Isolation and Characterization of Bacillus thuringiensis Isolates from Hazelnut Orchards in Türkiye

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i4.991-997.7415

Keywords:

Bacillus thuringiensis, Bt index, cry1 gene, SDS-PAGE, hag gene

Abstract

The entomopathogenic bacterium, Bacillus thuringiensis (Bt) has been one of the important sources of biopesticides and applied in biological control against agricultural pests for many decades. Isolation and characterization of Bt isolates from different habitats around the world allow the discovery of new Bt strains with high insecticidal activity and the ability to cope with the problem of resistance to pesticides. The goal of this study is to obtain a new Bt collection from hazelnut orchards in Türkiye and to investigate the insecticidal cry1 gene content of these isolates and to reveal their protein profiles and serovars. Bt was isolated from 28 soil and leaf samples collected from 14 different locations in Ordu province. Of the 302 Bt-like colonies examined, 63 were observed to carry crystals in the form of parasporal inclusions and the Bt index was found to be 0.21. The presence of cry1 gene in Bt isolates were analyzed using Polymerase chain reaction (PCR) analysis. The results showed that 21 isolates (33%) were positive for cry1 gene. When the protein profiles of the Bt isolates were examined by SDS-PAGE analysis, bands of 130 kDa, 60 kDa, 43 kDa and larger than 200 kDa were obtained in most of the samples. In order to reveal the serovar types of Bt isolates, hag gene was amplified and the PCR products were further sequenced. The analysis identified the Bt tochigiensis and Bt xiaguangiensis serovars among the screened Bt isolates. This study reports the isolation and characterization of a novel collection of B. thuringiensis isolates from hazelnut orchards in Ordu province (Northern Türkiye), identifying the cry1 gene carrying strains with potential toxicity against some lepidopteran pests.

References

Alberola, T. M., Aptosoglou, S., Arsenakis, M., Bel, Y., Delrio, G., Ellar, D. J., Ferré, J., Granero, F., Guttmann, D. M., Koliais, S., Martínez-Sebastiá, M. J., Prota, R., Rubino, S., Satta, A, Scarpellini, G., Sivropoulou, A., & Vasara, E. (1999). Insecticidal Activity of Strains of Bacillus thuringiensis on Larvae and Adults of Bactrocera oleae Gmelin (Dipt. Tephritidae). Journal of Invertebrate Pathology, 74(2), 127-136. https://doi.org/10.1006/jipa.1999.4871

Alper, M., Güneş, H., Tatlipinar, A., Çöl, B., Civelek, H. S., Özkan, C., & Poyraz, B. (2014). Distribution, Occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydın Province. Turkish Journal of Agriculture and Forestry, 38(6), 898–907. https://doi.org/10.3906/tar-1402-27

Apaydin, Ö., Yenidünya, A. F., Harsa, Ş., & Güneş, H. (2005). Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World Journal of Microbiology and Biotechnology, 21(3), 285–292. https://doi.org/10.1007/s11274-004-3633-y

Ben-dov, E., Zaritsky, A., Dahan, E., Barak, E., Sinai, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N., & Margalith, Y. (1997). Extended Screening by PCR for Seven cry-Group Genes from Field-Collected Strains of Bacillus thuringiensis. Applied And Environmental Microbiology, 63(12), 4883-4890. https://doi.org/10.1128/aem.63.12.4883-4890.1997

Boukedi, H., Sellami, S., Ktari, S., Belguith-Ben Hassan, N., Sellami-Boudawara, T., Tounsi, S., & Abdelkefi-Mesrati, L. (2016). Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests. Microbiological Research, 186, 9–15. https://doi.org/10.1016/j.micres.2016.02.004

Bozlaǧan, I., Ayvaz, A., Öztürk, F., Açik, L., Akbulut, M., & Yilmaz, S. (2010). Detection of the cry1 gene in Bacillus thuringiensis isolates from agricultural fields and their bioactivity against two stored product moth larvae. Turkish Journal of Agriculture and Forestry, 34(2), 145–154. https://doi.org/10.3906/tar-0905-19

Bozoğlu, M., Başer, U., Kiliç Topuz, B., & Alhas Eroğlu, N. (2019). An Overview of Hazelnut Markets and Policy in Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(5), 733–743. https://doi.org/10.18016/ksutarimdoga.v22i45606.532645

Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., Villalobos, F.J., Peña, G., Nuñez-Valdez, M.E., Soberon, M., & Quintero, R. (1998). Characterization of cry Genes in a Mexican Bacillus thuringiensis Strain Collection. Applied And Environmental Microbiology, 64(12), 4965-4972. https://doi.org/10.1128/AEM.64.12.4965-4972.1998

Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberón, M. (2011). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006

Cinar, C., Apaydin, O., Yenidunya, A. F., Harsa, S., & Gunes, H. (2008). Isolation and characterization of Bacillus thuringiensis strains from olive-related habitats in Turkey. Journal of Applied Microbiology, 104(2), 515–525. https://doi.org/10.1111/j.1365-2672.2007.03571.x

De Maagd, R.A., Bravo, A. & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics, 17(4), 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5

Djenane, Z., Nateche, F., Amziane, M., Gomis-Cebolla, J., El-Aichar, F., Khorf, H., & Ferré, J. (2017). Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins, 9, 139. https://doi.org/10.3390/toxins9040139

Du Rand, N., & Laing, M. D. (2011). Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of crude extracted insecticidal crystal proteins of bacillus thuringiensis and Brevibacillus laterosporus. African Journal of Biotechnology, 10(66), 15094–15099. https://doi.org/10.5897/AJB11.026

El-Kersh, T.A., Al-sheikh, Y.A.A., Al-Akeel, R., & Alsayed, A.A. (2012). Isolation and characterization of native Bacillus thuringiensis isolates from Saudi Arabia. African Journal of Biotechnology, 11(8), 1924-1938. https://doi.org/10.5897/ajb11.2717

Ertürk, Ö., Şekeroğlu, V., Ünal, H., & Arslan, H. (2006). Lymantrıa dispar L. (Lep: Lymantridae) ’nın larva gelişmesi üzerine bazı bitki özütlerinin antifeedant (iştah kesici) ve toksik etkileri. Anadolu Tarım Bilimleri Dergisi, 21(3), 289-295. https://doi.org/10.7161/anajas.2006.21.3.289-295

Ferrandis, M. D., Júrez-Pérez, V. M., Frutos, R., Bel, Y., & Ferré, J. (1999). Distribution of cryI, cryII and cryV genes within Bacillus thuringiensis isolates from Spain. Systematic and Applied Microbiology, 22(2), 179–185. https://doi.org/10.1016/S0723-2020(99)80064-2

Hernández-Rodríguez, C. S., & Ferré, J. (2009). Ecological distribution and characterization of four collections of Bacillus thuringiensis strains. Journal of Basic Microbiology, 49(2), 152–157. https://doi.org/10.1002/jobm.200800121

Jain, D., Sunda, S. D., Sanadhya, S., Nath, D. J., & Khandelwal, S. K. (2017). Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech, 7, 4. https://doi.org/10.1007/s13205-016-0583-7

Juárez-Pérez, V. M., Ferrandis, M. D., & Frutos, R. (1997). PCR-Based Approach for Detection of Novel Bacillus thuringiensis cry Genes. Applied And Environmental Microbiology, 63(8), 2997-3002. https://doi.org/10.1128/aem.63.8.2997-3002.1997

Jurat-Fuentes, J. L., Heckel, D. G., & Ferré, J. (2021). Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. Annual Review of Entomology, 66, 121–140. https://doi.org/10.1146/annurev-ento-052620-073348

Kaçar, G., Koca, A. S., Bayram, M. S., & Şahin, B. (2022). Amerikan Beyaz Kelebeği, Hyphantria cunea Drury (Lepidoptera: Erebidae)’nın Popülasyon Takibi. Türk Tarım ve Doğa Bilimleri Dergisi, 9(1), 77–84. https://doi.org/10.30910/turkjans.953289

Karaosmanoğlu, H. (2024). Effect of different packaging materials and storage on lipid characteristics, oxidative stability and antioxidant properties of hazelnut. Journal of Food Measurement and Characterization, 18(1), 647–663. https://doi.org/10.1007/s11694-023-02192-0

Kumar, S., Chandra, A., & Pandey, K. C. (2008). Bacillus thuringiensis (Bt) transgenic crop: An environment friendly insect-pest management strategy. Journal of Environmental Biology, 29(5), 641-653.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. https://doi.org/10.1038/227680a0.

Lone, S. A., Malik, A., & Padaria, J. C. (2017). Selection and characterization of Bacillus thuringiensis strains from northwestern Himalayas toxic against Helicoverpa armigera. MicrobiologyOpen, 6(6), 1-11. https://doi.org/10.1002/mbo3.484

López de la Cruz, D., Valencia-Castro, C.M., V., Hernandez-Teran, F., H., Barboza-Corona, J.E., & de la Fuente-Salcido, N.M. (2018). Antibacterial Activity of Native Bacillus thuringiensis Strains from Fernandez Canyon State Park, Mexico. Journal of Antimicrobial Agents, 4(1), 166-171. https://doi.org/10.4172/2472-1212.1000166

Nalcacioglu, R., Yaman, M., Osman Belduz, A., Demirbag, Z., Nalcacioglu, R., Yaman, M., Dulger, S., Belduz, A. O., & Demirbag, Z. (2002). Isolation and characterization of Bacillus thuringiensis isolated from hazelnut fields in Turkey. Fresenius Environmental Bulletin, 11(7), 337-341.

