Improvement the Lignocellulosic Comlex Digetibility of Straw by Biological Treatment

Aydan Atalar, Nurcan Çetinkaya


The efforts to break down the lignocellulosic complex found in the cell wall of straws, besides digestible cellulose and hemicellulose by rumen fermentation, improvement of straw digestibility by the degradation of indigestible lignin fraction of complex by using of biotechnological methods is one of the focus areas of animal nutritionists in recent years. Biological method sare prefer redover other methods due to the environmental friendliness. In the biological treatment methods of lignocellulosic complex, biodiversity of bacteria, enzymes and fungi gives opportunity to select lignin degrading species. Mycobacterium, Arthrobacter and Flavobacterium genre bacteria are used to degrade lignin by bacterial treatment. Lignocellulolytic enzymes isolated from different varieties of fungi are used in enzyme treatment. There are 3 genres of fungus that are white, Brown and soft rot in fungal treatments. Brown rot fungi prefer ably attack cellulose and hemicelluloses, but not lignin. White rot fungi attack the lignin and break up lignol bonds and aromatic ring. White rot fungi break down polysaccharides with hydrolytic enzymes such as cellulase, xylanase, and lignin with oxidative ligninolytic enzymes such as lignin peroxidase and laccase. Because of the fact that the microorganisms that can break down the lignocellulosic materials are the fungi and the cost is low, the application of white rot fungi is possible. In this paper, improvement the lignocellulosic comlex digestibility of straw by biological treatment with the advantage of biodiversity is discussed.


Animal nutrition; Enzyme treatment; Lignin digestion; Biological treatment; White rot fungi

Full Text:

PDF (Türkçe)


 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License

ISSN: 2148-127X

Turkish JAF Sci.Tech.

Turkish Journal of Agriculture - Food Science and Technology (TURJAF) is indexed in: