Classification of Cabbage and Broccoli with Deep Learning Method for Robotic Harvesting Systems
DOI:
https://doi.org/10.24925/turjaf.v11i9.1639-1647.6177Keywords:
Cabbage, broccoli, deep learning, classification, DescriptionAbstract
Classification of cabbage and broccoli using deep learning is very important in robotic harvesting systems. Deep learning is a machine learning method that allows learning complex models using artificial neural networks and large data sets. With the help of this method, it can be used effectively in plant classification and visual recognition problems. In order to classify plants such as cabbage and broccoli, a deep learning model must first be created. For this reason, Inception_v3 image recognition and classification modelling, which is one of the deep learning methods, was used in the study. The study was carried out over 2 classes. The created classes are cabbage and broccoli. The tpu hardware accelerator provided by Google Colab was used for training the model. The number of training cycles (epoch) is 10. The learning rate of 0.001 was determined as training parameters. According to these results, it was concluded that the Inception_v3 model was successful for training the broccoli and cabbage data set. During the training process, the loss value of the model gradually decreased and the accuracy value increased. In the validation phase, which is the last phase, the loss value was 0.0005 and the accuracy value was 1.0000.
References
Afonso M, Fonteijn H, Foirentin FS, Lensink D, Mooij M, Faber N, Polder G, Wehrens R. 2020.Tomato Fruit Detection And Counting in Greenhouses Using Deep Learning. Frontiers in Plant Science, 11, doi: 10.3389/fpls.2020.571299
Anonim 1. 2023. http://acikerisim.aksaray.edu.tr/xmlui/ bitstream/ handle/2 0.500. 12451/9522/foto-ozgur-2022.pdf? sequence=1,Erişim tarihi:08.06.2023
Anonim 2. 2023. https://pytorch.org/hub/pytorch_vision_ inception _v3,Erişim tarihi: 08.06.2023
Anonim 3. 2023. https://cloud.google.com/tpu/docs/inception-v3-advanced,Erişim tarihi: 08.06.2023
Anonim 4. 2023. https://openaccess.hacettepe.edu.tr/xmlui/ bitstream/handle /11655 /4536/ 10192378.pdf? sequence =1,Erişim tarihi:08.06.2023
Bozokalfa MK, Eşiyok D, Yoltaş T, Koçak M. 2004. Bazı Brokkoli Çeşitlerinin Verim Kalite ve Teknolojik Özelliklerinin Belirlenmesi. V. Sebze Tarımı Sempozyumu 21-24 Eylül Çanakkale.
De Luna RG, Dadios EP, Bandala AA, Vicerra RRP. 2019. Size classification of tomato fruit using thresholding, machine learning and deep learning techniques. Agrivita, 41(3), 586–596, doi: 10.17503/agrivita.v41i3.2435
Eşiyok D, Salman MH, Bozokalfa MK, Şen F, Aşçıoğul Kaygısız T. 2010. Bazı Brokkoli Çeşitlerinde Raf Ömrü Süresince Kalite Değişimlerinin Belirlenmesi, Ege Üniv. Ziraat Fak. Derg., 2010, 47 (1): 79-86 ISSN 1018 – 8851
Funamoto Y, Yamauchi N, Shigenaga T, Shigyo M. 2002. Effects of heat treatment on chlorophyll degrading enzymes in stored broccoli (Brassica oleraceae L.) Postharvest Biology and Technology 24: 163-170.
Jiangchuan L, Mantao W, Lie B, Xiaofan L, Jun S, Yue M. 2019. Classification and recognition of turtle ımages based on convolutional neural network, IOP Conference Series: Materials Science and Engineering, Volume 782, 4. Sustainability and Environmental Protection, Citation Jiangchuan Liu et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 782 052044,doi: 10.1088/1757-899X/782/5/052044
Kara E, Baktemür G. 2023. Sebze yetiştiriciliği. lahana (Brassica oleracea L.) Yetiştiriciliğİ S:203-217, İksad Yayınları., ISBN: 978-625-6404-83-0
Konstantinos P, Ferentinos KP. 2018. Deep learning models for plant disease detection and diagnosis, Computers and Electronics in Agriculture, Vol: 145,Pages:311-318. doi:10.1016/j.compag.2018.01.009
Milioto A, Lottes P, Stachiniss C. 2018. Real-time semantic segmentation of crop and weed for precision, Agriculture Robots Leveraging Background Knowledge in CNNs,. doi:10.1109/icra.2018.8460962
Mu Y, Chen TS, Ninomiya S, Guo W. 2020. Intact detection of highly occluded immature tomatoes on plants using deep learning techniques. Sensors, 20(10), 2984, doi:10.3390/ s20102984
Mutha SA, Shah AM, Ahmed MZ. 2021.Maturity detection of tomatoes using deep learning. SN Computer Science, 2(6), 441, doi: 10.1007/s42979-021-00837-9
Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. 2016. Deep neural networks based recognition of plant diseases by leaf ımage classification. Computational Intelligence And Neuroscience, doi:10.1155/2016/3289801
Seo D, Cho BH, Kim K. 2021. Development of monitoring robot system for tomato fruits in hydroponic greenhouses. Agronomy, 11(11), 2211, doi: 10.3390/agronomy11112211
Şalk A, Arın L, Deveci M, Polat S. 2008. Özel Sebzecilik, Namık Kemal Üniversitesi Ziraat Fakültesi Bahçe Bitkileri Bölümü, s:488, Tekirdağ.
Tavalı İE, Maltaş AŞ, Uz İ, Kaplan M. 2014. Vermikompostun beyaz baş lahananın (brassica oleracea var. Alba) verim, kalite ve mineral beslenme durumu üzerine etkisi. Akdeniz Univ. Ziraat Fak. Derg. 27(1): 61-67
Vural H, Eşiyok D, Duman İ. 2000.Kültür sebzeleri (Sebze Yetiştirme) 440s.ISBN:975-90790-0-2.
Zhou Z, Song Z, Fu L, Gao F, Li R, Cui Y. 2020. Real-time kiwifruit detection in orchard using deep learning on Android™ smartphones for yield estimation. Computers and Electronics in Agriculture, Vol:179, doi:10.1016 /j.compag.2020.105856
Zhuang X, ZhangT. 2020. Detection of sick broilers by digital image processing and deep learning, Biosystems Engineering,Volume 179, March 2019, Pages 106-116,doi: 10.1016/j.biosystemseng.2019.01.003
Zhang L, Jia J, Gui G, Hao X, Gao W, Wang M. 2018. Deep learning based improved classification system for designing tomato harvesting robot. IEEE Access, 6, 67940-67950, doi: 10.1109/access.2018.2879324
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.