The Effect of Acetamiprid Administration on Bcl-2 Immunoreactivity in the Liver

Authors

DOI:

https://doi.org/10.24925/turjaf.v12i6.940-947.6576

Keywords:

Bcl-2, immunoreactivity, acetamiprid, liver, albinos mice

Abstract

This study aimed to show the effect of acetamiprid, a neonicotinoid insecticide, on B-cell lymphoma 2 (Bcl-2) gene expression, which plays an important role in apoptotic mechanisms in liver tissue. The study consisted of four groups in total, in which three doses of acetamiprid (5, 10, and 15 mg kg-1) were administered, together with the negative group, in which no substance was administered. Liver tissues resected from mice sacrificed by cervical dislocation after 14 days of acetamiprid administration by gavage were fixed in a 10% formaldehyde solution for histological and immunohistochemical analyses and blocked in paraffin after routine tissue follow-up, and sections were stained with haematoxylin-eosin and immunostaining. Histological analysis revealed normal liver tissue in the control group; whereas, sinusoidal dilatation, vasodilatation, and necrosis and steatosis in the parenchyma were found in the acetamiprid-treated group at an increasing rate depending on the dose amount. The immunoreactivity of Bcl-2 in liver tissue was observed in the sinusoidal epithelium. Bcl-2 immunoreactivity was observed severely in the control and 5 mg kg-1 groups and moderately in the 10 mg kg-1 and 15 mg kg-1 acetamiprid-treated groups. Bcl-2 immunoreactivity was observed homogenously in the region from the central vein to the Kiernan’s space. It was observed that acetamiprid used in the study showed a toxic effect on liver tissue, affected bcl-2 expression, an important biomarker in apoptotic pathways, and induced a dose-dependent decrease in bcl-2 immunoreactivity.

References

Arfat, Y., Mahmood, N., Tahir, M. U., Rashid, M., Anjum, S., Zhao, F., Li, D., Sun, Y., Hu, L., Zhihao, C., Yin, C., Shang, P., & Qian, A. (2014). Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicology Report, 1, 554-561. https://doi.org/10.1016/j.toxrep.2014.08.004

Badgujar, P. C., Jain, S., Singh, A., Punia, J., Gupta, R., & Chandra-tre, G. A. (2013). Immunotoxic effects of imidacloprid following 28 days of oralexposure in BALB/c mice. Environ Toxicol Pharmacol, 35(3), 408-418. https://doi.org/10.1016/j.etap.2013.01.012

Bhardwaj, S., Srivastava, M. K., Kapoor, U., & Srivastava, L. P. (2010). A 90 days oral toxicity of imidacloprid in female rats: morphological, biochemical and histopathological evaluations. Food and Chemical Toxicology, 48(5), 1185-1190. https://doi.org/10.1016/j.fct.2010.02.009

Bonmatin, J. M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E. A. D., Noome, D. A., Simon-Delso, N., & Tapparo, A. (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environmental Science and Pollution Research, 22(1), 35-67. https://doi.org/10.1007/s11356-014-3332-7

Bonmatin, J. M., Mitchell, E. A. D., Glauser, G., Lumawig-Heitzman, E., Claveria, F., Bijleveld van Lexmond, M., Taira, K., & Sánchez-Bayo, F. (2021). Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. Science of The Total Environment, 757, 143822. https://doi.org/10.1016/j.scitotenv.2020.143822

Camp, A. A., Batres, M. A., Williams, W. C., Koethe, R. W., Stoner, K. A., & Lehmann, D. M. (2020). Effects of the Neonicotinoid Acetamiprid in Pollen on Bombus impatiens Microcolony Development. Environ Toxicol Chem, 39(12), 2560-9. https://doi.org/10.1002/etc.4886

Chakroun, S., Ezzi, L., Grissa, I., Kerkeni, E., Neffati, F., Bhouri, R., Sallem, A., Najjar, M. F., Hassine, M., Mehdi, M., Haouas, Z., & Cheikhe, H. B. (2016). Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats. Environmental Science and Pollution Research, 23, 25191-25199. https://doi.org/10.1007/s11356-016-7650-9

Chalazonitis, A., Gershon, M., & Greene, L. (2012). Cell death and the developing enteric nervous system. Neurochemistry International, 61(6): 839-47. https://doi.org/10.1016/j.neuint.2012.01.028

Çil, G. İ., Korkmaz, S. D., Ozansoy, G., & Küplülü, Ö. (2020). Türkiye’deki Bal Örneklerinde Neonikotinoid Varlığının LC-MS/Q-TOF Yöntemi ile Tespiti. MAKU J. Health Sci. Inst, 8(1), 11-17. https://doi.org/10.24998/maeusabed.695570

Craddock, H. A., Huang, D., Turner, P. C., Quirós-Alcalá, L., & Payne-Sturges, D. C. (2019). Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015. Environmental Health, 18(7), 1-16. https://doi.org/10.1186/s12940-018-0441-7

Deveci, H. A., Nur, G., & Aksu Kılıçle, P. (2021). Subakut malathion uygulamasının oksidatif stres biyobelirteçlerine etkisi. Journal of Advances in VetBio Science and Techniques, 6(3), 193-201.

