Buckwheat: Nutritional Value, Health Effects and Applications in Foods
DOI:
https://doi.org/10.24925/turjaf.v13i6.1665-1674.7565Keywords:
Fagopyrum esculentum, Fagopyrum tataricum, Gluten-Free Grains, Buckwheat, Tartary BuckwheatAbstract
Buckwheat (Fagopyrum esculentum and Fagopyrum tataricum) is recognized as a highly nutritious food source due to its high nutritional value and functional properties. Classified as a pseudocereal, buckwheat provides numerous health benefits owing to its high protein content, rich fiber composition, balanced essential amino acid profile, and abundance of polyphenolic compounds. As a gluten-free grain, it serves as a safe alternative for individuals with celiac disease and gluten intolerance, while its low glycemic index makes it beneficial for diabetes management. The bioactive compounds found in buckwheat, including flavonoids (rutin, quercetin), polyphenols, and fagopyritols, have been shown to exhibit antioxidant, anti-inflammatory, and cardioprotective effects. Regular consumption has been reported to reduce LDL cholesterol levels, increase HDL cholesterol levels, and lower the risk of hypertension. Additionally, buckwheat supports digestive health by regulating gut microbiota, thereby playing a protective role against inflammatory bowel diseases. With its extensive applications in the food industry, buckwheat is utilized in the production of bakery products, pasta, bread, biscuits, functional beverages, and fermented products, contributing to the development of antioxidant-rich beverages. However, due to its gluten-free nature, it can cause textural differences in baked goods, necessitating the use of stabilizers to improve product consistency and quality.
References
Acar, R., Güneş, F., Gummadow, M., & Topal, M. (2011). Buckwheat: A functional food ingredient. International Journal of Food Science and Nutrition, 62(2), 213-221. https://doi.org/10.1080/09637486.2010.528099
Ahmed, N., Anjum, F. M., Zahoor, T., Nawaz, H., & Dilshad, S. M. R. (2014a). Biochemical, nutritional and therapeutic importance of buckwheat: A review. Pakistan Journal of Food Sciences, 24(2), 71-79.
Ahmed, N., Sofi, S. A., Rafiq, S., Wani, S. A., & Wani, T. A. (2014b). Buckwheat: A multi-purpose pseudo-cereal. Agriculture & Food Security, 3(1), 1-8. https://doi.org/10.1186/2048-7010-3-9
Ahmed, A., Khalid, N., Ahmad, A., Abbasi, N. A., Latif, M. S. Z., & Randhawa, M. A. (2014c). Phytochemicals and biofunctional properties of buckwheat: A review. Journal of Agricultural Science, 152(3), 349–369. doi:10.1017/S0021859613000166
Alkay, R., & Kökten, K. (2020). The importance and usage areas of buckwheat (Fagopyrum esculentum Moench). Journal of Food and Feed Science – Technology, 24, 16-21.
Alkay, Z., Alkay, R., Dertli, E., Kökten, K., & Durak, M.Z. (2023). Rheological, textural and physicochemical properties of buckwheat sourdough bread prepared with different lactic acid bacteria strains. J. Microbiol. Biotech. Food Sci., 12 (5) e5643.
Alp, H., Unal, K., & Erdem, N. (2022). Determination of some characteristics of chicken nuggets added Amaranth, buckwheat and einkorn. Journal of the Institute of Science and Technology, 12(1), 227-238.
Altındağ, G. (2011). Karabuğday, mısır ve pirinç unundan üretilen kurabiyelerin bazı kalite özellikleri ve raf ömürlerinin belirlenmesi (Master’s thesis, Akdeniz Üniversitesi Antalya).
Antoniewska, A., Rutkowska, J., Pineda, M.M., & Adamska, A. (2018). Antioxidative, nutritional and sensory properties of muffins with buckwheat flakes and amaranth flour blend partially substituting for wheat flour. LWT - Food Science and Technology, 89, 217-223. https://doi.org/10.1016/j.lwt.2017.10.039
Bilgicli, N. (2009). Effect of buckwheat flour on chemical and functional properties of tarhana. LWT-Food Science and Technology, 42, 514-518. https://doi.org/10.1016/j.lwt.2008.09.006
Biney, K., & Beta, T. (2014). Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. Food Science and Technology, 57, 569-579. https://doi.org/10.1016/j.lwt.2014.02.033
Bojnanska, T., & Urminska, D. (2010). Buckwheat as a functional food component. Food Research International, 43(2), 461-469. https://doi.org/10.1016/j.foodres.2009.09.005
Christa, K., & Soral-Smietana, M. (2008). Buckwheat grains and buckwheat products-Nutritional and prophylactic value of their components-A review. Cereal Chemistry, 85(1), 35-42. https://doi.org/10.1094/CCHEM-85-1-0035
Coţovanu, I., & Mironeasa, S. (2022). Influence of buckwheat seed fractions on dough and baking performance of wheat bread. Agronomy, 12(1), 137.
