Determination of NH4+ and NO3- Adsorption and Desorption Capacities of Biochars Produced at Different Temperatures
DOI:
https://doi.org/10.24925/turjaf.v13i4.985-990.7409Keywords:
ammonium, Nitrate, Adsorption, Desorption, Biochar, temperatureAbstract
This study investigates the adsorption and desorption capacities of corn cob biochars produced at three different pyrolysis temperatures. Adsorption experiments were conducted using ammonium (NH4+) and nitrate (NO3-) solutions at concentrations 5, 10, 25, 50, and 100 mg L-1. Results indicated that CC300 biochar exhibited the highest NH4+ adsorption efficiency at lower concentrations, adsorbing 88.67% of NH4+ at 5 mg L-1. However, its adsorption capacity decreased with increasing NH4+ concentration. CC400 biochar demonstrated a balanced adsorption capacity for both NH4+ and NO3-, with 83.71% NH4+ adsorption and 87.17% NO3- adsorption at 5 mg L-1. CC500 biochar showed the highest NO3- adsorption capacity, reaching 90.05% at 5 mg L-1, but was less effective in NH4+ adsorption, particularly at lower concentrations. Desorption analysis revealed that CC300 and CC500 biochars retained NH4+ and NO3- effectively, with relatively low desorption rates. In contrast, CC400 biochar exhibited higher desorption rates, indicating a controlled nutrient release potential. The study highlights the significant influence of pyrolysis temperature on the adsorption and desorption characteristics of biochar and its suitability for specific nutrient management applications. These findings contribute to the optimization of biochar production and its effective utilization in sustainable agriculture and environmental protection.
References
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19-33.
Cerato, A. B., & Lutenegger, A. J. (2002). Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotechnical Testing Journal, 25(3), 315-321.
Çelik, Ş., & Demirkıran, A. R. (2021). Ceyhan havzasındaki suların bazı özelliklerinin faktör analizi ile incelenmesi [Investigation of Some Properties of Waters in Ceyhan Basin by Factor Analysis]. Turkish Journal of Agricultural and Natural Sciences, 8(3), 567-575. https://doi.org/10.30910/turkjans.803704
DEZWAS. (1983). Deutsche Einheitsverfahren Zur Wasser-Abwasser-und Schlammuntersuchungen. In Fachgruppe Wasserchemie in der Gesellscheft Deutscher Chemiker (ed.) Chemie. Weinheim/ Bergstrasse (BRA).
Fabig, W., Ottow, J., & Muller, F. (1978). Mineralisation von 14C-markiertem Benzoat mit Nitrat als Wasserstoff-Akzeptor unter vollstandig anaeroben Bedingungen bei sowie vermindertem Sauerstoffpartialdruck. Landwirtschaftliche Forschung. Sonderheft.
Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLOS ONE, 9(12), e113888. https://doi.org/10.1371/journal.pone.0113888
Gaskin, J. W., Steiner, C., Harris, K., C. Das, K., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061-2069. https://doi.org/10.13031/2013.25409
Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406-433.
Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421-438. https://doi.org/10.1007/s42773-020-00067-x
ISO. (1998). ISO 13878:1998 (E) - Soil quality - Determination of total nitrogen content by dry combustion (Elemental analysis). In. International Organization for Standardization, Genève, Switzerland.
Kumar, A., Bhattacharya, T., Shaikh, W. A., Roy, A., Chakraborty, S., Vithanage, M., & Biswas, J. K. (2023). Multifaceted applications of biochar in environmental management: a bibliometric profile. Biochar, 5(1), 11. https://doi.org/10.1007/s42773-023-00207-z
Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442.
Lehmann, J., & Joseph, S. (2024). Biochar for environmental management: science, technology and implementation. Taylor & Francis.
Musa, N., Khan, K. S., Blankinship, J. C., Ijaz, S. S., Akram, Z., Alwahibi, M. S., Ali, M. A., & Yousra, M. (2024). Sorption-desorption of phosphorus on manure- and plant-derived biochars at different pyrolysis temperatures. Sustainability, 16(7).
Sarkhot, D. V., Ghezzehei, T. A., & Berhe, A. A. (2013). Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent. Journal of Environmental Quality, 42(5), 1545-1554.
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70-85.
Thomas, G. W. (1996). Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, 475-490.
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3
Ullah, M. S., Malekian, R., Randhawa, G. S., Gill, Y. S., Singh, S., Esau, T. J., Zaman, Q. U., Afzaal, H., Du, D. L., & Farooque, A. A. (2024). The potential of biochar incorporation into agricultural soils to promote sustainable agriculture: insights from soil health, crop productivity, greenhouse gas emission mitigation and feasibility perspectives—a critical review. Reviews in Environmental Science and Bio/Technology, 23(4), 1105-1130. https://doi.org/10.1007/s11157-024-09712-4
Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., Kirkham, M., & Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: a critical review. Carbon, 113, 219-230.
Wang, F., & Alva, A. (2000). Ammonium adsorption and desorption in sandy soils. Soil Science Society of America Journal, 64(5), 1669-1674.
Yadav, R., & Ramakrishna, W. (2023). Biochar as an environment-friendly alternative for multiple applications. Sustainability, 15(18).
Zhang, H., Voroney, R., & Price, G. (2017). Effects of temperature and activation on biochar chemical properties and their impact on ammonium, nitrate, and phosphate sorption. Journal of Environmental Quality, 46(4), 889-896.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.