Innovative Approaches to Rhizosphere Engineering with Plant Growth Promoting Microorganisms in Agricultural Practices
DOI:
https://doi.org/10.24925/turjaf.v13i5.1324-1343.7515Keywords:
stress tolerance, microbiome, rhizosphere engineering, microorganisms that promote plant development, plant growthAbstract
The most complex microhabitat is the rhizosphere, which is composed of a varied alliance of archaea, fungi, bacteria, and eukaryotes as well as an interconnected network of plant roots and soil. Crop yield and growth are directly affected by rhizosphere conditions. Plant development and yield were enhanced under nutrient-rich rhizosphere conditions. Most soils that require nurturing before or at the time of next harvest are drained by extensive agriculture. Fertilizers are the primary source of nutrients for crop. However, their extensive and unchecked use seriously threatens ecosystem stability and agricultural sustainability. These toxic substances accumulate in the soil, leak into water, and are discharged into the atmosphere, where they stay for decades and impart a vital risk to the ecosystem as a whole. The rhizosphere of plant growth-promoting rhizobacteria (PGPR) transforms a variety of vital nutrients such as nitrogen, phosphorus, zinc, and others that are unavailable to plants into forms that they can use. In order to interact with the valuable or pathogenic counterparts in the rhizosphere, PGPR produces a variety of hormones such as auxin, cytokinin, gibberellin, antimicrobial agents, secondary compounds, cell lytic enzymes, chitinases, proteases, hydrolases, stress- releasing materials 1-Aminocyclopropane-1-carboxylate deaminase, chelating siderophores, and certain signaling substances such as N-acyl homoserine lactone. PGPR can be used for rhizosphere engineering, which has several uses beyond crop fertilization, development of plant growth, sustainability, and environment friendly agriculture. There is an increasing concern regarding stress-resilient plant growth promoting. microorganisms (PGPM). This review paper covers the three elements of rhizosphere engineering with a particular emphasis on PGPM and how it might promote the appropriate use of rhizosphere engineering particularly in hosts, as an important aspect of environmentally conscious farming.
References
Abdel-Hakim, S. G., Shehata, A. S., Moghannem, S. A., Qadri, M., El-Ghany, M. F. A., Abdeldaym, E. A., & Darwish, O. S. (2023). Nanoparticulate fertilizers increase nutrient absorption efficiency and agro-physiological properties of lettuce plant. Agronomy, 13(3), 691.
Abdulkareem, M., Aboud, H. M., Saood, H. M., & Shibly, M. K. (2014). Antagonistic activity of some plant growth rhizobacteria to Fusarium graminearum. International Journal of phytopathology, 3(1), 49-54.
AbuQamar, S. F., El-Saadony, M. T., Saad, A. M., Desoky, E.-S. M., Elrys, A. S., Abd El-Mageed, T. A., . . . Al Kafaas, S. S. (2024). Halotolerant plant growth-promoting rhizobacteria improve soil fertility and plant salinity tolerance for sustainable agriculture—A review. Plant Stress, 12, 100482.
Ahemad, M., & Khan, M. S. (2012). Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi journal of biological sciences, 19(4), 451-459.
Ahkami, A. H., White III, R. A., Handakumbura, P. P., & Jansson, C. (2017). Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere, 3, 233-243.
Ahmed, E., & Holmström, S. J. (2014). Siderophores in environmental research: roles and applications. Microbial biotechnology, 7(3), 196-208.
Aioub, A. A., Elesawy, A. E., & Ammar, E. E. (2022). Plant growth promoting rhizobacteria (PGPR) and their role in plant-parasitic nematodes control: a fresh look at an old issue. Journal of Plant Diseases and Protection, 129(6), 1305-1321.
Alharbi, K., Rashwan, E., Mohamed, H. H., Awadalla, A., Omara, A. E.-D., Hafez, E. M., & Alshaal, T. (2022). Application of silica nanoparticles in combination with two bacterial strains improves the growth, antioxidant capacity and production of barley irrigated with saline water in salt-affected soil. Plants, 11(15), 2026.
Ali, Q., Haider, M. Z., Shahid, S., Aslam, N., Shehzad, F., Naseem, J., . . . Hussain, S. M. (2019). Role of amino acids in improving abiotic stress tolerance to plants. In Plant tolerance to environmental stress (pp. 175-204): CRC Press.
Ali, S., & Baloch, A. M. (2020). Overview of sustainable plant growth and differentiation and the role of hormones in controlling growth and development of plants under various stresses. Recent patents on food, nutrition & agriculture, 11(2), 105-114.
Altaf, M. T., Liaqat, W., Bedir, M., Ali, A., Nadeem, M. A., & Baloch, F. S. (2024). Wheat Biofortification: A Promising Approach to Improve Public Health. In Advances in Wheat Breeding: Towards Climate Resilience and Nutrient Security (pp. 623-651): Springer.
Arakere, U. C., Jagannath, S., Krishnamurthy, S., Chowdappa, S., & Konappa, N. (2022). Microbial bio-pesticide as sustainable solution for management of pests: achievements and prospects. Biopesticides, 183-200.
Araujo, R., Kaewkla, O., & Franco, C. M. (2017). Endophytic Actinobacteria: beneficial partners for sustainable agriculture. Endophytes: Biology and Biotechnology: Volume 1, 171-191.
Arcas, A., López-Rayo, S., Gárate, A., & Lucena, J. J. (2024). A Critical Review of Methodologies for Evaluating Iron Fertilizers Based on Iron Reduction and Uptake by Strategy I Plants. Plants, 13(6), 819.
Arfaoui, A., Adam, L. R., Bezzahou, A., & Daayf, F. (2018). Isolation and identification of cultivated bacteria associated with soybeans and their biocontrol activity against Phytophthora sojae. BioControl, 63, 607-617.
Arif, I., Batool, M., & Schenk, P. M. (2020). Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends in Biotechnology, 38(12), 1385-1396.
