Effects of Inoculation Preactivated Lactobacillus buchneri and Urea on Fermentation and Aerobic Stability Characteristics of Corn Silage
DOI:
https://doi.org/10.24925/turjaf.v11i3.431-438.5272Keywords:
Corn silage, Urea , Lactobacillus buchneri , Fermentation , Aerobic StabilityAbstract
This study was designed to determine the effects of the addition of Lactobacillus buchneri (NCIMB 40788 ˗ CNCM I-4323; Lalsil AS, Lallemand Inc., Canada) inoculant activated before ensiling to corn silage with urea on fermentation and aerobic stability. Corn was harvested during the milk stage period. Post harvest materials were divided into 6 treatment groups. Treatment groups 1- Control; 2- Lactobacillus buchneri (LB), 3×108 cfu/g fresh material; 3-Urea, 1% of dry matter; 4- Lactobacillus buchneri + Urea (LB+Urea); 5- Activated Lactobacillus buchneri (aLB), 3×108 cfu/g fresh material; 6- Activated Lactobacillus buchneri + Urea (aLB+Urea). After adding the additives, the silage samples were vacuum packed into plastic bags with 3 replications in each treatment group. Chemical and microbiological analyzes were performed on silage samples opened on the 1st, 3rd, 7th, 14th and 75th days of fermentation. The aerobic stability test was applied to the silages opened on the 75th day for 7 days. In this study, the addition of Lactobacillus buchneri inoculant and urea activated before ensiling positively affected the fermentation and aerobic stability of corn silages. While it increased the crude protein (CP), lactic acid (LA) values of the silages in the aLB group, it caused a decrease in the acetic acid (AA), propionic acid (PA), pH, neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HCEL) and yeast contents. Adding aLB+ Urea to silages improved the aerobic stability of silages. As a result, the combined use of activated Lactobacillus buchneri and urea can improve the fermentation profile, chemical composition, and aerobic stability of corn.
References
Akyıldız AR. 1984. Yemler Bilgisi Laboratuar Kılavuzu. A.Ü. Zir. Fak., Ankara, Ankara Üniversitesi Basımevi, Uygulama Kılavuzu, 236 s.
Altınçekiç E, Filya İ. 2018. Effect of using bacterial inoculant and organic acid on the aerobic stability and feed value of small bale maize silages containing low dry matter. Turkish Journal of Agriculture-Food Science and Technology, 6(7): 887-892.
Anonim 1986. The Analysis of Agricultural Material, Reference Book: 427, 428 p, London.
Araki HCM, Oliveira ER, Gandra JR, Goes RHTB, Takiya CS, Jacaúna AG, Oliveira KMP, Vasques DN, Cônsolo NR, Valle TA. et al. 2017. Association of biological and chemical additives on nutrient composition, total losses, microbiological and fermentative profile of sugarcane silage. Iran. J. Appl. Anim. Sci. 2017, 7: 577–584.
Ashbell G, Weinberg, ZG, Azrieli A, Hen Y, Horev B. 1991. A simple system to determine the aerobic determination of silages. Can. Agric. Eng., 33: 391–395
Aufrere J, Cartailler D. 1988. Mise au point d’une methode de laboratoire de prevision de la degradabilite des proteines alimentaires des aliments concentres dans le Rumen. Ann. Zootect., 37: 255-270.
Bai J, Xu D, Xie D, Wang M, Li Z, Guo X. 2020. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 315, 123881.
Berger LL, Fahey Jr, GC, Bourguin LD, Titgemeyer EC. 1994. Modification of Forage Quality after Harvest. In Fahey, Jr., G.C. (Ed.) Forage Quality Evaluation and Utilization. American, Society of Agronomy Inc. Lincoln.
Chen J, Stokes MR, Wallace CR. 1994. Effects of Enzyme – Inoculant Systems on Preservation and Nutritive Value of Hay Crop and Corn Silage. J. Dairy Sci., 77(2): 501-512.
