Farklı üzüm çeşitlerinin ve farklı oranlarda hardal tohumu eklemenin, in vitro sindirim koşulları altında Hardaliye'nin fenolik bileşenleri, antioksidan kapasitesi ve biyoerişilebilirlik değerleri üzerindeki etkisi

Yazarlar

DOI:

https://doi.org/10.24925/turjaf.v12i2.259-267.6653

Anahtar Kelimeler:

Traditional food- Antioxidant capacity- Phenolic compound- Bioaccessibility- In vitro digestion

Özet

Hardaliye, antioksidan fenolik bitkiler bakımından zengin, üzüm bazlı fermente bir içecektir. Merlot ve Papazkarası üzüm çeşitleri ile ömrü (%1, %1.5 ve %2) ​​hardal tohumları eklenerek üretilen hardaliyelerin biyoaktif bileşenlerinin biyoerişilebilirlik ve antioksidan kapasitesi (DPPH, CUPRAC), in vitro gastrointestinal sindirim koşulları altında değerlendirilmiştir. Sındırım sonrasında, %2 hardal tohumu eklenmiş Merlot ve Papazkarası örnekleri diğer örneklerle karşı anlamlı ölçüde yüksek toplam fenolik bitkisel (TPC) içeriği gösterilmiştir (sırasıyla 358.48±14.73 ve 89.01±2.42 mg GAE/L) (p<0.05). %2 hardal tohumu eklenmiş Merlot örnekleri, diğer anlamlardan anlamlı şekilde farklı olan en yüksek DPPH ve CUPRAC değerleri (sırasıyla 19.06±3.91 ve 9.96±1.83 mmol TEAC/L) elde etmiştir (p<0.05). %2 hardal tohumu eklenmiş Merlot örneği, diğer Merlot örneklerine göre anlamlı şekilde yüksek TPC, toplam flavonoid resimlerii (TFC), DPPH ve CUPRAC biyoerişlenebilirlik değerleri gösterilmiştir (p<0.05). %2 hardal tohumu eklenmiş Papazkarası örneklerinde ise anlamlı farklar sadece TPC ve TFC biyoerişilebilirlik değerleri açısından gözlenmiştir (%15.87±2.30 ve %15.27±1.29) (p<0.05). Çalışma, hardaliye Küçük biyoaktif parçaların biyoerişilebilirliğinin üzüm çeşidine ve az miktarda hardal tohumu kullanımına bağlı olarak değişebileceğini göstermektedir. Bu, gıda matrisinin ve antioksidanların diğer gıda matrisleri ile iletişiminin, simüle edilmiş sindirim sırasında biyoaktif dinlenmesinin ve biyoyararlılığının uzamasının devam edeceğini gösterir.

Referanslar

Aksoy, A.S., Arici, M., & Yaman, M. (2022). The effect of hardaliye on reducing the formation of malondialdehyde during in vitro gastrointestinal digestion of meat products. Food Bioscience, 45, 101747. https://doi.org/10.1016/j.fbio.2021.101747.

Anekella, K., & Orsat, V. (2013). Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT - Food Science and Technology, 50(1), 17–24. https://doi.org/10.1016/j.lwt.2012.08.003.

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x.

Arici, M., & Coskun, F. (2001). Hardaliye: fermented grape juice as a traditional Turkish beverage. Food Microbiology, 18, 417-421.

Askin, B., & Atik, A. (2016). Color, phenolic composition, and antioxidant properties of hardaliye (fermented grape beverage) under different storage conditions. Turkish Journal of Agriculture and Forestry, 40(6), 803-812.

Bermudez-Soto, M. J., Tomás-Barberán, F. A., & García-Conesa, M. T. (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102, 865–874. https://doi.org/10.1016/j.foodchem.2006.06.025

Carbonell-Capella, J. M., Buniowska, M., Barba, F. J., Esteve, M. J., & Frígola, A. (2014). Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 13(2), 155–171. https://doi.org/10.1111/1541-4337.12052.

Cemeroğlu, B. (2007). Gıda analizleri. Gıda Teknolojisi Derneği Yayınları, 34, 168-171.

