Effects of Different Doses of Lactobacillus brevis Addition to Oat (Avena sativa L.) Silage on Physical and Chemical Properties, Aerobic Stability, in Vitro Organic Matter Digestibility and Energy Value of Silage

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i4.1008-1014.7428

Keywords:

Oat silage, Lactobacillus brevis, Feed value, Digestibility, Aerobic stability

Abstract

This study aimed to determine the effects of the addition of different doses of Lactobacillus brevis to oat silage on the physical and chemical properties, aerobic stability, in vitro organic matter digestibility, and energy value of the silage.  In the study, the treatment groups were oat control (OC), 1x106 (Lb6), 1x108 (Lb8) and 1x109 cfu/kg dry matter (Lb9) L. brevis inoculated oats. Inoculation of L. brevis into oat silage increased the number of lactic acid bacteria and decreased the pH of the silage at the time of opening. This inoculation decreased the organic matter, acid detergent fiber and neutral detergent fiber contents of the silages at opening compared to those of OC, while increasing the dry matter and crude protein contents. The L. brevis inoculation into oat silage decreased the pH values and yeast counts on the fifth day after opening the silages compared to OC, without affecting the amount of CO2 production and mold count. The inoculation did not affect the in vitro organic matter digestibility and metabolizable energy value of silage; but increased the net energy lactation value compared to OC. When the L. brevis doses are evaluated independently, it can be said that 1*108 and 1*109 cfu/kg DM doses contributed more effectively to oat silage, so any of these doses can be preferred.

References

AOAC. (2000). Official methods of analysis, 17th edition. AOAC International, Gaithersburg, Maryland, USA.

AOCS. (2005). Official procedure. Approved procedure am 5-04, rapid determination of oil/fat utilizing high temperature solvent extraction. Urbana, IL: American Oil Chemists’ Society.

Ashbell, G., Weinberg, Z., Azrieli, A., Hen, Y., & Horev, B. (1991). A simple system to study the aerobic deterioration of silages. Canadian Agricultural Engineering, 33, 391-394.

Aydın, S. S., & Denek, N. (2023). Effect of adding lactic acid bacteria to maize silage on nutritive guality, fermentation properties and in vitro digestibility. Journal of Agricultural Sciences, 29(4), 1050-1058. https://doi.org/10.15832/ankutbd.1273724

Blajman, J., Lingua, M., Irazoqui, J., Santiago, G., Eberhardt, M., Amadio, A., . . . Gaggiotti, M. (2023). Fermentation profile and dynamics of bacterial communities in vetch-oat ensiled with a novel spray-dried inoculant. The Journal of Agricultural Science, 161(6), 835-846. https://doi.org/10.1017/S002185962400011X

Chai, J., Gong, W., Bai, J., Ju, Z., & Zhao, G. (2022). Dry matter recovery, ensiling characteristics and aerobic stability of oat silage treated with microbial inoculants at different temperatures. Archives of Animal Nutrition, 76(3-6), 175-190. https://doi.org/10.1080/1745039X.2022.2155392

Cheng, Q., Chen, L., Chen, Y., Li, P., & Chen, C. (2022). Effects of LAB inoculants on the fermentation quality, chemical composition, and bacterial community of oat silage on the Qinghai-Tibetan Plateau. Microorganisms, 10(4), 787. https://doi.org/10.3390/microorganisms10040787

Çayıroğlu, H. (2024). Effects of inoculation of lactobacillus plantarum at different doses on triticale (Triticosecale wittmack) silage on quality, fermentation and aerobic stability properties and feed value. Turkish Journal of Agriculture-Food Science and Technology, 12(2), 201-207. https://doi.org/10.24925/turjaf.v12i2.201-207.6323

Erdem, B., Kıray, E., Kariptaş, E., Tulumoğlu, Ş., & Akıllı, A. (2021). Characterization of probiotic abilities of lactic acid bacteria from traditional pickle juice and shalgam. Research and Reviews in Science and Mathematics, 1(33).

Ilavenil, S., Srigopalram, S., Park, H. S., Kim, W. H., Lee, K. D., & Choi, K. C. (2015). Beneficial effects of lactic acid bacteria inoculation on oat based silage in South Korea. Journal of The Korean Society of Grassland and Forage Science, 35(3), 207-211. https://doi.org/10.5333/KGFS.2015.35.3.207

İnce, A., & Vurarak, Y. (2019). An approach to color change and quality relation in roughages. Journal of Agricultural Sciences, 25(1), 21-28. https://doi.org/10.15832/ankutbd.538982

ISO. (1997). Native starch. Determination of starch content. Ewers polarimetric method. ISO Standard 10520.

