, 110–117. https://doi.org/10.1016/j.fbio.2019.04.006
Khan, M. A., Moghul, N. B., Butt, M. A., Kiyani, M. M., Zafar, I. and Bukhari, A. I. (2021). Assessment of antibacterial and antifungal potential of Curcuma longa and synthesized nanoparticles: A comparative study. Journal of Basic Microbiology, 61(7), 603–611. https://doi.org/10.1002/jobm.202100010
Kurian, M., Varghese, B., Athira, T. S. and Krishna, S. (2016). Novel and Efficient Synthesis of Silver Nanoparticles Using Curcuma Longa and Zingiber Officinale Rhizome Extracts. In Int. J. Nanosci. Nanotechnol (Vol. 12, Issue 3).
Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205–221. https://doi.org/10.1007/s10311-017-0613-7
Li, Z., and Sheng, C. (2014). Nanosensors for Food Safety. Journal of Nanoscience and Nanotechnology, 14(1), 905–912. https://doi.org/10.1166/jnn.2014.8743
Lin, W.-C., Li, Z. and Burns, M. A. (2017). A Drinking Water Sensor for Lead and Other Heavy Metals. Analytical Chemistry, 89(17), 8748–8756. https://doi.org/10.1021/acs.analchem.7b00843
Mehrad, B., Ravanfar, R., Licker, J., Regenstein, J. M. and Abbaspourrad, A. (2018). Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Research International, 105, 962–969. https://doi.org/10.1016/j.foodres.2017.12.036
Menon, S., K.S., S. D., Agarwal, H. and Shanmugam, V. K. (2019). Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Antimicrobial and Antioxidant Activities. Colloid and Interface Science Communications, 29, 1–8. https://doi.org/10.1016/j.colcom.2018.12.004
Mercante, L. A., Scagion, V. P., Pavinatto, A., Sanfelice, R. C., Mattoso, L. H. C. and Correa, D. S. (2015). Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis. Journal of Nanomaterials, 2015, 1–7. https://doi.org/10.1155/2015/890637
Mohapatra, B., Kumar, D., Sharma, N. and Mohapatra, S. (2019). Morphological, plasmonic, and enhanced antibacterial properties of Ag nanoparticles prepared using Zingiber officinale extract. Journal of Physics and Chemistry of Solids, 126, 257–266. https://doi.org/10.1016/j.jpcs.2018.11.020
Nallamuthu, I., Khanum, F., Fathima, S. J., Patil, M. M. and Anand, T. (2017). Enhanced nutrient delivery through nanoencapsulation techniques: the current trend in food industry. In Nutrient Delivery (pp. 619–651). Elsevier. https://doi.org/10.1016/B978-0-12-804304-2.00016-0
Nasr, N. F. (2015). Review Article Applications of Nanotechnology in Food Microbiology. In Int.J.Curr.Microbiol.App.Sci (Vol. 4, Issue 4). http://www.ijcmas.com
Nejatian, M., Darabzadeh, N., Bodbodak, S., Saberian, H., Rafiee, Z., Kharazmi, M. S. and Jafari, S. M. (2022). Practical application of nanoencapsulated nutraceuticals in real food products; a systematic review. Advances in Colloid and Interface Science, 305, 102690. https://doi.org/10.1016/j.cis.2022.102690
Othman, S. H. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nanosized Filler. Agriculture and Agricultural Science Procedia, 2, 296–303. https://doi.org/10.1016/j.aaspro.2014.11.042
Pathakoti, K., Manubolu, M. and Hwang, H.-M. (2017). Nanostructures: Current uses and future applications in food science. Journal of Food and Drug Analysis, 25(2), 245–253. https://doi.org/10.1016/j.jfda.2017.02.004
Paul Das, M., Rebecca Livingstone, J., Veluswamy, P. and Das, J. (2018). Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic applications. Journal of Food and Drug Analysis, 26(2), 917–925. https://doi.org/10.1016/j.jfda.2017.07.014
Premkumar, J., Sudhakar, T., Dhakal, A., Shrestha, J. B., Krishnakumar, S. and Balashanmugam, P. (2018). Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatalysis and Agricultural Biotechnology, 15, 311–316. https://doi.org/10.1016/j.bcab.2018.06.005
Rasaee, S., Ghanbarzadeh, S., Mohammadi, M. and Hamishehkar, H. (2014). Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharmaceutical Sciences, 20(3), 96–101.
Ravanfar, R., Tamaddon, A. M., Niakousari, M. and Moein, M. R. (2016). Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket–Burman and Box–Behnken designs. Food Chemistry, 199, 573–580. https://doi.org/10.1016/j.foodchem.2015.12.061
Rogers, M. A. (2016). Naturally occurring nanoparticles in food. Current Opinion in Food Science, 7, 14–19. https://doi.org/10.1016/j.cofs.2015.08.005
Rout, A., Jena, P. K., Parida, U. K. and Bindhani, B. K. (2013). Green synthesis of silver nanoparticles using leaves extract of Centella asiatica L. For studies against human pathogens. Int J Pharm Biol Sci, 4(4), 661–674.
