Drought Tolerance Levels of Turkish Melon Genetic Resources Using Morphological and Physiological Methods

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i4.831-841.7640

Keywords:

Melon, drought stress, phsiology, screening

Abstract

Environmental factors such as drought, resulting from global climate change, have increasingly limited productivity in melon cultivation in recent years. Turkiye's geographical location and rich genetic diversity make it highly probable that drought-tolerant genetic material exists within this diversity. In this study, 192 melon genotypes were used, sourced from the cucurbit genetic resource collection of the Department of Horticulture at Çukurova University, which includes materials from various regions of Turkiye and around the world. In the pre-screening screening phase conducted in the first year of the research, 192 genotypes were grown under drought stress conditions created using 5% PEG 6000 for two months. Parameters such as stem length, stem dry weight, root dry weight, number of leaf, and a 0-5 scale were evaluated in the green parts and roots of the plants. A general decrease was observed in all parameters except root dry weight, where a 3% increase was noted in the average of the genotypes. In the special screening phase of the study, 15 genotypes selected based on the initial screening results were subjected to a second stress test under hydroponic conditions in a climate-controlled plant growth chamber using 8% PEG 6000, parameters such as visual scale evaluation (0-5), stem fresh and dry weight, root fresh and dry weight, stem and root length, number of leaf, leaf relative water content, relative water content, and electrolyte leakage were examined. All parameters showed varying degrees of reduction in the drought-stressed genotypes compared to the control groups, except for percentage change values. An increase in electrolyte leakage was observed compared to the control. As a result of the two different screenings, the drought tolerance levels of the melon genotypes were determined. Genotype Kav-248 was identified as the most drought-tolerant, while Kav-20 was found to be the most sensitive.

References

Akashi, K., Morikawa, K., & Yokota, A. (2005). Agrobacterium-Mediated Transformation System for the Drought and Excess Light Stress-Tolerant Wild Watermelon (Citrullus lanatus). Plant Biotechnology, 22 (1): 13-18.

Akhoundnejad, Y., & Dasgan, H. Y. (2019). Effect of different irrigation levels on physiological performance of some drought tolerant melon (Cucumis melo L.) genotypes. Applied Ecology and Environmental Research, 17 pp. 9997-10012. DOI10.15666/aeer/1704_999710012 17 pp. 9997-10012.

Anjum, S.A., Xie, X., Wang, L., Saleem, M.F., Man, C., & Lei, W., (2011). Morphological, Physiological and Biochemical Responses of Plants to Drought Stres. Afr. J. Agric. Res., 6: 2026-2032.

Apel, K., & Hırt, H., (2004). Reactive Oxygen Species: Metabolism, Oxidative Stress and Signal Transduction. Annual Review of Plant Biology, 55: 373-399.

Costa-Franca, G., Pham-Thi, T., Pimentel, P., Rossiello, Y., Fodil, Z., & Laffray, D., (2000). Differences in Growth and Water Relations Among Phaseolus vulgaris Cultivars in Response to Induced Drought Stres. Environ. Exp. Bot. 43: 227-237.

Dionisio-Sese, M. L., & Tobita, S., (1998). Antioxidant Responses of Rice Seedlings to Salinity Stress. Plant Science, 135 (1): 1-9.

FAO, 2023. http://www.fao.org/faostat

Hamurcu, M., Khan, M.K., Pandey, A., Ozdemir, C., Avsaroglu, Z.Z., Elbasan, F., Omay, A.H. & Gezgin, S., (2020). Nitric oxide regulates watermelon (Citrullus lanatus) responses to drought stress. 3 Biotech, 10, pp.1-14.

Karipçin, M. Z. (2009). Yerli ve Yabani Karpuz Genotiplerinde Kuraklığa Toleransın Belirlenmesi. Çukurova Üniversitesi. Fen Bilimleri Ens., Doktora Tezi.