Jalč, D., Laukova, A., Simonová, M. P., Váradyová, Z., & Homolka, P. (2009). Bacterial inoculant effects on corn silage fermentation and nutrient composition. Asian-Australasian journal of animal sciences, 22(7), 977-983. https://doi.org/10.5713/ajas.2009.80282

Jia, T., Wang, B., Yu, Z., & Wu, Z. (2021). The effects of stage of maturity and lactic acid bacteria inoculants on the ensiling characteristics, aerobic stability and in vitro digestibility of whole‐crop oat silages. Grassland Science, 67(1), 55-62. https://doi.org/10.1111/grs.12285

Kılıç, A. (2006). Determined of quality in roughage. Hasat Publication, İstanbul. 68-69. (In Turkish: Kaba yemlerde niteliğin saptanması, Hasat Yayıncılık, İstanbul. 68-69.

King, D. A., Hunt, M. C., Barbut, S., Claus, J. R., Cornforth, D. P., Joseph, P., . . . Weber, M. (2023). American meat science association guidelines for meat color measurement. Meat and Muscle Biology, 6(4), 1–81. https://doi.org/10.22175/mmb.12473

Kuter, E., Ahsan, U., Tosun, B., Karagöz, D. M., Gümüş, H., Raza, I., . . . Akkaş, Ö. (2023). Biomass yield, quality, nutrient composition, and feeding value of oat (Avena sativa) silage subjected to different wilting durations and/or inoculant application. Tropical Animal Health and Production, 55(5), 299. https://doi.org/10.1007/s11250-023-03751-9

Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.

Miao, F., Zhang, F.-f., Wang, X.-z., Jia, S.-a., Lu, W.-h., & Ma, C.-h. (2019). Effect of Lactobacillus plantarum, L. buchneri and Pediococcus acidilactici at low doses on the fermentation, aerobic stability and ruminal digestibility of corn silage. https://doi.org/10.17957/IJAB/15.1112

Oliveira, A. S., Weinberg, Z. G., Ogunade, I. M., Cervantes, A. A., Arriola, K. G., Jiang, Y., . . . Vyas, D. (2017). Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 100(6), 4587-4603. https://doi.org/10.3168/jds.2016-11815

Rafiuddin, Abdullah, M., Khan, K.-i.-d., Khan, M. A., Khan, A., Alam, M., . . . Yahya, M. (2021). Effect of inclusion level of commercial additive on quality and digestibility of silages made from cereal fodders. Journal of Veterinary Medicine and Animal Sciences, 4(2), 1-5. https://meddocsonline.org/journal-of-veterinary-medicine-and-animal-sciences/Effect-of-inclsion-level-of-commercial-additive-on-quality-and-digestibility-of-silages-made-from-cereal-fodders.pdf

Rohweder, D. A., Barnes, R. F., & Jorgensen, N. (1978). Proposed hay grading standards based on laboratory analyses for evaluating quality. Journal of Animal Science, 47(3), 747–759. https://doi.org/10.2527/jas1978.473747x

Sahar, A. K., Vurarak, Y., Çubukcu, P., & Oluk, C. A. (2022). Effects of storage length and variety on some quality and color parameters in soybean silage. Journal of Elementology, 27(4). http://dx.doi.org/10.5601/jelem.2022.27.4.2291

SAS. (2001). Statistical Analysis System. User’s Guide: Statistics, version 8.2. SAS Institute, Cary, NC, USA.

Seale, D. R., Pahlow, G., Spoelstra, S. F., Lindgren, S., Dellaglio, F., & Lowe, J. F. (1990). Methods for the microbiological analysis of silage. Proceeding of the Eurobac Conference, 147, Uppsala, 147-164.

Singh, D., & Choudhary, A. (2021). Potential of maize cultivars for nutrients, yield and silage quality. Forage Research, 47(2), 159–166.

Tahir, M., Li, J., Xin, Y., Wang, T., Chen, C., Zhong, Y., . . . Wen, X. (2023). Response of fermentation quality and microbial community of oat silage to homofermentative lactic acid bacteria inoculation. Frontiers in Microbiology, 13, 1091394. https://doi.org/10.3389/fmicb.2022.1091394

Tobia, C., Villalobos, E., Rojas, A., Soto, H., & Moore, K. (2008). Nutritional value of soybean (Glycine max L. Merr.) silage fermented with molasses and inoculated with Lactobacillus brevis 3. Livestock Research for Rural Development, 20(7), 1-9.

Van Soest, P. J., Robertson, J. D., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Xu, Z., He, H., Zhang, S., & Kong, J. (2017). Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Scientific Reports, 7(1), 13614. https://doi.org/10.1038/s41598-017-14052-1

Downloads

Published

27.04.2025

How to Cite

Çayıroğlu, H. (2025). Effects of Different Doses of Lactobacillus brevis Addition to Oat (Avena sativa L.) Silage on Physical and Chemical Properties, Aerobic Stability, in Vitro Organic Matter Digestibility and Energy Value of Silage. Turkish Journal of Agriculture - Food Science and Technology, 13(4), 1008–1014. https://doi.org/10.24925/turjaf.v13i4.1008-1014.7428

Issue

Section

Research Paper