Usability of Postbiotics in Ruminant Nutrition and Health

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i6.1104-1109.6710

Keywords:

ruminant, Postbiotics, Nutrition, Health, Alternative feed additive

Abstract

Since the ban on the use of antibiotics to promote growth in animal production in 2006, there has been a growing interest in alternative feed additives for animal production. Postbiotics, which have been utilized for this purpose in recent years, are highly promising feed additives that substitute banned substances like antibiotics. In recent years, there have been numerous studies on the utilization of postbiotics in ruminant animal nutrition. This article includes the definition of postbiotics, their properties, methods of obtaining them, and their potential applications in ruminant animal nutrition and health.

References

Aghebati-Maleki, L., Hasannezhad, P., Abbasi, A., & Khani, N. (2021).(2022) Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: a review of mechanisms and therapeutic perspectives. Biointerface Research in Applied Chemistry, 12, 2629-2645. https://doi.org/10.33263/BRIAC122.26292645

Barros, C. P., Guimaraes, J. T., Esmerino, E. A., Duarte, M. C. K., Silva, M. C., Silva, R., Ferreira, B. M., Sant’Ana, A. S., Freitas, M. Q., & Cruz, A. G. (2020). Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8. https://doi.org/10.1016/j.cofs.2019.12.003

Bouchard, D. S., Rault, L., Berkova, N., Le Loir, Y. & Even, S. (2015) Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Applied and Environmental Microbiology, 79(3), 877-885. https://doi.org/10.1128/AEM.03323-12

Broadway, P. R., Carroll, J. A., & Burdick Sanchez, N. C. (2015). Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: a review. Microorganisms, 3(3), 417-427. https://doi.org/10.3390/microorganisms3030417

Coleman, D. N., Jiang, Q., Lopes, M. G., Ritt, L., Liang, Y., Aboragah, A., Trevisi, E., Yoon, I., & Loor, J. J. (2023). Feeding a Saccharomyces cerevisiae fermentation product before and during a feed restriction challenge on milk production, plasma biomarkers, and immune function in Holstein cows. Journal of Animal Science, 101, skad019. https://doi.org/10.1093/jas/skad019

Davis, M. E. (2004). Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. Journal of Animal Science, 82, 1882–1891. https://doi.org/10.2527/2004.8261882x

Dinic, M., Lukic, J., Djokic, J., Milenkovic, M., Strahinic, I., Golic, N., & Begovic, J. (2017). Lactobacillus fermentum postbiotic-induced autophagy as potential approach for treatment of acetaminophen hepatotoxicity. Frontiers in Microbiology, 8, 594. https://doi.org/10.3389/fmicb.2017.00594

Fernandez, C., Romero, T., Badiola, I., Díaz-Cano, J., Sanzol, G., & Loor, J. J. (2023). Postbiotic yeast fermentation product supplementation to lactating goats increases the efficiency of milk production by enhancing fiber digestibility and ruminal propionate, and reduces energy losses in methane. Journal of Animal Science, 101, skac370. https://doi.org/10.1093/jas/skac370

Gökırmaklı, Ç., Üçgül, B., & Seydim, Z. (2021). Fonksiyonel Gıda Kavramına Yeni Bir Bakış: Postbiyotikler. Gıda, 46(4), 872-882. https://doi.org/10.15237/gida.GD21035

Halliwell, B., & Gutteridge, J. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal, 219(1), 1. https://doi.org/10.1042/bj2190001

Hartmann, H. A., Wilke, T., & Erdmann, R. (2011). Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. International Journal of Food Microbiology, 146(2), 192-199. https://doi.org/10.1016/j.ijfoodmicro.2011.02.031

Humam, A. M., Loh, T. C., Foo, H. L., Izuddin, W. I., Zulkifli, I., Samsudin, A. A., & Mustapha, N. M. (2021). Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poultry Science, 100(3), 100908. https://doi.org/10.1016/j.psj.2020.12.011

Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9(3), 250. https://doi.org/10.1016/j.psj.2020.12.011

Izuddin, W. I., Loh, T. C., Foo, H. L., Samsudin, A. A., & Humam, A. M. (2019b). Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status and upregulates the intestinal barrier function in post-weaning lambs. Scientific Reports, 9(1), 9938. https://doi.org/10.1038/s41598-019-46076-0

Izuddin, W. I., Loh, T. C., Samsudin, A. A., Foo, H. L., Humam, A. M., & Shazali, N. (2019a). Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs. BMC Veterinary Research, 15(1), 1-10. https://doi.org/10.1186/s12917-019-2064-9

Jenne, C. N., & Kubes, P. (2015). Platelets in inflammation and infection. Platelets, 26(4), 286-292. https://doi.org/10.3109/09537104.2015.1010441

Jeyanathan, J., Martin, C., & Morgavi, D. (2014). The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal, 8(2), 250–261. https://doi.org/10.1017/S1751731113002085

Ji, J., Jin, W., Liu, S. J., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm, 4(6), e420. https://doi.org/10.1002/mco2.420.