Aryal, J. P., Manchanda, N., & Sonobe, T. (2022). Expectations for household food security in the coming decades: A global scenario. In Future Foods (pp. 107-131): Elsevier.
Ayoubi, N., Zafari, D., & Mirabolfathy, M. (2012). Combination of Trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth. Journal of Crop Protection, 1(1), 0-0.
Bakhtiyarifar, M., Enayatizamir, N., & Mehdi Khanlou, K. (2021). Biochemical and molecular investigation of non-rhizobial endophytic bacteria as potential biofertilisers. Archives of Microbiology, 203(2), 513-521.
Baldwin, D. S. (2013). Organic phosphorus in the aquatic environment. Environmental Chemistry, 10(6), 439-454.
Bano, S., Wu, X., & Zhang, X. (2021). Towards sustainable agriculture: rhizosphere microbiome engineering. Applied Microbiology and Biotechnology, 1-20.
Barea, J. (2015). Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. Journal of soil science and plant nutrition, 15(2), 261-282.
Barkla, B. J., Castellanos‐Cervantes, T., Diaz de Leon, J. L., Matros, A., Mock, H.-P., Perez‐Alfocea, F., . . . Zörb, C. (2013). Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics—current achievements and perspectives. Proteomics, 13(12-13), 1885-1900.
Bashan, Y., & De-Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Advances in agronomy, 108, 77-136.
Batista-Silva, W., de Paiva Gonçalves, J., Siqueira, J. A., Martins, A. O., Ribeiro, D. M., Nunes-Nesi, A., . . . Araújo, W. L. (2024). Auxin metabolism and the modulation of plant growth. Environmental and Experimental Botany, 105917.
Bellini, T., Bustaffa, M., Tubino, B., Giordano, B., Formigoni, C., Fueri, E., . . . Herzum, A. (2024). Acquired and Inherited Zinc Deficiency-Related Diseases in Children: A Case Series and a Narrative Review. Pediatric Reports, 16(3), 602.
Bharti, A., Maheshwari, H. S., Sharma, M. P., & Prakash, A. (2020). Microbial-mediated abiotic stress tolerance in soybean plants. In Microbial Mitigation of Stress Response of Food Legumes (pp. 209-228): CRC Press.
Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial pathogenesis, 111, 458-467.
Bruno, L. B., Karthik, C., Ma, Y., Kadirvelu, K., Freitas, H., & Rajkumar, M. (2020). Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere, 244, 125521.
Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C., & Mercado-Blanco, J. (2019). Biological control agents against Fusarium wilt of banana. Frontiers in microbiology, 10, 616.
Cai, X., Zhao, H., Liang, C., Li, M., & Liu, R. (2021). Effects and mechanisms of symbiotic microbial combination agents to control tomato fusarium crown and root rot disease. Frontiers in microbiology, 12, 629793.
Cao, Y., Song, H., & Zhang, L. (2022). New insight into plant saline-alkali tolerance mechanisms and application to breeding. International Journal of Molecular Sciences, 23(24), 16048.
Carlos, E., Lerma, T., & Martínez, J. (2021). Phytohormones and plant growth regulators—a review. J Sci with Technol Appl, 10, 27-65.
Chaparro, J. M., Sheflin, A. M., Manter, D. K., & Vivanco, J. M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 48, 489-499.
Chen, Y.-t., Zhang, X.-y., Zhang, D., Zhang, Z.-x., & Wang, Y.-x. (2024). Metabolism of Malus halliana Roots Provides Insights into Iron Deficiency Tolerance Mechanisms. Plants, 13(17), 2500.
Classen, A. (2021). Discovery of novel cold-active antifungals from polar bacteria isolated from the Canadian high arctic that are active against major spoilage fungi in the cheese industry: McGill University (Canada).
Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715.
Costerousse, B., Schönholzer-Mauclaire, L., Frossard, E., & Thonar, C. (2018). Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Applied and environmental microbiology, 84(1), e01715-01717.
Cui, F., Fan, R., Wang, D., Li, J., & Li, T. (2023). Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Critical Reviews in Food Science and Nutrition, 1-19.
Dasila, H., Sah, V., Jaggi, V., Kumar, A., Tewari, L., Taj, G., . . . Siang, T. C. (2023). Cold-tolerant phosphate-solubilizing Pseudomonas strains promote wheat growth and yield by improving soil phosphorous (P) nutrition status. Frontiers in microbiology, 14, 1135693.
Datta, M. D., Pandya, J. B., Jadav, M. S. K., & Kumar, M. (2023). Plants Physiology And Metabolism: Fundamentals And Principles: AG PUBLISHING HOUSE (AGPH Books).
De Celis, M., Serrano-Aguirre, L., Belda, I., Liébana-García, R., Arroyo, M., Marquina, D., . . . Santos, A. (2021). Acylase enzymes disrupting quorum sensing alter the transcriptome and phenotype of Pseudomonas aeruginosa, and the composition of bacterial biofilms from wastewater treatment plants. Science of the total environment, 799, 149401.
Di, D.-W., Zhang, C., Luo, P., An, C.-W., & Guo, G.-Q. (2016). The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regulation, 78, 275-285.
Doornbos, R. F., van Loon, L. C., & Bakker, P. A. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for sustainable development, 32, 227-243.
dos Santos, C. S. S. (2017). Unravelling the Molecular and Physiological Components that Contribute to Iron Deficiency Chlorosis. Universidade Catolica Portuguesa (Portugal),
Duca, D. R., & Glick, B. R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 104, 8607-8619.
Dutilloy, E., Oni, F. E., Esmaeel, Q., Clément, C., & Barka, E. A. (2022). Plant beneficial bacteria as bioprotectants against wheat and barley diseases. Journal of Fungi, 8(6), 632.
El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Ahmed, A. I., Mahmood, M., . . . Negm, S. H. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Frontiers in Plant Science, 13, 923880.
