Effect of Soil Treatment with Silver and Gold Nanoparticles on the Accumulation of Ag, Au, and Other Elements in Earthworm Eisenia fetida and Their Vitality
DOI:
https://doi.org/10.24925/turjaf.v13i5.1303-1309.7451Keywords:
Heavy metal, gold nanoparticles, Silver nanoparticle, earthworm, vitalityAbstract
The effect of treatment of the Californian earthworm Eisenia fetida with preparations containing silver (Ag; in the form of either nanoparticles (AgNPs) or cations (AgNO3 solution)) and gold (Au; in the form of nanoparticles (AuNPs)) on its vitality was studied in a laboratory experiment for 12, 48, and 158 h. After the observations were completed, the total elemen content was analysed after exposure to individual preparations applied to the soil. Earthworms and the soil in which they were grown were analysed. Measurements were performed using the inductively coupled plasma mass spectrometry technique, with prior mineralisation of earthworms and soil samples. The results of quantitative studies showed a several-fold increase in Ag content in earthworms exposed to preparations containing Ag compared to the control group. Significantly higher contents of K, Na, P, Mg, and Si were also found in earthworms exposed to Ag and Au compared to the control group. Despite exposure to AuNPs, no increase in the concentration of this element was observed in the earthworms. The analysis also included other elements: Li, Al, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Au, Hg, Tl, and Pb. The initial analysis did not show any significant differences in the concentrations of these elements in earthworms exposed to individual preparations compared to the control. The high level of elements classified as toxic to earthworms, including As, Cd, and Pb, is noteworthy, but the concentrations of these elements were not dependent on the use of any of the preparations. Based on a visual inspection of live individuals, we could not confirm the reduced vitality of earthworms exposed to individual preparations compared to the control. In contrast, individual populations retained full vitality after exposure and reproduced.
References
Adamowska, M., Pałuba, B., & Hyk, W. (2022). Electrochemical determination of nanoparticle size: Combined theoretical and experimental study for matrixless silver nanoparticles. Molecules 27(8), 2592. https://doi.org/10.3390/molecules27082592
Baccaro, M., Montano, M. D., Cui, X., Mackevica, M., Lynch, L., von den Kammer, F., Lodge, R. W., Khlobystov, A. N., & van den Brink, N. W. (2022) Influence of dissolution on the uptake of bimetallic nanoparticles Au@Ag-NPs in soil organisms Eisenia fetida. Chemosphere 302(2022), 134909. https://doi.org/10.1016/j.chemosphere.2022.134909
Baccaro, M., Undas, A. K., de Vriendt, J., van den Berg, J. H. J., Peters, R. J. B., & van den Brink, N. W. (2018). Ageing, dissolution and biogenic formation of nanoparticles: How do these factors affect the uptake kinetics of silver nanoparticles in earthworms? Environmental Science: Nano 5, 1107–1116.
Bodo, K., Hayashi, Y., Gerencser, G., Laszlo, Z., Keri, A., Galbacs, G., Telek, E., Meszaros, M., Deli, M. A., Kokhanyuk, B., Nemeth, P., & Engelmann, P. (2020). Species-specific sensitivity of Eisenia earthworms towards noble metal nanoparticles: A multiparametric in vitro study. Environmental Science Nano 11, 2020. https://doi.org/10.1039/C9EN01405E
Bourdieneaud, J. P., Stambug, A., Srut, M., Brkanac, S. R., Ivanković, D., Lisjak, D., Klobucar, D., Dragun, Z., Bacić, N., & Klobucar, G. I. V. (2022). Gold and silver nanoparticles effects to the earthworm Eisenia fetida - the importance of tissue over soil concentrations. Drug Chem. Toxicol.44(1), 12-29.
Chae, Y. J., Pham, C. H., Lee, J., Bae, E., Yi, J., & Gua, M. B. (2009). Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology 94, 320–327.
Exbrayat, J.-M., Moudilou, E. N., & Lapied, E. (2015). Harmful effects of nanoparticles on animals. Journal of Nanotechnology 2015, ID 861092. https//doi.org/10.1155/2015/861092
Hu, Ch., Li, M., Wang, W., Cui, Y., Chen, J., & Yang, L. (2011). Ecotoxicity of silver nanoparticles on earthworms Eisenia fetida: Responses of the antioxidant system, acid phosphatase and AT phase. Toxicological and Environmental Chemistry 94(2), 1–10. https://doi.org/10.1080/02772248.2012.668020
Jung, W. K., Kim, S. H., Koo, H. C., Shin, S., Kim, J. M., Park, Y. K., Hwang, S. Y., Yang, H., & Park, Y. H. (2007). Antifungal activity of the silver ion against contaminated fabric. Mycoses 50, 265–269.
Kelly, S. A., Havrilla, C. M., Brady, T. C., Abramo, K. H., & Levin, E. D. (1998). Oxidative stress in toxicology: Established mammalian and emerging piscine model systems. Environmental Health Perspectives 106, 375–384.
Kohen, R., & Nyska A. (2002). Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology 6, 620–650.
Mangiafico, S. S. (2024). rcompanion: Functions to support extension education program evaluation. Rutgers Cooperative Extension. version 2.4.36, https://CRAN.R-project.org/package=rcompanion/.
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353.
Mroczek-Sosnowska, N., Jaworski, S., Siennicka, A., & Gondek, A. (2013). Unikalne właściwości nanocząstek srebra. Polskie Drobiarstwo 2/2013.
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behaviour and ecotoxicology of engineered nanoparticles to algae, plant and fungi. Ecotoxicology 17, 372–86.
OECD. (1984). Guideline for testing of chemicals. No 207. Earthworm acute toxicity tests. Organization for Economic Cooperation and Development.
Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2, 32. https://doi.org/10.1186/2228-5326-2-32
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/.
Salachna, P., Byczyńska, A., Zawadzińska, A., Piechocki, R., & Mizielińska, M. (2019). Stimulatory effect of silver nanoparticles on the growth and flowering of potted oriental lilies. Agronomy 9(10), 610.
Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva A. M., Durazzo A., Santini A., Garcia M. L., Souto E. B. (2020). Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 10, 292. doi: 10.3390/nano10020292.
Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2011a). Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Science Society of America Journal 75, 365–377.
Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2011b). Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5, 432–444.
Shoults-Wilson, W. A., Riensch, B. C., Tryusko, O. V., Bertsch, P. M., Lowry, G. V., & Unrine, J. M. (2010). Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Science Society of America Journal 10,365-377. https://doi.org/10.2136/sssaj2010.0127nps
Unrine, J. M., Hunyadi, S. E., Tsyusko, O. V., Rao, W., Shoults-Wilson, W. A., & Bertsch, P. M. (2010). Evidence of Au nanoparticles from soil and biodistribution within earthworm (Eisenia fetida). Environ. Sci. Technol. 44, 8308–8313.
Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71, 7589–7593.
Zhao, J., & Castranova, V. (2011). Toxicology of nanomaterials used in medicine. Journal of Toxicology and Environmental Health B 14, 593–632.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.