Sarwar, M. S., Niazi, M. B. K., Jahan, Z., Ahmad, T. and Hussain, A. (2018). Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydrate Polymers, 184, 453–464. https://doi.org/10.1016/j.carbpol.2017.12.068
Savitskaya, T., Kimlenka, I., Lu, Y., Hrynshpan, D., Sarkisov, V., Yu, J., Sun, N., Wang, S., Ke, W. and Wang, L. (2021). Green Chemistry. Springer Singapore. https://doi.org/10.1007/978-981-16-3746-9
Sekhon, B. (2014). Nanotechnology in agrifood production: an overview. Nanotechnology, Science and Applications, 31. https://doi.org/10.2147/NSA.S39406
Shankar, S. and Rhim, J. (2016). Polymer Nanocomposites for Food Packaging Applications. In Functional and Physical Properties of Polymer Nanocomposites (pp. 29–55). Wiley. https://doi.org/10.1002/9781118542316.ch3
Shishir, M. R. I., Xie, L., Sun, C., Zheng, X. and Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78, 34–60. https://doi.org/10.1016/j.tifs.2018.05.018
Shukla, S., Lee, G., Song, X., Park, S. and Kim, M. (2016). Immunoliposome-based immunomagnetic concentration and separation assay for rapid detection of Cronobacter sakazakii. Biosensors and Bioelectronics, 77, 986–994. https://doi.org/10.1016/j.bios.2015.10.077
Singh, T., Shukla, S., Kumar, P., Wahla, V., Bajpai, V. K. and Rather, I. A. (2017). Application of Nanotechnology in Food Science: Perception and Overview. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01501
Song, X., Shukla, S. and Kim, M. (2018). Detection of Cronobacter species in powdered infant formula using immunoliposome-based immunomagnetic concentration and separation assay. Food Microbiology, 72, 23–30. https://doi.org/10.1016/j.fm.2017.11.002
Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. and Upadhyay, S. N. (2016). Green Synthesis of Silver Nanoparticles: A Review. Green and Sustainable Chemistry, 06(01), 34–56. https://doi.org/10.4236/gsc.2016.61004
Tamjidi, F., Shahedi, M., Varshosaz, J. and Nasirpour, A. (2018). Stability of astaxanthin‐loaded nanostructured lipid carriers in beverage systems. Journal of the Science of Food and Agriculture, 98(2), 511–518. https://doi.org/10.1002/jsfa.8488
Teodoro, K. B. R., Sanfelice, R. C., Migliorini, F. L., Pavinatto, A., Facure, M. H. M. and Correa, D. S. (2021). A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sensors, 6(7), 2473–2496. https://doi.org/10.1021/acssensors.1c00473
USFDA. (2002). Listing of color additives exempt from certification. In In: Office USGP, editor. Code of federal regulations title21dfood and drugs. Food and Drug Administration.
Vidu, R., Matei, E., Predescu, A. M., Alhalaili, B., Pantilimon, C., Tarcea, C. and Predescu, C. (2020). Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics, 8(4), 101. https://doi.org/10.3390/toxics8040101
Vijayakumar, G., Kesavan, H., Kannan, A., Arulanandam, D., Kim, J. H., Kim, K. J., Song, H. J., Kim, H. J. and Rangarajulu, S. K. (2021). Phytosynthesis of Copper Nanoparticles Using Extracts of Spices and Their Antibacterial Properties. Processes, 9(8), 1341. https://doi.org/10.3390/pr9081341
Wang, B., Feng, W.-Y., Wang, T.-C., Jia, G., Wang, M., Shi, J.-W., Zhang, F., Zhao, Y.-L. and Chai, Z.-F. (2006). Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicology Letters, 161(2), 115–123. https://doi.org/10.1016/j.toxlet.2005.08.007
Yang, J. and Ciftci, O. N. (2016). Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide. Food Research International, 87, 83–91. https://doi.org/10.1016/j.foodres.2016.06.022
Yang, N., Li, F., Jian, T., Liu, C., Sun, H., Wang, L. and Xu, H. (2017). Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens. Acta Oceanologica Sinica, 36(12), 95–100. https://doi.org/10.1007/s13131-017-1099-7
Zehra, A., Rai, A., Singh, S. K., Aamir, M., Ansari, W. A. and Upadhyay, R. S. (2021). An overview of nanotechnology in plant disease management, food safety, and sustainable agriculture. In Food Security and Plant Disease Management (pp. 193–219). Elsevier. https://doi.org/10.1016/B978-0-12-821843-3.00009-X
Zuo, P., Li, X., Dominguez, D. C. and Ye, B.-C. (2013). A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab on a Chip, 13(19), 3921. https://doi.org/10.1039/c3lc50654a
Sullivan, S. T., Tang, C., Kennedy, A., Talwar, S., & Khan, S. A. (2014). Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids, 35, 36-50.
Guy, M. M., Tremblay, M., Voyer, N., Gauthier, S. F., & Pouliot, Y. (2011). Formation and stability of nanofibers from a milk-derived peptide. Journal of agricultural and food chemistry, 59(2), 720-726.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.