Kulkarni, M., & Deshpande, U., (2007). In Vitro Screening of Tomato Genotypes for Drought Resistance Using Polyethylene Glycol. African Journal of Biotechnology, 6 (6): 691-696.

Kuşvuran, Ş, Daşgan, H.Y., & Abak, K., (2008). Farklı Bamya Genotiplerinin Kuraklık Stresine Tepkileri. VII. Sebze Tarımı Sempozyumu, 26-29 Ağustos, Yalova, 329-333.

Kuşvuran, Ş., (2010). Kavunlarda Kuraklık ve Tuzluluğa Toleransın Fizyolojik Mekanizmaları Arasındaki Bağlantılar. Çukurova Üniversitesi, Fen Bil. Enst., Doktora Tezi, 356 s.

Kuşvuran, Ş., & Abak, K., (2012). Kavun Genotiplerinin Kuraklık Stresine Tepkileri. Çukurova Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 28-5. Adana.

Martin, V., Pakllardy, S.G., & Bahari, Z.A., (1987). Dehydration Tolerance of Leaf Tissue of Six Woody an Giosperm Species. Physiol. Plant, 669: 182–186.

Mukeshimana, G., Lasley, A. L., Loescher, W. H., & Kelly, J. D., (2014). Identification of Shoot Traits Related to Drought Tolerance in Common Bean Seedlings. Journal of the American Society for Horticultural Science, 139 (3): 299-309.

Munné-Bosch, S., Peñuelas, J., (2003). Photo- and Antioxidative Protection and a Role for Salicylic Acid during Drought and Recovery in Field-Grown Phillyrea angustifolia plants. Planta, 217: 758-66.

Öztürk, N.Z., (2015). Bitkilerin Kuraklık Stresine Tepkilerinde Bilinenler ve Yeni Yaklaşımlar. Türk Tarım Gıda Bilim ve Teknoloji Dergisi, 3(5): 307-315.

Rehman, A., Khalid, M., Weng, J., Li, P., Rahman, S. U., Shah, I. H., Gulzar,S., Tu.S., Ningxiao, F., Niu, Q., & Chang, L. (2024). Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits. Plant Growth Regulation, 102(3), 603-618.

Rehman, A., Weng, J., Li, P., Yu, J., Rahman, S. U., Khalid, M., Shah, I.H., Gulzar, S., & Chang, L, Niu, Q. (2023). Differential response of two contrasting melon (Cucumis melo L.) genotypes to drought stress. Journal of Plant Biology, 66(6), 519-534.

Serçe, S., & Görgülü, Ö., (2009). Yapay Bir Veri Seti ile Tartılı Derecelendirme Yönteminin Yeniden Değerlendirilmesi. Alatarım, 43.

Torun, A., (2017). Kavun gen kaynaklarında kuraklığa tolerans mekanizmasının moleküler ve fizyolojik yöntemlerle araştırılması. Çukurova Üniversitesi Fen Bilimleri Ens., Doktora Tezi, 220 s.

Türkan, İ., Bor, M., Özdemir, F., & Koca, H., (2005). Differential Responses of Lipid Peroxidation and Antioxidants in the Leaves of Drought-Tolerant P. Acutifolius Gray and Drought-Sensitive P. vulgaris L. Subjected to Polyethylene Glycol Mediated Water Stress. Plant Science, 168: 223-231.

Türkmen, Ö., Çirka, M., & Şensoy, S., (2005). Initial Evaluation of a New Edible Wild Rhubarb Species (Rheum ribes L.) with a Modified Weighted Scaling Index Method. Pakistan Journal of Biological Sciences, 8 (5): 763-765.

Downloads

Published

27.04.2025

How to Cite

Torun, A., & Sarı, N. (2025). Drought Tolerance Levels of Turkish Melon Genetic Resources Using Morphological and Physiological Methods. Turkish Journal of Agriculture - Food Science and Technology, 13(4), 831–841. https://doi.org/10.24925/turjaf.v13i4.831-841.7640

Issue

Section

Research Paper