Corona-Leo, L. S., Meza-Márquez, O. G., & Hernández-Martínez, D. M. (2021). Effect of in vitro digestion on phenolic compounds and antioxidant capacity of different apple (Malus domestica) varieties harvested in Mexico. Food Bioscience, 43, 101311. https://doi.org/10.1016/j.fbio.2021.101311

Coskun, F., Arıcı, M., Çelikyurt, G., & Gülcü, M. (2012). Farklı yöntemler kullanılarak üretilen hardaliyelerin bazı özelliklerinde depolama sonunda meydana gelen değişmeler. Journal of Tekirdağ Agricultural Faculty, 9(3), 62-67.

Coskun, F., Arıcı, M., Gülcü, M., Çelikyurt, G., & Mırık, M. (2018). Physicochemical, functional and microbiological properties of hardaliye beverages produced from different grapes and collected from different households. Journal of Agricultural Sciences, 24(2), 278-285.

Coskun, F., & Arıcı, M. (2011). Hardaliyenin bazı özellikleri üzerine farklı hardal tohumları ve üzüm çeşitleri kullanımının etkisi. Akademik Gıda, 9(3), 6-11.

Costa, J. R., Amorim, M., Vilas-Boas, A., Tonon, R. V., Cabral, L., Pastrana, L., & Pintado, M. (2019). Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food & Function, 10(4), 1856–1869. https://doi.org/10.1039/c8fo02534g

Da Silva Haas, I. C., Toaldo, I. M., Gomes, T. M., Luna, A. S., de Gois, J. S., & Bordignon-Luiz, M. T. (2018). Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Bioscience, 22, 120-128. https://doi.org/10.1016/j.fbio.2018.11.002

Dani, C., Oliboni, L. S., Vanderlinde, R., Bonatto, D., Salvador, M., & Henriques, J. A. P. (2007). Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food and Chemical Toxicology, 45(12), 2574-2580. https://doi.org/10.1016/j.fct.2007.06.022

Diosady, L. L., Xu, L., & Chen, B. K. (2007). Production of high-quality protein isolates from oilseeds seeds. United States Patent Number 20070237877.

Frankel, E. N., & Meyer, A. S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80(13), 1925–1941. https://doi.org/10.1002/10970010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-

Gündüz, G. T., Vurmaz, A. K., Solak, E., & Sözbir, H. D. (2019). Antimicrobial, antioxidant activities and total phenolic contents of the traditional Turkish beverages produced by using grapes. Turkish Journal of Agriculture - Food Science and Technology, 7(sp1), 119-125.

Ketnawa, S., Hamanaka, D., Wongpoomchai, R., Ogawa, Y., & Setha, S. (2021). Low intensity of high pressure processing increases extractable recovery of polyphenols and antioxidant activities of non-astringent persimmon fruit. LWT, 151, 112162. https://doi.org/10.1016/j.lwt.2021.112162

Kumaran, A., & Karunakaran, R. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109–114. https://doi.org/10.1016/j.foodchem.2005.03.028.

Lee, S. J., Lee, S. Y., Chung, M. S., & Hur, S. J. (2016). Development of novel in vitro human digestion systems for screening the bioavailability and digestibility of foods. Journal of Functional Foods, 22, 113–121.

Liu, X., Shi, J., Yi, J., Zhang, X., Ma, Q., & Cai, S. (2020). The effect of in vitro simulated gastrointestinal digestion on phenolic bioaccessibility and bioactivities of Prinsepia utilis Royle fruits. LWT, 110782. https://doi.org/10.1016/j.lwt.2020.110782

Mihaylova, D., Desseva, I., Stoyanova, M., Petkova, N., Terzyiska, M., & Lante, A. (2021). Impact of in vitro gastrointestinal digestion on the bioaccessibility of phytochemical compounds from eight fruit juices. Molecules, 26(4), 1187. https://doi.org/10.3390/molecules26041187

Milinčić, D. D., Stanisavljević, N. S., Kostić, A. Ž., Soković Bajić, S., Kojić, M. O., Gašić, U. M., Barać, M. B., Stanojević, S. P., Tešić, Ž. Lj., & Pešić, M. B. (2021). Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT, 138, 110739. https://doi.org/10.1016/j.lwt.2020.110739

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., ... Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food- an international consensus. Food and Function, 5, 1113–1124. https://doi.org/10.1039/C3FO60702J.