Devrajan, N., Prakash, P., & Jindal, N. (2017). Some physico-chemical properties of germinated and ungerminated buckwheat (Fagopyrum esculentum). International Journal of Science, Environment and Technology, 6(2), 1491 – 1501.
Dikyokuş, H. (2022). Arı ürünleri ile zenginleştirilmiş karabuğday granola üretiminin yanıt yüzey yöntemiyle optimizasyonu (Master’s thesis, Bursa Uludag University).
Dizlek, H., İnanır, F., & Karabulut, I. (2009a). Karabuğdayın besinsel değeri ve gıda sanayisinde kullanımı. Gıda Teknolojileri Elektronik Dergisi, 5(2), 45-56.
Dizlek, H., Özer, M., Çelik, S., & Polat, M. (2009b). The nutritional value of buckwheat and its effects on health. Journal of Cereal Science, 50(3), 353-360. https://doi.org/10.1016/j.jcs.2009.07.003
Dizlek, H., Özer, M. S., İnanç, E., & Gül, H. (2009c). Karabuğday’ın (Fagopyrum esculentum M.) bileşimi ve gıda sanayiinde kullanım olanakları, Gıda, 34 (5): 317-324. https://dergipark.org.tr/tr/pub/gida/issue/6859/91921.
Ertan, E., & Şevik, R. (2025). Karabuğday Unu İkamesinin Ekmeklerin Fiziksel, Kimyasal ve Duyusal Özellikleri Üzerindeki Etkilerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 25(1), 131-136.
Fabjan, N., Rode, J., Kosir, I. J., Wang, Z., Zhang, Z., & Kreft, I. (2003). Tartary buckwheat (Fagopyrum tataricum) as a source of dietary rutin and quercetin. Journal of Agricultural and Food Chemistry, 51(22), 6452-6455. https://doi.org/10.1021/jf034543e
FAO. (2020). World buckwheat production statistics. Rome, Italy: FAO Publications.
FAOSTAT. (2023). Food and Agriculture Organization of the United Nations. FAO Statistical Database. https://doi.org/10.4060/cb4477en
Germ, M., Luthar, Z., Kreft, I., & Golob, A. (2019). Growth and phenolic composition of common and tartary buckwheat sprouts. Food Chemistry, 283, 231-236. https://doi.org/10.1016/j.foodchem.2018.12.068
Ghavidel, R. A., & Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT-Food Science and Technology, 40(7), 1292-1299.
Giménez-Bastida, J. A., & Zielinski, H. (2015). Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 63(36), 7896-7913. https://doi.org/10.1021/acs.jafc.5b02498
Guo, X., Yao, H., & Wang, J. (2010). Antioxidant properties of tartary buckwheat bran extract and its effect on lipid oxidation in muscle food. Food Chemistry, 121(1), 172-179. https://doi.org/10.1016/j.foodchem.2009.12.025
Güneş, M., Acar, R., & Topal, Ş. (2012). Karabuğday üretimi ve adaptasyonu üzerine yapılan çalışmaların değerlendirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4), 321-330.
Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., Zhang, W., Georgiev, M. I., Park, S. U., & Zhou, M. (2021). Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry, 335, 127653.
Hung, P. V., Trinh, L. N. D., Thuy, N. T. X., & Morita, N. (2021). Changes in nutritional composition, enzyme activities and bioactive compounds of germinated buckwheat (Fagopyrum esculentum M.) under unchanged air and humidity conditions. International Journal of Food Science and Technology, 56, 3209–3215.
Ikeda, K., Kishida, M., Kreft, I., & Yasumoto, K. (1997). Endogenous factors responsible for the textural characteristics of buckwheat products. Journal of Nutritional Science and Vitaminology, 43(1), 101-111. https://doi.org/10.3177/jnsv.43.101
İnanır, F., Dizlek, H., & Karabulut, I. (2019). Functional properties of buckwheat and its potential in the food industry: A review. Food Science & Technology, 29(1), 75-85. https://doi.org/10.1016/j.lwt.2019.03.023
Jing, R., Li, H. Q., Hu, C. L., Jiang, Y. P., Qin, L. P., & Zheng, C. J. (2016). Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. International Journal of Molecular Sciences, 17(4). https://doi:10.3390/ijms17040589
Kalinová, J., Vrchotová, N., & Tříska, J. (2019). Phenolic compounds in buckwheat and their changes during the growing season. Plant, Soil and Environment, 65(3), 154-161. https://doi.org/10.17221/610/2018-PSE
Kanmaz, E.Ö., & Ova, G. (2014). Filizlendirme işleminin fitokimyasal bileşikler üzerine etkisi, Gıda 39 (1): 49-56. https://doi.org/10.5505/gida.55706
Karataş, H., Gülümser, A., & Gülümser, G. (2018). Tatar karabuğdayının adaptasyon yeteneği ve besinsel özellikleri üzerine yapılan çalışmaların değerlendirilmesi. Türkiye Tarımsal Araştırmalar Dergisi, 3(2), 97-108.