Elango, D., Devi, K. D., Jeyabalakrishnan, H. K., Rajendran, K., Haridass, V. K. T., Dharmaraj, D., . . . Mishra, R. (2022). Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. Journal of Agriculture and Food Research, 10, 100374.
Elango, S., Shahni, Y. S., Padamini, R., Hazarika, S., Wongamthing, R., Oraon, S., . . . Thangaraj, R. (2024). Harnessing Microbial Antagonists for Biological Control of Plant Pathogens: A Global Perspective. Microbiology Research Journal International, 34(5), 1-17.
Elnahal, A. S., El-Saadony, M. T., Saad, A. M., Desoky, E.-S. M., El-Tahan, A. M., Rady, M. M., . . . El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 162(4), 759-792.
Elshahat, M. R., Ahmed, A. A., Enas, A. H., & Fekria, M. S. (2016). Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. African Journal of Microbiology Research, 10(15), 486-504.
Etesami, H., & Adl, S. M. (2020). Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome in stress regulation, 147-203.
Etesami, H., Alikhani, H. A., & Mirseyed Hosseini, H. (2015). Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. Bacterial metabolites in sustainable agroecosystem, 183-258.
Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and environmental safety, 156, 225-246.
Fatima, P., Mishra, A., Om, H., Saha, B., & Kumar, P. (2019). Free living nitrogen fixation and their response to agricultural crops. In Biofertilizers and Biopesticides in Sustainable Agriculture (pp. 173-200): Apple Academic Press.
Fernandes, S., & São-José, C. (2018). Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers. Viruses, 10(8), 396.
Fixen, P. E. (2020). A brief account of the genesis of 4R nutrient stewardship. Agronomy Journal, 112(5), 4511-4518.
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D., & Dourado Neto, D. (2021). Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, 10(5), 570.
Gamalero, E., & Glick, B. R. (2022). Recent advances in bacterial amelioration of plant drought and salt stress. Biology, 11(3), 437.
Gamalero, E., Lingua, G., & Glick, B. R. (2023). Ethylene, ACC, and the plant growth-promoting enzyme ACC deaminase. Biology, 12(8), 1043.
Ghssein, G., & Ezzeddine, Z. (2022). A review of Pseudomonas aeruginosa metallophores: Pyoverdine, pyochelin and pseudopaline. Biology, 11(12), 1711.
Giannelli, G., Potestio, S., & Visioli, G. (2023). The contribution of PGPR in salt stress tolerance in crops: Unravelling the molecular mechanisms of cross-talk between plant and bacteria. Plants, 12(11), 2197.
Górski, R., Rosa, R., Niewiadomska, A., Wolna-Maruwka, A., & Płaza, A. (2024). Response of Soil Microorganisms to and Yield of Spelt Wheat following the Application of Bacterial Consortia and the Subsequent Effect of Cover Crops in Organic Farming. Agronomy, 14(4), 752.
Goud, E. L., Singh, J., & Kumar, P. (2022). Climate change and their impact on global food production. In Microbiome under changing climate (pp. 415-436): Elsevier.
Grant, C., Loch, R., McCaffrey, N., Anstee, S., & Doley, D. (2016). Mine rehabilitation: leading practice sustainable development program for the mining industry.
Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2011). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27, 1231-1240.
Grzyb, A., Wolna-Maruwka, A., & Niewiadomska, A. (2021). The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, 11(7), 1415.
Gupta, A., Rai, S., Bano, A., Sharma, S., Kumar, M., Binsuwaidan, R., . . . Saeed, M. (2022). ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities. Plants, 11(24), 3419.
Gupta, S., & Pandey, S. (2023). Plant growth promoting rhizobacteria to mitigate biotic and abiotic stress in plants. Sustainable Agriculture Reviews 60: Microbial Processes in Agriculture, 47-68.
Ha-Tran, D. M., Nguyen, T. T. M., Hung, S.-H., Huang, E., & Huang, C.-C. (2021). Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences, 22(6), 3154.
Hafeez, B., Khanif, Y., & Saleem, M. (2013). Role of zinc in plant nutrition-a review. American journal of experimental Agriculture, 3(2), 374-391.
Hahn, L., Sá, E. L. S. d., Osório, B. D., Machado, R. G., Damasceno, R. G., & Giongo, A. (2016). Rhizobial inoculation, alone or coinoculated with Azospirillum brasilense, promotes growth of wetland rice. Revista Brasileira de Ciência do Solo, 40.
Hakim, S., Naqqash, T., Nawaz, M. S., Laraib, I., Siddique, M. J., Zia, R., . . . Imran, A. (2021). Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems, 5, 617157.
Hamid, S., Lone, R., & Mohamed, H. I. (2021). Production of antibiotics from PGPR and their role in biocontrol of plant diseases. Plant growth-promoting microbes for sustainable biotic and abiotic stress management, 441-461.
Han, G., Qiao, Z., Li, Y., Wang, C., & Wang, B. (2021). The roles of CCCH zinc-finger proteins in plant abiotic stress tolerance. International Journal of Molecular Sciences, 22(15), 8327.
Hanaka, A., Ozimek, E., Reszczyńska, E., Jaroszuk-Ściseł, J., & Stolarz, M. (2021). Plant tolerance to drought stress in the presence of supporting bacteria and fungi: An efficient strategy in horticulture. Horticulturae, 7(10), 390.
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60, 579-598.
Hazell, P. B. (2010). Asia’s Green Revolution: past achievements and future challenges. Rice in the global economy: Strategic research and policy issues for food security.
Henao-Pabon, G. (2020). A Cellulose-Based Biological Sensor for the Quantitative Determination of Glucose and Glycated Hemoglobin (HbA1c). The University of Texas at El Paso,
Hossain, M. M. (2024). Upscaling plant defense system through the application of plant growth-promoting fungi (PGPF). In Microbial Technology for Agro-Ecosystems (pp. 61-95): Elsevier.