Porcar, M., & Juárez-Pérez, V. (2003). PCR-based identi¢cation of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiology Reviews, 26(5), 419-432. https://doi.org/10.1111/j.1574-6976.2003.tb00624.x

Ragasruthi, M., Balakrishnan, N., Murugan, M., Swarnakumari, N., Harish, S., & Sharmila, D. J. S. (2024). Bacillus thuringiensis (Bt)-based biopesticide: Navigating success, challenges, and future horizons in sustainable pest control. Science of the Total Environment, 954(1), 176594. https://doi.org/10.1016/j.scitotenv.2024.176594

Reyaz, A. L., Gunapriya, L., & Indra Arulselvi, P. (2017). Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech, 7, 143. https://doi.org/10.1007/s13205-017-0756-z

Rukmini, V., Reddy, C. Y., & Venkateswerlu, G. (2000). Bacillus thuringiensis crystal δ-endotoxin: Role of proteases in the conversion of protoxin to toxin. Biochimie, 82, 109-116.

Santana, M. A., Moccia-V, C. C., & Gillis, A. E. (2008). Bacillus thuringiensis improved isolation methodology from soil samples. Journal of Microbiological Methods, 75(2), 357–358. https://doi.org/10.1016/j.mimet.2008.06.008

Sauka, D. H., & Benintende, G. B. (2017). Diversity and distribution of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Argentina. Revista Argentina de Microbiologia, 49(3), 273–281. https://doi.org/10.1016/j.ram.2017.02.003

Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., & Dean, D. H. (1998). Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiology And Molecular Biology Reviews, 62(3), 775-806. https://doi.org/10.1128/mmbr.62.3.775-806.1998

Sezen, K., Kati, H., Muratoglu, H., & Demirbag, Z. (2010). Characterisation and toxicity of bacillus thuringiensis strains from hazelnut pests and fields. Pest Management Science, 66(5), 543–548. https://doi.org/10.1002/ps.1905

Smith, R. A., & Couche, G. A. (1991). The Phylloplane as a Source of Bacillus thuringiensis Variants. Applied And Environmental Microbiology, 57(1), 311-315. https://doi.org/10.1128/AEM.57.1.311-315.1991

Tarekegn, M. M., & Teferra, M. (2023). Isolation and molecular characterization of Bacillus thuringiensis strains obtained from different habitats in Northwest Ethiopia. Food Science and Applied Biotechnology, 6(1), 134–142. https://doi.org/10.30721/fsab2023.v6.i1

Thammasittirong, A., & Attathom, T. (2008). PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. Journal of Invertebrate Pathology, 98(2), 121–126. https://doi.org/10.1016/j.jip.2008.03.001

Tuncer, C., Akça, I., & Saruhan, I. (2001). Integrated pest management in Turkish hazelnut orchards. Acta Horticulturae, 556, 419–429. https://doi.org/10.17660/actahortic.2001.556.63

Wang, J., Boets, A., Van Rie, J., & Ren, G. (2003). Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82(1), 63–71. https://doi.org/10.1016/S0022-2011(02)00202-1

Xu, D., & Côté, J. C. (2008). Sequence diversity of Bacillus thuringiensis flagellin (H antigen) protein at the intra-H serotype level. Applied and Environmental Microbiology, 74(17), 5524–5532. https://doi.org/10.1128/AEM.00951-08

Zhu, J., Tan, F., Tang, J., & Zheng, A. (2009). Characterization of insecticidal crystal protein cry gene of Bacillus thuringiensis from soil of Sichuan Basin, China and cloning of novel haplotypes cry gene. Annals of Microbiology, 59(1), 1-8. https://doi.org/10.1007/BF03175591

Downloads

Published

27.04.2025

How to Cite

Şahin, B., & Güneş, H. (2025). Isolation and Characterization of Bacillus thuringiensis Isolates from Hazelnut Orchards in Türkiye. Turkish Journal of Agriculture - Food Science and Technology, 13(4), 991–997. https://doi.org/10.24925/turjaf.v13i4.991-997.7415

Issue

Section

Research Paper