Driehuis F, Oude Elferink SJWH, Spolestra SF. 1999 Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 87(4): 583– 594.
Drouin P, Tremblay J, Chaucheyras-Durand F. 2019. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination. Microorganisms. 7(12): 595-616.
Efe E, Bek Y, Şahin M. 2000. SPSS’te çözümleri ile istatistik yöntemler II. Kahramanmaraş Sütçü İmam Üniversitesi Rektörlüğü Yayınları, Kahramanmaraş, 223s.
Fang J, Matsuzaki M, Suzuki H, Cai Y, Horiguchi KI, Takahash, T. 2012. Effects of lactic acid bacteria and urea treatment on fermentation quality, digestibility and ruminal fermentation of roll bale rice straw silage in wethers. Grassl. 58(2): 73–78.
Fernandes FEP, Garcia R, Pires AJV, Pereira OG, Carvalho GGP, Olivindo CS. 2009. Ensilage of forage sorghum with addition of urea in two storage periods. Braz. J. Anim. Sci., 38: 2111–2115.
Filya I. 2003. The effect of lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum, and maize silages. Journal of Applied Microbiology, 95: 1080- 1086.
Filya İ, Sucu E, Karabulut A. 2006. The effect of Lactobacillus buchneri on the fermentation, aerobic stability and ruminal degradability of maize silage. J. Appl. Microbiol. 101(6): 1216– 1223.
Filya İ. 2007. Ülkemizde Silaj Yapımı ve Silaj Kalitesinin Artırılma Yolları. Yem Magazin, Mart, 2007, 47:37-44.
Gallo A, Bernardes TF, Copani G, Fortunati P, Giuberti G, Bruschi S, Bryan KA, Nielsen NG, Witt KL, Masoero F. 2018. Effect of inoculation with Lactobacillus buchneri LB1819 and Lactococcus lactis on fermentation and mycotoxin production in maize silage compacted at different densities. Anim. Feed Sci. Technol. 246: 36–45.
Gebrehanna MM, Gordon RJ, Madani A, Vanderzaag AC, Wood JD. 2014. Silage effluent management: A review. Journal of Environmental Management, 143:113-122.
Heron SJ, Edwards RA, McDonald P. 1986. Changes in the nitrogenous components of gamma‐irradiated and inoculated ensiled ryegrass. Journal of the Science of Food and Agriculture, 37(10): 979-985.
Holzer M, Mayrhuber E, Danner H, Braun R. 2003. The role of lactobacillus buchneri in forage preservation. Trends in Biotechnol. 21(6): 282–287.
Hu W, Schmidt RJ, McDonell EE, Klingerman CM, Kung Jr. L. 2009. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. Dairy Sci. 92(8): 3907–3914.
Kim SC, Adesogan AT. 2006. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. Journal of Dairy Science, 89(8): 3122-3132.
Kleinschmit DH, Kung JrL. 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages J. Dairy Sci. 89(10): 4005–4013.
Koc F, Ozturk Aksoy S, Agma Okur A, Celikyurt G, Korucu D, Ozduven ML. 2017. Effect of pre-fermented juice, Lactobacillus plantarum and Lactobacillus buchneri on the fermentation charecteristics and aerobic stability of high dry matter alfalfa bale silage. The Journal of Animal & Plant Sciences. 27(5): 1426-1431.
Koç F, Coşkuntuna L. 2003. Silo yemlerinde organik asit belirlemede iki farklı metodun karşılaştırılması. Hayvansal Üretim, 44(2): 37-47.
Kristensen NB, Sloth KH, Højberg O, Spliid NH, Jensen, C. Thøgersen R. 2010. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. J. Dairy Sci. 93(8): 3764– 3774.
Kung JrL, Schmidt RJ, Ebling TE, Hu W. 2007. The effect of lactobacillus buchneri 40788 on the fermentation and aerobic stability of ground and whole high-moisture corn. Journal of Dairy Science, 9(5): 2309-2314.