Hu, W., Wang, J., Deng, Q., Liang, D., Xia, H., Lin, L., & Lv, X. (2023). Effects of Different Types of Potassium Fertilizers on Nutrient Uptake by Grapevine. Horticulturae, 9(4), 470.
Ibáñez, F., Wall, L., & Fabra, A. (2017). Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. Journal of experimental botany, 68(8), 1905-1918.
Iqbal, S., Iqbal, M. A., Li, C., Iqbal, A., & Abbas, R. N. (2023). Overviewing drought and heat stress amelioration—from plant responses to microbe-mediated mitigation. Sustainability, 15(2), 1671.
Jabborova, D. P., Enakiev, Y. I., Davranov, K. D., & Begmatov, S. A. (2018). Effect of co-inoculation with Bradyrhizobium japonicum and Pseudomonas putida on root morph-architecture traits, nodulation and growth of soybean in response to phosphorus supply under hydroponic conditions. Bulgarian Journal of Agricultural Science, 24(6).
Jeyanthi, V., & Kanimozhi, S. (2018). Plant growth promoting rhizobacteria (PGPR)-prospective and mechanisms: a review. J Pure Appl Microbiol, 12(2), 733-749.
Jiang, W., Liu, J., He, Y., Payizila, A., & Li, Y. (2024). Biological control ability and antifungal activities of Bacillus velezensis Bv S3 against Fusarium oxysporum that causes rice seedling blight. Agronomy, 14(1), 167.
Jones, D. L., & Oburger, E. (2011). Solubilization of phosphorus by soil microorganisms. Phosphorus in action: biological processes in soil phosphorus cycling, 169-198.
Joshi, P., Saini, A., Banerjee, S., Bose, R., Bhandari, M., Pandey, A., & Pandey, S. (2021). Agriculturally Important Microbes: Challenges and Opportunities. Microbiological Activity for Soil and Plant Health Management, 1-34.
Kabouw, P., van Dam, N. M., van der Putten, W. H., & Biere, A. (2012). How genetic modification of roots affects rhizosphere processes and plant performance. Journal of experimental botany, 63(9), 3475-3483.
Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., & Kumar, P. (2020). Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. Fungal biotechnology and bioengineering, 457-470.
Kang, S.-M., Khan, A. L., Waqas, M., Asaf, S., Lee, K.-E., Park, Y.-G., . . . Lee, I.-J. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 14(1), 416-423.
Kang, S.-M., Waqas, M., Hamayun, M., Asaf, S., Khan, A. L., Kim, A.-Y., . . . Lee, I.-J. (2017). Gibberellins and indole-3-acetic acid producing rhizospheric bacterium Leifsonia xyli SE134 mitigates the adverse effects of copper-mediated stress on tomato. Journal of Plant Interactions, 12(1), 373-380.
Kebede, E. (2021). Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems, 5, 767998.
Kechid, M., Desbrosses, G., Rokhsi, W., Varoquaux, F., Djekoun, A., & Touraine, B. (2013). The NRT 2.5 and NRT 2.6 genes are involved in growth promotion of Arabidopsis by the plant growth‐promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM 196. New Phytologist, 198(2), 514-524.
Kenneth, O. C., Nwadibe, E. C., Kalu, A. U., & Unah, U. V. (2019). Plant growth promoting rhizobacteria (PGPR): a novel agent for sustainable food production. Am J Agric Biol Sci, 14(35), 54.
Keswani, C., Singh, S. P., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., . . . Sansinenea, E. (2020). Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 104, 8549-8565.
Khan, A., & Singh, A. V. (2021). Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World Journal of Microbiology and Biotechnology, 37(12), 198.
Khan, A. R., Mustafa, A., Hyder, S., Valipour, M., Rizvi, Z. F., Gondal, A. S., . . . Daraz, U. (2022). Bacillus spp. as bioagents: uses and application for sustainable agriculture. Biology, 11(12), 1763.
Khan, M., Rizvi, A., Ahmed, B., & Umar, S. (2022). Amelioration of Pathogen Induced Biotic Stress to Vegetable Crops by Plant Be-neficial Bacteria: A Review. J Mod Agric Biotechnol, 1(1), 1.
Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R., & Curá, J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells, 10(6), 1551.
Khan, N., Ali, S., Tariq, H., Latif, S., Yasmin, H., Mehmood, A., & Shahid, M. A. (2020). Water conservation and plant survival strategies of rhizobacteria under drought stress. Agronomy, 10(11), 1683.
Khan, N., Bano, A., Ali, S., & Babar, M. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90, 189-203.
Khan, S. T., Malik, A., Alwarthan, A., & Shaik, M. R. (2022). The enormity of the zinc deficiency problem and available solutions; an overview. Arabian Journal of Chemistry, 15(3), 103668.
Kikstra, J. S., Nicholls, Z. R., Smith, C. J., Lewis, J., Lamboll, R. D., Byers, E., . . . Rogelj, J. (2022). The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geoscientific Model Development, 15(24), 9075-9109.
Kour, D., Rana, K. L., Yadav, N., Yadav, A. N., Kumar, A., Meena, V. S., . . . Saxena, A. K. (2019). Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices, 19-65.
Kumar, A., & Dubey, A. (2020). Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 24, 337-352.
Kumar, A., Singh, S., Mukherjee, A., Rastogi, R. P., & Verma, J. P. (2021). Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, 242, 126616.
Kumar, N., Srivastava, P., Vishwakarma, K., Kumar, R., Kuppala, H., Maheshwari, S. K., & Vats, S. (2020). The rhizobium–plant symbiosis: state of the art. Plant microbe symbiosis, 1-20.
Lee, G. H., & Ryu, C.-M. (2016). Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from Cucumber mosaic virus. Plant Disease, 100(10), 2099-2105.
Lee, J. H., Anderson, A. J., & Kim, Y. C. (2022). Root-associated bacteria are biocontrol agents for multiple plant pests. Microorganisms, 10(5), 1053.