Kılıç, M., & Elmacı, Y. (2018a). Karabuğdayın besinsel bileşimi ve sağlığa etkileri üzerine derleme. Gıda ve Beslenme Bilimleri Dergisi, 6(1), 21-34.
Kılıç, S., & Elmacı, Y. (2018b). The nutritional and health aspects of buckwheat. International Journal of Food Science & Technology, 53(4), 1234-1245. https://doi.org/10.1111/ijfs.13621
Kim, S. L., Kim, S. K., & Park, C. H. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37(4), 319-327.
Koyama, M., Naramoto, K., Nakajima, T., Aoyama, T., Watanabe, M., & Nakamura, K. (2013). Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. Journal of agricultural and food chemistry, 61(12), 3013-3021.
Köten, M., Karahan, A. M., & Satouf, M. (2022, April). Glutensiz gıda kaynağı olarak tahıl benzerı tohumlar. In Cukurova 8th International Scientific Researches Conference (pp. 909-
Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98(3), 508-512. https://doi.org/10.1016/j.foodchem.2005.05.081
Lee, E. H., & Kim, C. J. (2008). Nutritional changes of buckwheat during germination. Journal of the Korean Society of Food Culture, 23(1), 121-129.
Levent, O., & Yüksel, F. (2022). Karabuğday (Fagopyrum esculentum) unu ile zenginleştirilmiş dut pestillerinin bazı fiziko-kimyasal, renk, biyoaktif ve duyusal özelliklerinin araştırılması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 714-723. https://doi.org/10.17780/ksujes.1160294
Li, S., & Zhang, Q. (2001). Effect of processing on the phenolic content and antioxidant activity of buckwheat products. Food Chemistry, 73(1), 45-49. https://doi.org/10.1016/S0308-8146(00)00265-5
Lim, J., Park, K., Kim, B., Jeongj., & Kim, H. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chemistry, 135, 1065–1070. https://doi.org/10.1016/j.foodchem.2012.05.068
Luthar, Z., Golob, A., Germ, M., Vombergar, B., & Kreft, I. (2021). Rutin and quercetin concentration in buckwheat and their metabolic effect in humans: A review. Acta Alimentaria, 50(1), 1-14. https://doi.org/10.1556/066.2020.00001
Mariotti, M., Pagani, M. A., & Lucisano, M. (2013). The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures. Food Hydrocolloids, 30(1), 393-400.
Marshall, A.A., Samuel, J.E., Mary, U.E., & Inegbenose, G.I. (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice, maize, millet, sorghum and wheat. Journal of Food Science and Technology, 48, 724-729. https://doi.org/10.1007/s13197-010-0186-y
Mert, S. (2014). Effect of different flours on quality of gluten-free wafer sheets (Master’s thesis, Middle East Technical University).
Mikulajová, A., Vollmannová, A., Bojňanská, T., & Kreft, I. (2016). Phenolic compounds in buckwheat and their beneficial effects on human health. Journal of Cereal Science, 69, 1-7. https://doi.org/10.1016/j.jcs.2016.03.007
Okur, B., & Madenci, A. B. (2019). Çiğ beslenme (Raw food) akımında filizlendirilmiş hububat ve baklagillerin önemi. Journal of Tourism and Gastronomy Studies, 7(1), 664-675. https://doi.org/10.21325/jotags.2019.384
Palabiyik, I., Yildiz, O., Toker, O. S., Cavus, M., Ceylan, M. M., & Yurt, B. (2016). Investigating the addition of enzymes in gluten-free flours – The effect on pasting and textural properties. LWT-Food Science and Technology, 69, 633-641. https://doi.org/10.1016/j.lwt.2016.01.019
Peng, L., Zhang, Q., Zhang, Y., Yao, Z., & Song, P. (2019). Effect of Tartary buckwheat on lipid metabolism in rats during high dietary fat intake. Food Science & Nutrition, 7(10), 3281–3289. https://doi.org/10.1002/fsn3.1155
Pongrac, P., Potisek, M., Fraś, A., Likar, M., Budič, B., Myszka, K., ... & Kreft, I. (2016). Composition of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural mineral-rich water. Journal of Cereal Science, 69, 9-16.
Qian, J., & Kuhn, M. (1999), Physical Properties of Buckwheat Starches from Various Origins. Starch/Stärke, 51: 81-85.