McDonald P, Henderson AR, Heron SJE. 1991. The Biochemistry of Silage. Second Edition. 340 p., Chalcombe Publication, Marlow, England.
Muck RE, Nadeau EMG, McAllister TA, Contreras-Govea FE, Santos MC Kung, JrL. 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101: 3980–4000.
Neumann M, Oliboni R, Oliveira RM, Faria MV, Ueno RK, Reinerh LL, Durman T. 2010. Aditivos químicos utilizados em silagens. Appl. Res. Agrot., 3: 115–121.
Nsereko VL; Smiley BK, Rutheford WM, Spielbauer A, Forrester KJ, Hettinger GH, Karman, EK, Harman, BR. 2008. Influence of inoculation forage with lactic acid bacteria strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Anim. Feed Sci. Technol., 145: 122–135.
Okumuş A. 2021. İkinci ürün mısır silajına fındık zurufu ilavesinin silaj fermantasyonu, aerobik stabilite ve in vitro gaz üretimi üzerine etkileri. Uludağ Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 61s
Pahlow G, Muck RE, Driehuis F. 2003. Microbiology of ensiling. In: Buxton, D.R., Muck, R.E.; Harrison, J.H. (Eds.) Silage science and technology: Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, p. 31-93.
Pinto S, Warth JFG, Novinski CO, Schmidt P. 2020. Effects of natamycin and Lactobacillus buchneri on the fermentative process and aerobic stability of maize silage. Journal of Animal and Feed Sciences, 29: 82–89.
Playne MJ, McDonald P.1966. The Buffering Constituent of Herbage and of Silage, J. Sci. Food. Agric, 17:264-268.
Queiroz OCM, Arriola KG, Daniel JLP, Adesogan AT. 2013. Effects of 8 chemical and bacterial additives on the quality of corn silage. Journal of Dairy Science, 96(9): 5836-5843.
Santos EM, Zanine AM, Ferreira DJ, Oliveira JS, Penteado DCS Pereira OG. 2008. Activated inoculant improves Tanzania grass (Panicum maximum) silage. Arch. Zootec. 57: 35–42.
Schmidt RJ, Kung JrL. 2010. The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. J. Dairy Sci. 93(4): 1616–1624.
Seale DR, Pahlow G, Spoelstra SF, Lindgren S, Dellaglio F, Lowe JF. 1990. Methods for the Microbiological Analysis of Silage. Proceeding of the Eurobac Conference, 147, Uppsala.
Sucu E. 2009. Laktik asit bakteri inokulantlarının mısır silajının fermantasyon ve aerobik stabilite özellikleri ile rumen ekolojisi üzerine etkileri. Uludağ Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 134s.
Supelco 1998. Solid phase microextraction: Solventless sample preparation for monitoring flavor compounds by capilllary gas chromatoghraphy. Bulletin 869A. Belefonte, PA.
Tabacco E, Piano S, Revello-Chion A, Borreani G. 2011. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 94(11): 5589–5598.
Türemiş A, Kızılşimşek M, Kızıl S, İnal İ, Sağlamtimur T. 1997. Bazı katkı maddelerinin Çukurova koşullarında yetiştirilebilen bazı yazlık yem bitkileri ve karışımlarından yapılan silajlar üzerine etkilerinin saptanması üzerinde bir araştırma. Türkiye 1. Silaj Kongresi. Hasad Yayıncılık, 166-175.
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597.
Vieira DA, Cezário AS, Valente TNP, Ribeiro JC, Santos WBR, Ferreira PRN. 2017. Evaluation of the addition of urea or calcium oxide (CaO) on the recovery of dry matter of the by-product of sweet corn silage. J. Agric. Sci., 9: 141–148.
Weiss K, Kroschewski B, Auerbach H. 2016. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 99: 8053–8069.
Zhang YC, Li DX, Wang XK, Lin YL, Zhang Q, Chen XY, Yang FY. 2019. Fermentation quality and aerobic stability of mulberry silage prepared with lactic acid bacteria and propionic acid. Anim. Sci. J. 90: 513–522.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.