Li, S.-X., Wang, Z.-H., & Stewart, B. (2013). Responses of crop plants to ammonium and nitrate N. Advances in agronomy, 118, 205-397.
López-Bellido, L., Wery, J., & López-Bellido, R. J. (2014). Energy crops: prospects in the context of sustainable agriculture. European journal of agronomy, 60, 1-12.
Lymperopoulos, P., Msanne, J., & Rabara, R. (2018). Phytochrome and phytohormones: working in tandem for plant growth and development. Frontiers in Plant Science, 9, 1037.
Ma, S., De Frenne, P., Boon, N., Brunet, J., Cousins, S. A., Decocq, G., . . . Naaf, T. (2019). Plant species identity and soil characteristics determine rhizosphere soil bacteria community composition in European temperate forests. FEMS microbiology ecology, 95(6), fiz063.
Mahgoub, H. A., Fouda, A., Eid, A. M., Ewais, E. E.-D., & Hassan, S. E.-D. (2021). Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L. Plant Biotechnology Reports, 15(6), 819-843.
Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance, 171-190.
Maral-Gül, D., & Eltem, R. (2024). Evaluation of Bacillus isolates as a biological control agents against soilborne phytopathogenic fungi. International Microbiology, 1-15.
Maret, W. (2013). Zinc biochemistry: from a single zinc enzyme to a key element of life. Advances in nutrition, 4(1), 82-91.
Marten, G. G. (2010). Human ecology: Basic concepts for sustainable development: Routledge.
Mazid, M., Khan, T. A., & Mohammad, F. (2011). Cytokinins, a classical multifaceted hormone in plant system. Journal of Stress Physiology & Biochemistry, 7(4), 347-368.
McComb, R. B., Bowers Jr, G. N., & Posen, S. (2013). Alkaline phosphatase: Springer Science & Business Media.
McNear Jr, D. H. (2013). The rhizosphere-roots, soil and everything in between. Nature Education Knowledge, 4(3), 1.
Mehmood, N., Saeed, M., Zafarullah, S., Hyder, S., Rizvi, Z. F., Gondal, A. S., . . . Ercisli, S. (2023). Multifaceted impacts of plant-beneficial pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS omega, 8(25), 22296-22315.
Melini, F., Melini, V., Luziatelli, F., Abou Jaoudé, R., Ficca, A. G., & Ruzzi, M. (2023). Effect of microbial plant biostimulants on fruit and vegetable quality: current research lines and future perspectives. Frontiers in Plant Science, 14, 1251544.
Méndez, C., Baginsky, C., Hedden, P., Gong, F., Carú, M., & Rojas, M. C. (2014). Gibberellin oxidase activities in Bradyrhizobium japonicum bacteroids. Phytochemistry, 98, 101-109.
Metuzals, J. (2014). Biological nitrogen fixation in agricultural systems.
Mfilinge, A., Mtei, K., & Ndakidemi, P. (2014). Effects of rhizobium inoculation and supplementation with P and K, on growth, leaf chlorophyll content and nitrogen fixation of bush bean varieties.
Mimmo, T., Del Buono, D., Terzano, R., Tomasi, N., Vigani, G., Crecchio, C., . . . Cesco, S. (2014). Rhizospheric organic compounds in the soil–microorganism–plant system: their role in iron availability. European Journal of Soil Science, 65(5), 629-642.
Mishra, S., Roychowdhury, R., Ray, S., Hada, A., Kumar, A., Sarker, U., . . . Das, R. (2024). Salicylic acid (SA)-mediated plant immunity against biotic stresses: an insight on molecular components and signaling mechanism. Plant Stress, 100427.
Mitra, D., Mondal, R., Khoshru, B., Shadangi, S., Mohapatra, P. K. D., & Panneerselvam, P. (2021). Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Current Research in Microbial Sciences, 2, 100071.
Mizik, T. (2023). How can precision farming work on a small scale? A systematic literature review. Precision agriculture, 24(1), 384-406.
Mohammed, A. F., Oloyede, A. R., & Odeseye, A. O. (2020). Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Archives of Phytopathology and Plant Protection, 53(1-2), 1-16.
Mohanram, S., & Kumar, P. (2019). Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Annals of Microbiology, 69, 307-320.
Molnár, Z., Solomon, W., Mutum, L., & Janda, T. (2023). Understanding the mechanisms of Fe deficiency in the rhizosphere to promote plant resilience. Plants, 12(10), 1945.
Mon, Y. Y., Bidabadi, S. S., Oo, K. S., & Zheng, S.-J. (2021). The antagonistic mechanism of rhizosphere microbes and endophytes on the interaction between banana and Fusarium oxysporum f. sp. cubense. Physiological and Molecular Plant Pathology, 116, 101733.
Moore, D. (2013). Fungal biology in the origin and emergence of life: Cambridge University Press.
Mosa, W. F. A. E.-G., Sas-Paszt, L., Frąc, M., & Trzciński, P. (2016). Microbial products and biofertilizers in improving growth and productivity of apple–a review. Polish Journal of Microbiology, 65(3), 243-251.
Mrabet, R. (2023). Sustainable agriculture for food and nutritional security. In Sustainable agriculture and the environment (pp. 25-90): Elsevier.
Munir, N., Hanif, M., Abideen, Z., Sohail, M., El-Keblawy, A., Radicetti, E., . . . Haider, G. (2022). Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy, 12(9), 2069.
Mutumba, F. A., Zagal, E., Gerding, M., Castillo-Rosales, D., Paulino, L., & Schoebitz, M. (2018). Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes. Journal of soil science and plant nutrition, 18(4), 1080-1096.
Mwende Muindi, E. (2019). Understanding soil phosphorus. International Journal of Plant & Soil Science, 31(2), 1-18.