Kaufman, J. D., Seidler, Y., Bailey, H. R., Whitacre, L., Bargo, F., Lüersen, K., Rimbach, G., Pighetti, G. M., Ipharraguerre, I. R., & Rius, A. G. (2021). A postbiotic from Aspergillus oryzae attenuates the impact of heat stress in ectothermic and endothermic organisms. Scientific Reports, 11(1), 6407. https://doi.org/10.1038/s41598-021-85707-3

Klinger, M. H., & Jelkmann, W. (2002). Role of blood platelets in infection and inflammation. Journal of Interferon & Cytokine Research, 22(9), 913-922. https://doi.org/10.1089/10799900260286623

Lee, W. L., Harrison, R. E., & Grinstein, S. (2003). Phagocytosis by neutrophils. Microbes and Infection, 5(14), 1299-1306. https://doi.org/10.1016/j.micinf.2003.09.014

Lin, X., Xia, Y., Wang, G., Yang, Y., Xiong, Z., Lv, F., Zhou, W., & Ai, L. (2018). Lactic acid bacteria with antioxidant activities alleviating oxidized oil induced hepatic injury in mice. Frontiers in Microbiology, 9, 2684. https://doi.org/10.3389/fmicb.2018.02684

Lombardi, P., Musco, N., Cutrignelli, M. I., Mollica, M. P., Trinchese, G., Calabrò, S., Tudisco, R., Grossi, M., Mastellone, V., Vassalotti, G., Pero, M. E., Morittu, V. M., & Infascelli, F. (2017). The association of aloe and β-carotene supplementation improves oxidative stress and inflammatory state in pregnant buffalo cows. Buffalo Bulletin, 36(3), 497-503.

Malvisi, M., Stuknytė, M., Magro, G., Minozzi, G., Giardini, A., De Noni, I., & Piccinini, R. (2016). Antibacterial activity and immunomodulatory effects on a bovine mammary epithelial cell line exerted by nisin A-producing Lactococcus lactis strains. Journal of Dairy Science, 99(3), 2288-2296. https://doi.org/10.3168/jds.2015-10161

Markov, A. G., Aschenbach, J. R., & Amasheh, S. (2015). Claudin clusters as determinants of epithelial barrier function. IUBMB life, 67(1), 29-35. https://doi.org/10.1002/iub.1347

Martyniak, A., Medyńska-Przęczek, A., Wędrychowicz, A., Skoczeń, S., & Tomasik, P. J. (2021). Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules, 11(12), 1903. https://doi.org/10.3390/biom11121903

Moradi, M., Mardani, K., & Tajik, H. (2019). Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT, 111, 457-464. https://doi.org/10.1016/j.lwt.2019.05.072

Moradi, M., Molaei, R., & Guimaraes, J. T. (2021). A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology, 143, 109722. https://doi.org/10.1016/j.enzmictec.2020.109722

Nakamura, S., Kuda, T., An, C., Kanno, T., Takahashi, H., & Kimura, B. (2012). Inhibitory effects of Leuconostoc mesenteroides 1RM3 isolated from narezushi, a fermented fish with rice, on Listeria monocytogenes infection to Caco-2 cells and A/J mice. Anaerobe, 18(1), 19-24. https://doi.org/10.1016/j.anaerobe.2011.11.006.

Naqid, I. A., Owen, J. P., Maddison, B. C., Gardner, D. S., Foster, N., Tchórzewska, M. A., La Ragione Roberto, M., & Gough, K. C. (2015). Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Animal Feed Science and Technology, 201, 57-65. https://doi.org/10.1016/j.anifeedsci.2014.12.005

Pan, D., & Mei, X. (2010). Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydrate Polymers, 80(3), 908-914. https://doi.org/10.1016/j.carbpol.2010.01.005

Pellegrino, M. S., Frola, I. D., Natanael, B., Gobelli, D., Nader-Macias, M. E., & Bogni, C. I. (2019). In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics and Antimicrobial Proteins, 11, 74-84. https://doi.org/10.1007/s12602-017-9383-6

Poppy, G. D., Rabiee, A. R., Lean, I. J., Sanchez, W. K., Dorton, K. L., & Morley, P. S. (2012). A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. Journal of Dairy Science, 95(10), 6027-6041. https://doi.org/10.3168/jds.2012-5577

Prado, C. S., Santos, W. L. M., Carvalho, C. R., Moreira, E. C., & Costa, O. (2000). Antimicrobial activity of lactic acid bacteria isolated from Brazilian dry fermented sausages against Listeria monocytogenes. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 52, 417-423. https://doi.org/10.1590/S0102-09352000000400022

Rius, A. G., Kaufman, J. D., Li, M. M., Hanigan, M. D., & Ipharraguerre, I. R. (2022). Physiological responses of Holstein calves to heat stress and dietary supplementation with a postbiotic from Aspergillus oryzae. Scientific Reports, 12(1), 1587.

