Preovulatory Follicle Size and Reproductive Parameters in Arabian Mares: A Comprehensive Analysis
DOI:
https://doi.org/10.24925/turjaf.v13i5.1123-1129.7687Keywords:
Age, Consecutive cycles, Equine, Parity, Pregnancy, Preovulatory follicleAbstract
While the size of the preovulatory follicle is a crucial marker of reproductive potential in mares, its connection to reproductive parameters, especially in Arabian mares, remains uncertain. This study examined the association between preovulatory follicle size and various reproductive parameters in 301 Arabian mares, monitored ultrasonographically over four years and 563 estrous cycles. The mares were categorized into four age groups: 3–8, 9–13, 14–17, and 18 years and older. The preovulatory follicle diameter across consecutive cycles and the size of follicles leading to pregnancy post-ovulation were analyzed in relation to the ovulation side, age, parity, ovulatory cycle, and parous state. The mean preovulatory follicle size was 46.3±4.34 mm (range: 39–60 mm), with no significant difference between the pregnancy and non-pregnancy cycles (p=0.490). Parity was not correlated with overall follicle size (r=-0.013, p=0.757) or follicle size during the pregnancy cycles (r=-0.060, p=0.303). However, preovulatory follicle diameter varied significantly across ovulatory cycles (p=0.040), with the second cycle having the smallest mean follicle size (45.45±0.35 mm) compared to the first (46.5±0.23 mm) and third (46.95±0.53 mm) cycles. Additionally, parous mares had significantly larger follicles (46.40±0.19 mm) than maiden mares (45.25±0.57 mm, p=0.050), while age group (p=0.796) and ovulation side (p=0.558) had no significant effect on follicle size. Follicle size remained consistent between pregnancy and non-pregnancy cycles across different age groups, consecutive cycles, parity states, and ovulation sides. These findings suggest that although follicle size varies across ovulatory cycles and parous states, it does not significantly affect pregnancy outcomes in Arabian mares. This insight could help refine breeding strategies by emphasizing the role of factors other than follicle size in optimizing reproductive success.
References
Acosta, T. J., Beg, M. A., & Ginther, O. J. (2004). Aberrant blood flow area and plasma gonadotrophin concentrations during development of dominant-sized transitional anovulatory follicles in mares. Biology of Reproduction, 71(3), 637–642.
Acosta, T. J., Hayashi, K. G., Matsui, M., & Miyamoto, A. (2005). Changes in follicular vascularity during the first follicular wave in lactating cows. Journal of Reproduction and Development, 51(2), 273–280.
Akourki, A., Mitjana, O., Falceto, M. V., & Echegaray, A. (2017). Factors influencing reproductive efficiency and pregnancy in Pura Raza Española mares. Veterinární Medicína, 62(4), 186–191. https://doi.org/10.17221/205/2015-vetmed
Alkhadrawy, J. M., Aboelmaaty, A. M., Abou-Ahmed, M. M., & Ghallab, A. M. (2024). Effect of breeding season and age on follicular dynamics and hemodynamics in embryo donor mares subjected to luteolysis after embryo flushing. Open Veterinary Journal, 14(3), 852.
Aurich, C. (2011). Reproductive cycles of horses. Animal Reproduction Science, 124(3-4), 220–228.
Bergfelt, D. R., & Adams, G. P. (2007). Ovulation and corpus luteum development. In P. Rudolph (Ed.), Current therapy in equine reproduction (pp. 1–13). Saunders Company Publisher.
Buratini, J., Silva, A. A. M. R. E., Barros, C. M. Q., Papa, F., Caldas-Bussiere, M., & Meira, C. D. (1997). Follicular dynamics in Mangalarga mares. Equine Veterinary Journal, 29(S25), 7-11. https://doi.org/10.1111/j.2042-3306.1997.tb05091.x
Carnevale, E. M., Bergfelt, D. R., & Ginther, O. J. (1993). Aging effects on follicular activity and concentrations of FSH, LH, and progesterone in mares. Animal Reproduction Science, 31, 287–299.
Claes, A., Ball, B. A., Scoggin, K. E., Roser, J. F., Woodward, E. M., Davolli, G. M., Squires, E. L., & Troedsson, M. H. T. (2017). The influence of age, antral follicle count and diestrous ovulations on estrous cycle characteristics of mares. Theriogenology, 97, 34–40. https://doi.org/10.1016/j.theriogenology.2017.04.019
Cuervo-Arango, J., & Newcombe, J. R. (2008). Repeatability of preovulatory follicular diameter and uterine edema pattern in two consecutive cycles in the mare and how they are influenced by ovulation inductors. Theriogenology, 69(5), 681–687. https://doi.org/10.1016/j.theriogenology.2007.11.019
Davies Morel, M. C., Newcombe, J. R., & Swindlehurst, J. C. (2005). The effect of age on multiple ovulation rates, multiple pregnancy rates, and embryonic vesicle diameter in the mare. Theriogenology, 63, 2482–2493.
Donadeu, F. X., & Ginther, O. J. (2002). Follicular waves and circulating concentrations of gonadotrophins, inhibin and oestradiol during the anovulatory season in mares. Reproduction, 124(6), 875–885.
Donadeu, F. X., & Pedersen, H. G. (2008). Follicle development in mares. Reproduction in Domestic Animals, 43, 224–231.