Rayas-Duarte, P., Mock, C. M., & Satterlee, L. D. (1996). Quality of spaghetti containing buckwheat, amaranth, and lupin flours. Cereal Chemistry, 73(3), 381-387.
Ren, S. C., & Sun, J. T. (2014). Changes in phenolic content, phenylalanine ammonia-lyase (PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination. Journal of Functional Foods, 7, 298-304. https://doi.org/10.1016/j.jff.2014.01.031
Selma, M. V., Espin, J. C., & Tomas-Barberan, F. A. (2009). Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry, 57(14), 6485–6501. https://doi.org/10.1021/jf900786m
Skrabanja, V., Kreft, I., Golob, T., Modic, M., Ikeda, S., & Ikeda, K. (1998). Nutritional properties of buckwheat. Journal of Nutritional Biochemistry, 9(9), 488-493. https://doi.org/10.1016/S0955-2863(98)00020-5
Sofi, S. A., Ahmed, N., Farooq, A., Rafiq, S., Zargar, S. M., Kamran, F., ... & Mousavi Khaneghah, A. (2023). Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten‐free products: An updated overview. Food Science & Nutrition, 11(5), 2256-2276. https://doi.org/10.1002/fsn3.3154
Sonawane, S., Shams, R., Dash, K. K., Patil, V., Pandey, V. K., & Dar, A. H. (2023). Nutritional profile, bioactive properties, and potential health benefits of buckwheat: A review. Journal of Food Science and Technology, 60(3), 1-13. https://doi.org/10.1007/s11483-023-03012-3
Steadman, K. J., Burgoon, M. S., Lewis, B. A., Edwardson, S. E., & Obendorf, R. L. (2001). Buckwheat seed milling fractions: Description, macronutrient composition and dietary fibre. Journal of Cereal Science, 33(3), 271-278. https://doi.org/10.1006/jcrs.2001.0354
Sytar, O., Brestic, M., & Rai, M. (2013). Possible ways of Fagopyrin biosynthesis and production in buckwheat plants. Fitoterapia, 84, 72-79. https://doi.org/10.1016/j.fitote.2012.10.008
Taşkırdı, Y. (2011). Karabuğday ile zenginleştirilmiş buğday cipslerinin tekstürel ve duyusal özelliklerinin belirlenmesi (Master’s thesis, Erciyes Üniversitesi).
Tsatsaragkou, K., Yiannopoulos, S., Kontogiorgi, A., Poulli, E., Krokida, M., & Mandala, I. (2012). Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. Journal of Cereal Science, 56(4), 603-609.
TÜİK. (2021). Türkiye karabuğday üretim verileri. Ankara, Türkiye: TÜİK Yayınları.
Wieslander, G. (2020). Buckwheat in human health—a medical review / Ajda in zdravje ljudi—pregledni članek. Folia Biologica et Geologica, 61(1), 55–60. https://doi.org/10.3986/fbg0067
Wieslander, G., Fabjan, N., Vogrincic, M., Kreft, I., Janson, C., Spetz-Nyström, U., Vombergar, B., Tagesson, C., Leanderson, P., & Norbäck, D. (2011). Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: a double blind crossover study in day-care centre staffs. The Tohoku journal of experimental medicine, 225(2), 123–130. https://doi.org/10.1620/tjem.225.123
Yao, Y., Shan, F., Bian, J., Chen, F., Wang, M., & Ren, G. (2008). D-chiro-inositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. Journal of agricultural and food chemistry, 56(21), 10027–10031. https://doi.org/10.1021/jf801879m
Yıldız, N., & Yalçın, E. (2013). Karabuğdayın (Buckwheat) Kimyasal, Besinsel ve Teknolojik Özellikleri. Gıda, 38(6), 383-390.
Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5), H1111-H1119. https://doi.org/10.1111/1750-3841.12830
Zhang, L., Li, X., Ma, B., Gao, Q., Du, H., Han, Y., Li, Y., Cao, Y., Qi, M., Zhu, Y., Lu, H., Ma, M., Liu, L., Zhou, J., Nan, C., Qin, Y., Wang, J., Cui, L., Liu, H., Liang, C., & Qiao, Z. (2017). The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Molecular Plant, 10(9), 1224–1237. https://doi.org/10.1016/j.molp.2017.08.013
Zhu, F. (2016). Chemical composition and health effects of Tartary buckwheat. Food chemistry, 203, 231–245. https://doi.org/10.1016/j.foodchem.2016.02.050
Zhu, F. (2021). Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science & Technology, 110, 155-167.
Živković A, Polak T, Cigić B, Požrl T. Germinated Buckwheat: Effects of Dehulling on Phenolics Profile and Antioxidant Activity of Buckwheat Seeds. Foods. 2021 Apr 1;10(4):740. doi: 10.3390/foods10040740. PMID: 33915814; PMCID: PMC8066582.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