Rosales, C. (2018). Neutrophil: a cell with many roles in inflammation or several cell types?. Frontiers in Physiology, 9, 113. https://doi.org/10.3389/fphys.2018.00113

Roselli, M., Pieper, R., Rogel-Gaillard, C., de Vreis, H., Bailey, M., Smidt, H., & Lauridsen, C. (2017). Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Animal Feed Science and Technology, 233, 104–119. https://doi.org/10.1016/j.anifeedsci.2017.07.011

Sak, D., & Soykut, G. (2021). Biyotikler ailesinin yeni üyesi: postbiyotikler. Genel Sağlık Bilimleri Dergisi, 3(3), 259-272.

Sevin, S., Karaca, B., Haliscelik, O., Kibar, H., OmerOglou, E., & Kiran, F. (2021) Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens. Italian Journal of Animal Science, 20(1), 1302-1316. https://doi.org/10.1080/1828051X.2021.1958077

Sharma, R. K., Chauhan, K., Pathak, A. K., & Khan, N. (2020). Postbiotics for animal health and performance. Intas Polivet, 21(2), 288-294.

Sharma, S., Singh, R. L., & Kakkar, P. (2011). Modulation of Bax/Bcl-2 and caspases by probiotics during acetaminophen induced apoptosis in primary hepatocytes. Food and chemical toxicology, 49(4), 770-779. https://doi.org/10.1016/j.fct.2010.11.041

Shazali, N., Foo, H. L., Loh, T. C., Choe, D. W., & Abdul Rahim, R. (2014). Prevalence of antibiotic resistance in lactic acid bacteria isolated from the faeces of broiler chicken in Malaysia. Gut Pathogens, 6(1), 1-7.

Shin, H. S., Park, S. Y., Lee, D. K., Kim, S. A., An, H. M., Kim, J. R., Kim, M. J., Ca, M. G., Lee, S. W., Kim, K. J., Lee, K. O., & Ha, N. J. (2010). Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Archives of pharmacal research, 33, 1425-1431.

Sokol, C. L., & Medzhitov, R. (2010). Emerging functions of basophils in protective and allergic immune responses. Mucosal Immunology, 3(2), 129-137. https://doi.org/10.1038/mi.2009.137

Sonmez, O., & Sonmez, M. (2017). Role of platelets in immune system and inflammation. Porto Biomedical Journal, 2(6), 311-314. https://doi.org/10.1016/j.pbj.2017.05.005

Szuba-Trznadel, A., & Rzasa, A. (2023). Feed additives of bacterial origin as an immunoprotective or imunostimulating factor. Annals of Animal Science. https://doi.org/10.2478/aoas-2023-0021

Tekce, E., & Gül, M. (2014). Ruminant beslemede NDF ve ADF’nin önemi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 9(1), 63-73.

Thibessard, A., Borges, F., Fernandez, A., Gintz, B., Decaris, B., & Leblond-Bourget, N. (2004). Identification of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress. Applied and Environmental Microbiology, 70(4), 2220-2229. https://doi.org/10.1128/AEM.70.4.2220-2229.2004

Thomas, M., Serrenho, R. C., Puga, S. O., Torres, J. M., Puga, S. O., & Stangaferro, M. (2023). Effect of feeding a Saccharomyces cerevisiae fermentation product to Holstein cows exposed to high temperature and humidity conditions on milk production performance and efficiency—A pen-level trial. Journal of Dairy Science. https://doi.org/10.3168/jds.2022-22516

Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., Deokar, G. S., Santivarangkna, C., & Nirmal, N. P. (2022). Postbiotics: Current trends in food and Pharmaceutical industry. Foods, 11(19), 3094. https://doi.org/10.3390/foods11193094

Tiptiri-Kourpeti, A., Spyridopoulou, K., Santarmaki, V., Aindelis, G., Tompoulidou, E., Lamprianidou, E. E., Saxami, G., Ypsilantis, P., Lampri, E. S., Simopoulos, C., Kotsianidis, I., Galanis, A., Kourkoutas, Y., Dimitrellou, D., & Chlichlia, K. (2016). Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PloS one, 11(2), e0147960. https://doi.org/10.1371/journal.pone.0147960

Vosooghi-Poostindoz, V., Foroughi, A., Delkhoroshan, A., Ghaffari, M., Vakili, R., & Soleimani, A. (2014). Effects of different levels of protein with or without probiotics on growth performance and blood metabolite responses during pre-and post-weaning phases in male Kurdi lambs. Small Ruminant Research, 117(1), 1–9. https://doi.org/10.1016/j.smallrumres.2013.11.015

Yi, Z. J., Fu, Y. R., Li, M., Gao, K.S., & Zhang, X. G. (2009) Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Experimental Gerontology, 44(12), 760-765. https://doi.org/10.1016/j.exger.2009.08.011

Downloads

Published

10.06.2024

How to Cite

Şanlı, E. R. (2024). Usability of Postbiotics in Ruminant Nutrition and Health. Turkish Journal of Agriculture - Food Science and Technology, 12(6), 1104–1109. https://doi.org/10.24925/turjaf.v12i6.1104-1109.6710

Issue

Section

Review Articles