Echternkamp, S. E., Cushman, R. A., & Allan, M. F. (2009). Size of ovulatory follicles in cattle expressing multiple ovulations naturally and its influence on corpus luteum development and fertility. Journal of Animal Science, 87(11), 3556–3568.
Gastal, E. L., Gastal, M. O., Bergfelt, D. R., & Ginther, O. J. (1997). Role of diameter differences among follicles in selection of a future dominant follicle in mares. Biology of Reproduction, 57(6), 1320–1327.
Gastal, E. L., Gastal, M. O., Nogueira, G. P., Bergfelt, D. R., & Ginther, O. J. (2000). Temporal interrelationships among luteolysis, FSH and LH concentrations and follicle deviation in mares. Theriogenology, 53(4), 925-940.
Ginther, O. J. (1979). Reproductive biology of the mare: Basic and applied aspects. Cross Plains, WI: Equiservices Publishing.
Ginther, O. J. (1993). Major and minor follicular waves during the equine estrous cycle. Journal of Equine Veterinary Science, 13(1), 18-25.
Ginther, O. J. (1995). Ultrasonic imaging and animal reproduction: Horses (Vol. 2). Equiservices Publishing.
Ginther, O. J. (2000). Selection of the dominant follicle in cattle and horses. Animal Reproduction Science, 60(1), 61–79.
Ginther, O. J., Gastal, E. L., Gastal, M. O., Bergfelt, D. R., Baerwald, A. R., & Paerson, R. A. (2004). Comparative study of the dynamics of follicular waves in mares and women. Biology of Reproduction, 71(3), 1195–1201.
Ginther, O. J., Meira, C., Beg, M. A., & Bergfelt, D. R. (2002). Follicle and endocrine dynamics during experimental follicle deviation in mares. Biology of Reproduction, 67(3), 862–867.
Ginther, O., Gastal, M., Gastal, E., Jacob, J., Siddiqui, M., & Beg, M. (2008). Effects of age on follicle and hormone dynamics during the oestrous cycle in mares. Reproduction, Fertility and Development, 20(8), 955. https://doi.org/10.1071/rd08121
Hewitt, D. A., & England, G. C. (1998). The effect of oocyte size and bitch age upon oocyte nuclear maturation in vitro. Theriogenology, 49(5), 957–966.
Jacob, J., Gastal, E., Gastal, M., Carvalho, G. R., Beg, M., & Ginther, O. (2009). Temporal relationships and repeatability of follicle diameters and hormone concentrations within individuals in mares. Reproduction in Domestic Animals, 44(1), 92-99. https://doi.org/10.1111/j.1439-0531.2007.01003.x
Kauffold, J., Amer, H. A., Bergfeld, U., Weber, W., & Sobiraj, A. (2005). The in vitro developmental competence of oocytes from juvenile calves is related to follicular diameter. Journal of Reproduction and Development, 51(3), 325–332.
Lopez, H., Sartori, R., & Wiltbank, M. C. (2005). Reproductive hormones and follicular growth during development of one or multiple dominant follicles in cattle. Biology of Reproduction, 72(3), 788–795.
Mata, F., Bourbon, J., Twigg-Flesner, A., & Greening, L. (2013). Investigating follicle growth, uterine oedema and other factors affecting reproductive success in the Lusitano mare. Revista Portuguesa de Zootecnia, 2(1).
McKinnon, A. O., Squire, E. L., Vaala, W. E., & Varner, D. D. (2011). Equine reproduction (2nd ed.). Blackwell Publishing Ltd.
Miro i Roig, J., Muñoz, F., Piedrafita, J., & Quintero-Moreno, A. (2004). Prediction of the day of ovulation in mares through physiological parameters measured during estrous. Revista Científica, XIV(1), 1-9
Morel, M. D., Newcombe, J. R., & Hayward, K. (2010). Factors affecting preovulatory follicle diameter in the mare: The effect of mare age, season, and presence of other ovulatory follicles (multiple ovulation). Theriogenology, 74(7), 1241–1247.
Newcombe, J. R., & Cuervo-Arango, J. (2013). Growth rate of ovulatory follicles during the first ovulatory oestrus (after seasonal anoestrus) and subsequent oestrous period in Irish Draught mares. Irish Veterinary Journal, 66(4). https://doi.org/10.1186/2046-0481-66-4
Perry, G. A., Smith, M. F., Lucy, M. C., Green, J. A., Parks, T. E., MacNeil, M. D., Roberts, A. J., & Geary, T. W. (2005). Relationship between follicle size at insemination and pregnancy success. Proceedings of the National Academy of Sciences USA, 102(12), 5268–5273.
Pierson, R. A., & Ginther, O. J. (1985). Ultrasonic evaluation of the preovulatory follicle in the mare. Theriogenology, 24(3), 359–368.
Pierson, R. A., & Ginther, O. J. (1987). Follicular population dynamics during the estrous cycle of the mare. Animal Reproduction Science, 14(3), 219-231.
Requena, F., Campos, M. J. A., Martínez Marín, A. L., Camacho, R., Giráldez-Pérez, R. M., & Agüera, E. I. (2021). Assessment of age effects on ovarian hemodynamics using Doppler ultrasound and progesterone concentrations in cycling Spanish Purebred mares. Animals, 11(8), 2339.
Scoggin C. F. (2015). Not just a number: effect of age on fertility, pregnancy and offspring vigour in thoroughbred brood-mares. Reproduction, Fertility, and Development, 27(6), 872–879. https://doi.org/10.1071/RD14390
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.