Nagendran, S., Kulanthaivelu, S., & Sundararajan, T. (2019). Assessment on antagonistic potential of Bacterial bio agents Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani Kühn. An incitant of Sheath blight of rice. J. Entomol. Zool. Stud, 7(3), 128-142.
Nair, P. R., Kumar, B. M., Nair, V. D., Nair, P. R., Kumar, B. M., & Nair, V. D. (2021). Biological Nitrogen Fixation and Nitrogen Fixing Trees. An Introduction to Agroforestry: Four Decades of Scientific Developments, 413-443.
Naitam, M. G., & Kaushik, R. (2021). Archaea: an agro-ecological perspective. Current Microbiology, 78(7), 2510-2521.
Narmani, A., Arzanlou, M., Babaiahari, A., & Masteri Farahani, H. (2019). Biological control of wheat fusarium head blight using antagonistic strains of commercial and local Trichoderma, isolated from wheat plant rhizosphere. Journal of Applied Research in Plant Protection, 8(2), 1-20.
Naveed, M., Mehboob, I., Hussain, M. B., & Zahir, Z. A. (2015). Perspectives of rhizobial inoculation for sustainable crop production. Plant microbes symbiosis: applied facets, 209-239.
Newton, W. E. (2015). Recent advances in understanding nitrogenases and how they work. Biological nitrogen fixation, 5-20.
Ng, C. W. W., Yan, W. H., Tsim, K. W. K., San So, P., Xia, Y. T., & To, C. T. (2022). Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon, 8(11).
Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement, 15(2).
Nikolić, I., Berić, T., Dimkić, I., Popović, T., Lozo, J., Fira, D., & Stanković, S. (2019). Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS‐10.7 and Bacillus amyloliquefaciens (SS‐12.6 and SS‐38.4) strains. Journal of Applied Microbiology, 126(1), 165-176.
Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868.
Noumavo, P. A., Agbodjato, N. A., Baba-Moussa, F., Adjanohoun, A., & Baba-Moussa, L. (2016). Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology, 15(27), 1452-1463.
Osório Filho, B. D., Gano, K. A., Binz, A., Lima, R. F., Aguilar, L. M., Ramirez, A., . . . Giongo, A. (2014). Rhizobia enhance growth in rice plants under flooding conditions. American and Eurasian Journal of Agriculture & Environmental Science, 14(8), 707-718.
Otaiku, A. A., Soretire, A., & Mmom, P. (2022). Biofertilizer Impacts on Soybean [Glycine max (L.)] Cultivation, Humid Tropics: Biological Nitrogen Fixation, Yield, Soil Health and Smart Agriculture Framework. International Journal of Agricultural Extension and Rural Development Studies, 9(1), 38-139.
Panicker, S., & Sayyed, R. (2022). Hydrolytic enzymes from PGPR against plant fungal pathogens. In Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture (pp. 211-238): Springer.
Papp, O., Kocsis, T., Biró, B., Jung, T., Ganszky, D., Abod, É., . . . Drexler, D. (2021). Co-inoculation of organic potato with fungi and bacteria at high disease severity of Rhizoctonia solani and Streptomyces spp. increases beneficial effects. Microorganisms, 9(10), 2028.
Penuelas, J., Coello, F., & Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security, 12(1), 1-9.
Pierre, M. J., Bhople, B. S., Kumar, A., Erneste, H., Emmanuel, B., & Singh, Y. N. (2014). Contribution of arbuscular mycorrhizal fungi (AM fungi) and rhizobium inoculation on crop growth and chemical properties of rhizospheric soils in high plants. IOSR-JAVS, 7(9), 45-55.
Pirttilä, A. M., Mohammad Parast Tabas, H., Baruah, N., & Koskimäki, J. J. (2021). Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms, 9(4), 817.
Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for sustainable development, 33, 243-255.
Poveda, J., & Eugui, D. (2022). Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture. Biological Control, 176, 105100.
Prasad, R., Kumar, M., & Varma, A. (2015). Role of PGPR in soil fertility and plant health. Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, 247-260.
Prashar, P., Kapoor, N., & Sachdeva, S. (2013). Biocontrol of plant pathogens using plant growth promoting bacteria. Sustainable Agriculture Reviews: Volume 12, 319-360.
Qin, F., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant and Cell Physiology, 52(9), 1569-1582.
Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS microbiology reviews, 34(6), 1037-1062.
Rabani, M. S., Hameed, I., Gupta, M. K., Wani, B. A., Fayaz, M., Hussain, H., . . . Srivastav, M. (2023). Introduction of biofertilizers in agriculture with emphasis on nitrogen fixers and phosphate solubilizers. In Microbiomes for the Management of Agricultural Sustainability (pp. 71-93): Springer.
Rashid, U., Yasmin, H., Hassan, M. N., Naz, R., Nosheen, A., Sajjad, M., . . . Mumtaz, S. (2022). Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Reports, 1-21.
Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots shaping their microbiome: global hotspots for microbial activity. Annual review of phytopathology, 53(1), 403-424.
Robertson, G. P., & Groffman, P. (2024). Nitrogen transformations. In Soil microbiology, ecology and biochemistry (pp. 407-438): Elsevier.
Rolón-Cárdenas, G. A., Arvizu-Gómez, J. L., Soria-Guerra, R. E., Pacheco-Aguilar, J. R., Alatorre-Cobos, F., & Hernández-Morales, A. (2022). The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environmental Geochemistry and Health, 1-22.
Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1-24.
S Drenichev, M., E Oslovsky, V., & N Mikhailov, S. (2016). Cytokinin nucleosides-natural compounds with a unique spectrum of biological activities. Current topics in medicinal chemistry, 16(23), 2562-2576.
Saberi-Riseh, R., Fathi, F., & Moradzadeh-Eskandari, M. (2020). Effect of some Pseudomonas fluorescens and Bacillus subtilis strains on osmolytes and antioxidants of cucumber under salinity stress. Journal of Crop Protection, 9(1), 1-16.
Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., . . . Naveed, M. (2021). Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. International Journal of Molecular Sciences, 22(19), 10529.
Saghafi, D., Lajayer, B. A., & Ghorbanpour, M. (2020). Engineering bacterial ACC deaminase for improving plant productivity under stressful conditions. Molecular aspects of plant beneficial microbes in agriculture, 259-277.
Sah, S., & Singh, R. (2015). Siderophore: structural and functional characterisation–a comprehensive review. Agriculture (Pol’nohospodárstvo), 61(3), 97-114.
Sairafi, N. M. A. (2017). Gene Expression of Bacteria-Inoculated Soybean Glycine max in Response to Heat Stress: Western Illinois University.
Sajid, T., Jallat Khan, Z. A., Sultan, H. M., Mazhar, M., Zubair, M., Dilshad, M., & Kareem, K. (2024). Targeting Cancers: Uncovering the Potential Roles of Potato Tissue Culture as Anti-Cancer Agents—A Secondary Publication. Proceedings of Anticancer Research, 8(3), 36-50.
Salim, H. A., Kadhum, A. A., Ali, A. F., Saleh, U. N., Jassim, N. H., Hamad, A. R., . . . Hassan, A. F. (2021). Response of cucumber plants to PGPR bacteria (Azospirillum brasilense, Pseudomonas fluorescens and Bacillus megaterium) and bread yeast (Saccharomyces cerevisiae). Syst. Rev. Pharm, 12, 969-975.
Sampathkumar, A., Aiyanathan, K. E. A., Nakkeeran, S., & Manickam, S. (2023). Multifaceted Bacillus spp. for the management of cotton bacterial blight caused by Xanthomonas citri pv. malvacearum. Biological Control, 177, 105111.
Sarkar, J., Chakraborty, U., & Chakraborty, B. (2021). High‐temperature resilience in Bacillus safensis primed wheat plants: A study of dynamic response associated with modulation of antioxidant machinery, differential expression of HSPs and osmolyte biosynthesis. Environmental and Experimental Botany, 182, 104315.
Saxena, J., Saini, A., Ravi, I., Chandra, S., & Garg, V. (2015). Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). Journal of Crop Improvement, 29(3), 353-369.
Shahid, M., Singh, U. B., Khan, M. S., Singh, P., Kumar, R., Singh, R. N., . . . Singh, H. V. (2023). Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Frontiers in microbiology, 14, 1132770.
Shaikh, S., & Sayyed, R. (2014). Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In Plant microbes symbiosis: applied facets (pp. 337-351): Springer.
Shanthi, V. (2021). Actinomycetes: Implications and prospects in sustainable agriculture. Biofertilizers: Study and impact, 335-370.
Sharma, P., Sharma, M. M. M., Malik, A., Vashisth, M., Singh, D., Kumar, R., . . . Pandey, V. (2021). Rhizosphere, rhizosphere biology, and rhizospheric engineering. In Plant growth-promoting microbes for sustainable biotic and abiotic stress management (pp. 577-624): Springer.
Shinwari, Z. K., Tanveer, F., & Iqrar, I. (2019). Role of microbes in plant health, disease management, and abiotic stress management. Microbiome in Plant Health and Disease: Challenges and Opportunities, 231-250.
Shridhar, B. S. (2012). Nitrogen fixing microorganisms. Int J Microbiol Res, 3(1), 46-52.
Sindhu, S. S., Dua, S., Verma, M., & Khandelwal, A. (2010). Growth promotion of legumes by inoculation of rhizosphere bacteria: Springer.
Singh, B., & Ryan, J. (2015). Managing fertilizers to enhance soil health. International Fertilizer Industry Association, Paris, France, 1.
Singh, H., Jaiswal, V., Singh, S., Tiwari, S., Singh, B., & Katiyar, D. (2017). Antagonistic compounds producing plant growth promoting rhizobacteria: a tool for management of plant disease. Journal of Advances in Microbiology, 3(4), 1-12.
Singh, J. S., & Singh, D. (2013). Plant growth promoting rhizobacteria (PGPR): microbes in sustainable agriculture. Management of microbial resources in the environment, 361-385.
Singh, N., & Siddiqui, Z. A. (2015). Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato. Phytoparasitica, 43, 61-75.
Singh, P., Chauhan, P. K., Upadhyay, S. K., Singh, R. K., Dwivedi, P., Wang, J., . . . Jiang, M. (2022). Mechanistic insights and potential use of siderophores producing microbes in rhizosphere for mitigation of stress in plants grown in degraded land. Frontiers in microbiology, 13, 898979.
Singh, P., Singh, R. K., Zhou, Y., Wang, J., Jiang, Y., Shen, N., . . . Jiang, M. (2022). Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions, 17(1), 220-238.
Singhal, R. K., Fahad, S., Kumar, P., Choyal, P., Javed, T., Jinger, D., . . . Bose, B. (2023). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regulation, 100(2), 237-265.
Sivaprakasam, N., Vaithiyanathan, S., Gandhi, K., Narayanan, S., Kavitha, P., Rajasekaran, R., & Muthurajan, R. (2024). Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Research in Microbiology, 104217.
Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res, 9(16), 1265-1277.
Soares, E. V. (2022). Perspective on the biotechnological production of bacterial siderophores and their use. Applied Microbiology and Biotechnology, 106(11), 3985-4004.
Sofy, A. R., Sofy, M. R., Hmed, A. A., & El-Dougdoug, N. K. (2019). Potential effect of plant growth-promoting rhizobacteria (PGPR) on enhancing protection against viral diseases. Field crops: sustainable management by PGPR, 411-445.
Solanki, M., & Shukla, L. I. (2023). Recent advances in auxin biosynthesis and homeostasis. 3 Biotech, 13(9), 290.
Sun, W., Shahrajabian, M. H., & Cheng, Q. (2021). Nitrogen fixation and diazotrophs–a review. Rom Biotechnol Lett, 26(4), 2834-2845.
