Effect of Ascophyllum nodosum Seaweed Extract on Growth and Elemental Nutrient Composition of Safflower (Carthamus tinctorius L.) under Salt Stress

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i5.1169-1181.7434

Keywords:

Biostimulant, Carthamus tinctorius L., Plant Nutrients, Growth parameters, Salinity

Abstract

Biostimulants have been used in recent years as innovative approaches to stabilize or increase the yield and quality of plants under abiotic stress conditions. Seaweeds, one of the biostimulants, have been used in many cultivated plants and favorable results have been obtained in terms of yield, quality and elemental composition of plant nutrients. Although it is known that safflower plant is sensitive to salt during emergence and germination period, salt and seaweed applications have not been investigated on this plant before. It was aimed to examine the tolerance mechanisms of seaweed applications in safflower plant under salinity stress in terms of some morphological parameters and elemental composition of plant nutrients. The five different doses of salt treatment (0 mM NaCl-distilled water as control, 50 mM, 100 mM, 150 mM, 200 mM) and four different doses of Ascophyllum nodosum seaweed extract (0 g L-1 - distilled water as control, 2 g L-1, 4 g L-1, 6 g L-1) were used as the treatment groups in this study conducted in the climate chamber under controlled conditions. When the figures obtained from safflower plants treated with seaweed in terms of growth parameters were evaluated; root and shoot length, fresh root and shoot weights, dry root and shoot weights generally increased with increasing doses, while relative water content decreased. As salinity stress increased, decreases were generally recorded in all growth parameters obtained. Improved elemental composition of plant nutrients both shoot and root were also observed with seaweed extract applications. In particular, K and Mg in shoot, Ca, Cu and Mg in root increased with increasing seaweed applications. The findings obtained from the study show that seaweed is a promising agricultural application on growth parameters and elemental composition of plant nutrients and reduces the negative effects of salinity stress on safflower plant.

Author Biography

Münüre Tanur Erkoyuncu, Selçuk University, Faculty of Agriculture, Department of Field Crops, 42130, Konya, Türkiye

Dr. Öğr. Üyesi Münüre Tanur Erkoyuncu

References

Abogadallah, G. M. (2010). Insights into the significance of antioxidative defense under salt stress. Plant signaling & behavior, 5(4), 369-374. https://doi.org/10.4161/psb.5.4.10873

Anonymous, 2024. FAO. https://www.fao.org/global-soil partnership/resources/highlights/detail/en/c/1412475/

Arab, S., Baradaran Firoozabadi, M., Gholami, A., & Heidari, M. (2022). Physiological responses of soybean plant (DPX) to pretreatment and foliar application of seaweed extract (Ascophyllum nodosum) and seed primary quality. Iranian Journal of Field Crops Research, 20(1), 105-119. https://doi.org/10.22067/JCESC.2021.74004.1119

Arslan, Y., Katar, D., Güler, S., Subaşı, A. S., Subaşı, İ., & Bülbül, A. (2012). Çimlenme ve erken fide gelişimi döneminde aspir (Carthamus tinctorius L.) çeşitlerinin tuza toleransının belirlenmesi. Selcuk Journal of Agriculture and Food Sciences, 26(2), 6-11. https://doi.org/10.30910/turkjans.1121337

Barrs, H. D. (1968). Determination of water deficits in plant tissues. In: Water deficits and plant growth. I. Development, control and measurement. T. T. Kozlowski (ed.), pp. 235-368. Academic Press, New York.

Bonomelli, C., Celis, V., Lombardi, G., & Mártiz, J. (2018). Salt stress effects on avocado (Persea americana Mill.) plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy, 8(5), 64. https://doi.org/10.3390/agronomy8050064

Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306

Chanthini, K. M. P., Senthil-Nathan, S., Pavithra, G. S., Malarvizhi, P., Murugan, P., Deva-Andrews, A., ... & Krutmuang, P. (2022). Aqueous seaweed extract alleviates salinity-induced toxicities in rice plants (Oryza sativa L.) by modulating their physiology and biochemistry. Agriculture, 12(12), 2049.https://doi.org/10.3390/agriculture12122049

Consentino, B. B., Vultaggio, L., Iacuzzi, N., La Bella, S., De Pasquale, C., Rouphael, Y., ... & Sabatino, L. (2023). Iodine biofortification and seaweed extract-based biostimulant supply interactively drive the yield, quality, and functional traits in strawberry fruits. Plants, 12(2), 245. https://doi.org/10.3390/plants12020245

Cramer, G. R., Epstein, E., & Läuchli, A. (1991). Effects of sodium, potassium and calcium on salt‐stressed barley: II. Elemental analysis. Physiologia Plantarum, 81(2), 197-202. https://doi.org/10.1111/j.1399-3054.1991.tb02129.x

Crouch, I. J., & Van Staden, J. (1991). Evidence for rooting factors in a seaweed concentrate prepared from Ecklonia maxima. Journal of Plant Physiology, 137(3), 319-322. https://doi.org/10.1016/S0176-1617(11)80138-0