Moreno-Montoro, M., Olalla-Herrera, M., Gimenez-Martinez, R., Navarro-Alarcon, M., & Rufián-Henares, J. A. (2015). Phenolic compounds and antioxidant activity of Spanish commercial grape juices. Journal of Food Composition and Analysis, 38, 19–26. https://doi.org/10.1016/j.jfca.2014.10.001

Mulero, J., Pardo, F., & Zafrilla, P. (2010). Antioxidant activity and phenolic compounds in conventional and organic red grapes (var. Monastrell). CyTA - Journal of Food, 8(3), 185–191.

Ortega, N., Macià, A., Romero, M., Reguant, J., & Motilva, M. (2011). Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chemistry, 124(1), 65–71.

Panceri, C. P., De Gois, J. S., Borges, D. L. G., & Bordignon-Luiz, M. T. (2015). Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines. LWT - Food Science and Technology, 63(1), 228–235. https://doi.org/10.1016/j.lwt.2015.02.014

Pinarli, B., Karliga, E. S., Ozkan, G., & Capanoglu, E. (2020). Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterranean Journal of Nutrition and Metabolism, 13(1), 63-74. https://doi.org/10.3233/MNM-190362

Pinarli, B., Karliga, E. S., Ozkan, G., & Capanoglu, E. (2020). Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterranean Journal of Nutrition and Metabolism, 13(1), 63-74. https://doi.org/10.3233/MNM-190362

Podsędek, A., Redzynia, M., Klewicka, E., & Koziołkiewicz, M. (2014). Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/365738

Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K., & da Silva Pinto, M. (2013). Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology, 75(3), 588–602.

Romero-Díez, R., Rodríguez-Rojo, S., Cocero, M. J., Duarte, C. M. M., Matias, A. A., & Bronze, M. R. (2018). Phenolic characterization of aging wine lees: Correlation with antioxidant activities. Food Chemistry, 259, 188–195. https://doi.org/10.1016/j.foodchem.2018.03.119

Sęczyk, L., Sugier, D., Swieca, M., & Gawlik-Dziki, U. (2021). The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chemistry, 344, 128581. https://doi.org/10.1016/j.foodchem.2020.128581.

Singleton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.

Su, D. X., Luo, M. K., Liu, H. S., Qi, X. Y., Zeng, Q. Z., He, S., Fen, S., & Zhang, J. (2019). The effect of simulated digestion on the composition of phenolic compounds and antioxidant activities in lychee pulp of different cultivars. International Journal of Food Science & Technology, 54(11), 3042-3050. https://doi.org/10.1186/s13065-019-0544-4

Toaldo, I. M., de Gois, J. S., Fogolari, O., Hamann, D., Borges, D. L., & Bordignon-Luiz, M. T. (2014). Phytochemical polyphenol extraction and elemental composition of Vitis labrusca L. grape juices through optimization of pectinolytic activity. Food and Bioprocess Technology, 7(9), 2581-2594. https://doi.org/10.1007/s11947-014-1288-8.

Xie, X., Chen, C., & Fu, X. (2020). Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. Journal of Food Processing and Preservation, 00:e15056. https://doi.org/10.1111/jfpp.15056

Zhishen, J., Tang, M., & Wu, J. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2.

Zoubiri, L., Bakir, S., Barkat, M., Carrillo, C., & Capanoglu, E. (2019). Changes in the phenolic profile, antioxidant capacity and in vitro bioaccessibility of two Algerian grape varieties, Cardinal and Dabouki (Sabel), during the production of traditional sun-dried raisins and homemade jam. Journal of Berry Research, 1–16. https://doi.org/10.3233/JBR-190432

Yayınlanmış

2024-02-26

Nasıl Atıf Yapılır

Aksoy, A. S., Yaman, M., & Arıcı, M. (2024). Farklı üzüm çeşitlerinin ve farklı oranlarda hardal tohumu eklemenin, in vitro sindirim koşulları altında Hardaliye’nin fenolik bileşenleri, antioksidan kapasitesi ve biyoerişilebilirlik değerleri üzerindeki etkisi. Türk Tarım - Gıda Bilim Ve Teknoloji Dergisi, 12(2), 259–267. https://doi.org/10.24925/turjaf.v12i2.259-267.6653

Sayı

Bölüm

Araştırma Makalesi