Talwar, H. S., Subbarao, G., Swarna, R., Deshpande, S., Ganapathy, K., & Tonapi, V. A. (2020). Biological Nitrification Inhibition (BNI) Potential and Its Role in Improving the Nitrogen Use Efficiency (NUE) in Sorghum. Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World, 209-230.
Tazisong, I. A., Senwo, Z. N., & He, Z. (2015). Phosphatase hydrolysis of organic phosphorus compounds. Advances in Enzyme Research, 3(02), 39-51.
Tian, T., Reverdy, A., She, Q., Sun, B., & Chai, Y. (2020). The role of rhizodeposits in shaping rhizomicrobiome. Environmental Microbiology Reports, 12(2), 160-172.
Tong, W.-Y. (2013). Biotransformation of terpenoids and steroids. Natural Products, 1, 2733-2759.
Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D., & Dubey, N. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37, 1-14.
Trojak-Goluch, A. (2024). The Use of Bacteria, Actinomycetes and Fungi in the Bioprotection of Solanaceous Crops against Tobacco Mosaic Virus (TMV). Agriculture; Basel, 14(8).
Tyagi, R., Pradhan, S., Bhattacharjee, A., Dubey, S., & Sharma, S. (2022). Management of abiotic stresses by microbiome‐based engineering of the rhizosphere. Journal of applied microbiology, 133(2), 254-272.
Upadhyay, R. K. (2020). Markers for global climate change and its impact on social, biological and ecological systems: A review. American Journal of Climate Change, 9(03), 159.
Usman, M., Anastopoulos, I., Hamid, Y., & Wakeel, A. (2023). Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: Effects on soil quality and plant growth. Environmental Science and Pollution Research, 30(60), 124427-124446.
Utari, P. D., Vogel, J., & Quax, W. J. (2017). Deciphering physiological functions of AHL quorum quenching acylases. Frontiers in microbiology, 8, 1123.
Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1-14.
Veisi, H., Liaghati, H., & Alipour, A. (2016). Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecological Indicators, 60, 644-654.
Ventura-Aguilar, R. I., Bautista-Baños, S., Mendoza-Acevedo, S., & Bosquez-Molina, E. (2023). Nanomaterials for designing biosensors to detect fungi and bacteria related to food safety of agricultural products. Postharvest Biology and Technology, 195, 112116.
Vijay, K., Shibasini, M., Sivasakthivelan, P., & Kavitha, T. (2023). Microbial siderophores as molecular shuttles for metal cations: sources, sinks and application perspectives. Archives of Microbiology, 205(9), 322.
Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S., & Varma, A. (2020). Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Frontiers in microbiology, 11, 560406.
Vives-Peris, V., De Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: from plant to rhizosphere and beyond. Plant cell reports, 39(1), 3-17.
Vocciante, M., Grifoni, M., Fusini, D., Petruzzelli, G., & Franchi, E. (2022). The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, 12(3), 1231.
Wakeman, A., & Bennett, T. (2023). Auxins and grass shoot architecture: how the most important hormone makes the most important plants. Journal of Experimental Botany, 74(22), 6975-6988.
Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms, 9(9), 1988.
Wang, X., Bai, J., Xie, T., Wang, W., Zhang, G., Yin, S., & Wang, D. (2021). Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicology and environmental safety, 220, 112338.
Wilkins, D., Lu, X.-Y., Shen, Z., Chen, J., & Lee, P. K. (2015). Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Applied and environmental microbiology, 81(2), 604-613.
Woźniak, M., & Gałązka, A. (2019). The rhizosphere microbiome and its beneficial effects on plants–current knowledge and perspectives. Postępy Mikrobiologii-Advancements of Microbiology, 58(1), 59-69.
Yadav, R. C., Sharma, S. K., Varma, A., Singh, U. B., Kumar, A., Bhupenchandra, I., . . . Singh, H. V. (2023). Zinc-solubilizing Bacillus spp. in conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Frontiers in microbiology, 14, 1210938.
Yang, Q.-S., Dong, J.-D., Ahmad, M., Ling, J., Zhou, W.-G., Tan, Y.-H., . . . Zhang, Y.-Y. (2019). Analysis of nifH DNA and RNA reveals a disproportionate contribution to nitrogenase activities by rare plankton-associated diazotrophs. BMC microbiology, 19, 1-12.
Yang, T., Siddique, K. H., & Liu, K. (2020). Cropping systems in agriculture and their impact on soil health-A review. Global Ecology and Conservation, 23, e01118.
Yang, Y.-X., J Ahammed, G., Wu, C., Fan, S.-y., & Zhou, Y.-H. (2015). Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein and Peptide Science, 16(5), 450-461.
Yasmin, H., Rashid, U., Hassan, M. N., Nosheen, A., Naz, R., Ilyas, N., . . . Alyemeni, M. N. (2021). Volatile organic compounds produced by Pseudomonas pseudoalcaligenes alleviated drought stress by modulating defense system in maize (Zea mays L.). Physiologia plantarum, 172(2), 896-911.
Yasmin, S., Hafeez, F. Y., Schmid, M., & Hartmann, A. (2013). Plant-beneficial rhizobacteria for sustainable increased yield of cotton with reduced level of chemical fertilizers. Pak. J. Bot, 45(2), 655-662.
Younas, N., Fatima, I., Ahmad, I. A., & Ayyaz, M. K. (2023). Alleviation of zinc deficiency in plants and humans through an effective technique; biofortification: A detailed review. Acta Ecologica Sinica, 43(3), 419-425.
Zhang, X., Ward, B. B., & Sigman, D. M. (2020). Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical reviews, 120(12), 5308-5351.
Zhou, J., Lyu, Y., Richlen, M. L., Anderson, D. M., & Cai, Z. (2016). Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. Critical reviews in plant sciences, 35(2), 81-105.
Zhu, J., Li, M., & Whelan, M. (2018). Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 612, 522-537.
Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological research, 242, 126626.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.