Crouch, I. J., & Van Staden, J. (1993). Commercial seaweed products as biostimulants in horticulture. Journal of Home & Consumer Horticulture, 1(1), 19-76. https://doi.org/10.1300/J280v01n01_03

Demirkaya, M. (2014.) Improvement in tolerance to salt stress during tomato cultivation. Turkish Journal of Biology. Vol. 38: No. 2, Article 5. https://doi.org/10.3906/biy-1307-62

Di Stasio, E., Van Oosten, M. J., Silletti, S., Raimondi, G., Dell’Aversana, E., Carillo, P., & Maggio, A. (2018). Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. Journal of Applied Phycology, 30, 2675-268. https://doi.org/10.1007/s10811-018-1439-9

Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D., & Nardi, S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in plant science, 9, 361254. https://doi.org/10.3389/fpls.2018.00428

Finnie, J. F., & Van Staden, J. (1985). Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. Journal of plant physiology, 120(3), 215-222. https://doi.org/10.1016/S0176-1617(85)80108-5

Hadjadj, S., Mahdjoubi, S., Hidoub, Y., Bahaz, T., Ghedamsi, Z., Regagda, S., ... & El Hadj-Khelil, A. O. (2023). Comparative effects of NaCl and Na2SO4 on germination and early seedling stages of the halophyte Carthamus tinctorius L. Journal of Applied Research on Medicinal and Aromatic Plants, 35, 100463. https://doi.org/10.1016/j.jarmap.2023.100463

Hakimzadeh, M. A., & Esfandiari, M. (2022). Morpho-physiological responses of peppermint (Mentha x piperita L.) by seaweed floair under salinity stress. Research Square. https://doi.org/10.21203/rs.3.rs-2238761/v1

Hatami, A., Abootalebi Jahromi, A., Ejraei, A., Mohammadi Jahromi, A. H., & Hassanzadeh Khankahdani, H. (2023). Study of biochemical traits and mineral elements in date palm fruits under preharvest foliar application of organic fertilizers and micronutrients. International Journal of Horticultural Science and Technology, 10(2), 125-140. https://doi.org/10.22059/IJHST.2022.334068.517

Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of applied phycology, 26, 619-628. https://doi.org/10.1007/s10811-013-0078-4

Hernández-Herrera, R. M., Sánchez-Hernández, C. V., Palmeros-Suárez, P. A., Ocampo-Alvarez, H., Santacruz-Ruvalcaba, F., Meza-Canales, I. D., & Becerril-Espinosa, A. (2022). Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy, 12(10), 2495. https://doi.org/10.3390/agronomy12102495

Hegazi, A. M., El-Shraiy, A. M., & Ghoname, A. A. (2015). Alleviation of salt stress adverse effect and enhancing phenolic anti-oxidant content of eggplant by seaweed extract. Gesunde Pflanzen, 67(1), 21-31. https://doi.org/10.1007/s10343-014-0333-x

Herve, R. A., & Rouillier, D. L. (1977). U.S. Patent No. 4,023,734. Washington, DC: U.S. Patent and Trademark Office. https://www.ams.usda.gov/sites/default/files/media/seaweed%20extract.pdf

Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).

Hosseini, T., Shekari, F., & Ghorbanli, M. (2010). Effect of salt stress on ion content, proline and antioxidative enzymes of two safflower cultivars (Carthamus tinctorius L.). J. Food Agric. Environ, 8(2), 1080-1086.

Hussein, M. H., Eltanahy, E., Al Bakry, A. F., Elsafty, N., & Elshamy, M. M. (2021). Seaweed extracts as prospective plant growth bio-stimulant and salinity stress alleviator for Vigna sinensis and Zea mays. Journal of Applied Phycology, 33, 1273-1291. https://doi.org/10.1007/s10811-020-02330-x

İnan, D. (2014). Comperative on some winter and summer safflower cultivars of yield and yield factors in izmir bornova conditions. Ege University Graduate School of Natural and Applied Sciences, Department of Field Crops, Doctora Thesis, 59 p.

Jabeen, N., & Ahmad, R. (2012). Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress. Pak. J. Bot, 44(4), 1341-1345.

Jannin, L., Arkoun, M., Etienne, P., Laîné, P., Goux, D., Garnica, M., ... & Ourry, A. (2013). Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. Journal of plant growth regulation, 32, 31-52. https://doi.org/10.1007/s00344-012-9273-9

Jithesh, M. N., Shukla, P. S., Kant, P., Joshi, J., Critchley, A. T., & Prithiviraj, B. (2019). Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. Journal of plant growth regulation, 38, 463-478. https://doi.org/10.1007/s00344-018-9861-4

Kaffka, S. R., & Kearney, T. E. (1998). Safflower production in California (Vol. 21565). UCANR Publications.

Karaoğlu, M., & Yalçın, A. M. (2018). Toprak tuzluluğu ve Iğdır ovası örneği. Journal of Agriculture, 1(1), 27-41.

Karray-Bouraoui, N., Harbaoui, F., Rabhi, M., Jallali, I., Ksouri, R., Attia, H., ... & Lachaâl, M. (2011). Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiologiae Plantarum, 33, 1435-1444. https://doi.org/10.1007/s11738-010-0679-3

Kaya, M. D., Ipek, A., & Öztürk, A. (2003). Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turkish Journal of Agriculture and Forestry, 27(4), 221-227.

Keser, M., Swenarton, J. T., & Foertch, J. F. (2005). Effects of thermal input and climate change on growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in eastern Long Island Sound (USA). Journal of Sea Research, 54(3), 211-220. https://doi.org/10.1016/j.seares.2005.05.001

Ketehouli, T., Idrice Carther, K. F., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agronomy, 9(11), 687. https://doi.org/10.3390/agronomy9110687

Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., ... & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of plant growth regulation, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x

Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., & Ahmad, P. (2023). Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regulation, 100(2), 267-282. https://doi.org/10.1007/s10725-022-00844-7

Kopittke, P. M. (2012). Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant and soil, 352, 353-362. https://doi.org/10.1007/s11104-011-1001-x

Latique, S., Mrid, R. B., Kabach, I., Kchikich, A., Sammama, H., Yasri, A., ... & Selmaoui, K. (2021). Foliar application of Ulva rigida water extracts improves salinity tolerance in wheat (Triticum durum L.). Agronomy, 11(2), 265. https://doi.org/10.3390/agronomy11020265

Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

Mutlu-Durak, H., Arikan, Y., & Kutman, B. Y. (2023). Willow (Salix babylonica) extracts can act as biostimulants for enhancing salinity tolerance of maize grown in soilless culture. Plants, 12(4), 856. https://doi.org/10.3390/plants12040856

Pal, S. C., Hossain, M. B., Mallick, D., Bushra, F., Abdullah, S. R., Dash, P. K., & Das, D. (2024). Combined use of seaweed extract and arbuscular mycorrhizal fungi for alleviating salt stress in bell pepper (Capsicum annuum L.). Scientia Horticulturae, 325, 112597. https://doi.org/10.1016/j.scienta.2023.112597

Ramarajan, S., Henry, J. L., & Saravana, G. A. (2013). Effect of seaweed extracts mediated changes in leaf area and pigment concentration in soybean under salt stress condition. RRJoLS, 3, 17-21. https://doi.org/10.1016/j.scienta.2023.112597

Ribeiro, L. M. M. (2022). Effects of a commercial seaweed extract of Ascophyllum nodosum on rice tolerance to salinity: hydroponics and seed priming approaches, New University of Lisbon, Biotechnology for Sustainability Program, Master Thesis, 36 p.

Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., & De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29, 459-470. https://doi.org/10.1007/s10811-016-0937-x

Shahi, C., Bargali, K., & Bargali, S. S. (2015). Assessment of salt stress tolerance in three varieties of rice (Oryza sativa L.). Journal of progressive agriculture, 6(1), 50-56.

Shahverdi, M. A., Omidi, H., & Tabatabaei, S. J. (2017). Effect of nutri-priming on germination indices and physiological characteristics of stevia seedling under salinity stress. Journal of Seed Science, 39, 353-362. http://dx.doi.org/10.1590/2317-1545v39n4172539

Singh, J., & Thakur, J. K. (2018). Photosynthesis and abiotic stress in plants. Biotic and abiotic stress tolerance in plants, 27-46. https://doi.org/10.1007/978-981-10-9029-5_2

Torres‐Salinas, D., Robinson‐García, N., Jiménez‐Contreras, E., Herrera, F., & López‐Cózar, E. D. (2013). On the use of biplot analysis for multivariate bibliometric and scientific indicators. Journal of the American Society for Information Science and Technology, 64(7), 1468-1479. https://doi.org/10.1002/asi.22837

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Frontiers in plant science, 7, 238366. https://doi.org/10.3389/fpls.2016.02049

Weiss, E. A. (1971). Castor, sesame and safflower. Leonard Hill Books,London.901 pp.Zaib, M. (2024). Boron nutrient for sustainability of plant growth and soil health: a review with future prospects. International Journal of Contemporary Issues in Social Sciences. ISSN (E) 2959-2461 (P) 2959-3808, 3(1), 912-931.

Downloads

Published

21.05.2025

How to Cite

Çöl Keskin, N., & Tanur Erkoyuncu, M. (2025). Effect of Ascophyllum nodosum Seaweed Extract on Growth and Elemental Nutrient Composition of Safflower (Carthamus tinctorius L.) under Salt Stress . Turkish Journal of Agriculture - Food Science and Technology, 13(5), 1169–1181. https://doi.org/10.24925/turjaf.v13i5.1169-1181.7434

Issue

Section

Research Paper