Dogan, D., Nur, G., & Deveci, H. A. (2022). Tissue-specific toxicity of clothianidin on rainbow trout (Oncorhynchus mykiss). Drug and Chemical Toxicology, 45(4), 1851-1861. https://doi.org/10.1080/01480545.2021.1892128

El-Din, M. A. E. S., Ghareeb A. E. E., El-Garawani, I. M., & El-Rahman, H. A. A. (2023). Induction of apoptosis, oxidative stress, hormonal, and histological alterations in the reproductive system of thiamethoxam-exposed female rats. Environmental Science and Pollution Research, 30(31), 77917-77930. https://doi.org/10.1007/s11356-023-27743-2

El-Garawani, I. M., Khallaf, E. A., Alnenaei, A. A., Elgendy, R. G., Sobhy, H. M., Khairallah, A., Hathout., H. M. R., Malhat, F., & Nofal, A. E. (2022). The Effect of Neonicotinoids Exposure on Oreochromis niloticus Histopathological Alterations and Genotoxicity. Bulletin of Environmental Contamination and Toxicology, 109, 1001-1009. https://doi.org/10.1007/s00128-022-03611-6

Evan, A. P., Lingeman, J., Coe, F., Shao, Y., Miller, N., Matlaga, B., Phillips, C., Sommer, A., & Worcester, E. (2007). Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney International, 71, 795-801. https://doi.org/10.1038/sj.ki.5002113

Gaweł, M., Kiljanek, T., Niewiadowska, A., Semeniuk, S., Goliszek, M., Burek, O., & Posyniak, A. (2019). Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chemistry, 282, 36-47. https://doi.org/10.1016/j.foodchem.2019.01.003

Gelen, V., Şengül, E., Gedikli, S., Atila, G., Uslu, H., & Makav, M. (2017). The protective effect of rutin and quercetin on 5-FU-induced hepatotoxicity in rats. Asian Pacific Journal of Tropical Biomedicine, 7(7), 647-653. https://doi.org/10.1016/j.apjtb.2017.06.013

Gupta, R. K., Gupta, S., Gajbhiye, V. T., Wiener, H., & Singhet, G. (2005). Residues of imidacloprid, acetamiprid and thiamethoxam in gram. Pesticide Research Journal, 17(1), 46-50

Gür, C., Özkanlar, S., Gedikli, S., Şengül, E., Gelen, V., & Kara, A. (2022). The Effects of Quercetin Administration on Heart Tissue and Serum Parameters in the Rats with Experimental Obesity. Eurasian Journal of Molecular and Biochemical Sciences, 1(1), 16-21. https://doi.org/10.54672/ejmbs.2022.3

Karaca, B. U., Arican, Y. E., Boran, T., Binay, S., Okyar, A., Kaptan, E., & Özhan, G. (2019). Toxic effects of subchronic oral acetamiprid exposure in rats. Toxicology and Industrial Health, 35(11-12), 679-687. https://doi.org/10.1177/0748233719893203

Kammon, A. M., Brar, R. S., Banga, H. S., & Sodhi, S. (2010). Patho-biochemical studies on hepatotoxicity and nephrotoxicity on exposure to chlorpyrifos and imidacloprid in layer chickens. Veterinarski Arhiv 80, 663-672.

Kapoor, U., Srivastava, M. K., Trivedi, P., Garg, V., & Srivastava, L. P. (2014). Disposition and acute toxicity of imidacloprid in female rats after single exposure. Food and Chemical Toxicology, 68, 190-195. https://doi.org/10.1016/j.fct.2014.03.019

Khaldoun, H., Bouzid, N., Boukreta, S., Makhlouf, C., & Derriche, F. (2017). Thiamethoxam Actara® induced alterations in kidney liver cerebellum and hippocampus of male rats. Journal of Xenobiotics, 7(7149), 25-30. https://doi.org/10.4081/xeno.2017.7149

Khovarnagh, N., & Seyedalipour, B. (2021). Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharmaceutical Journal, 29(3): 280-289. https://doi.org/10.1016/j.jsps.2021.02.004

Kumar, A., Tomar, M., & Kataria, S. K. (2014). Effect of sub-lethal doses of imidacloprid on histological and biochemical parameters in female albino mice. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(1), ver: IV: 09-15. https://doi.org/10.9790/2402-08140915

Marrs, T. C. (2012). Toxicology of Insecticides-Introductory Considerations. In T. Marrs (Eds.), Mammalian Toxicology of Insecticides (pp. 1-13). Chapter I, Royal Society of Chemistry. https://doi.org/10.1039/9781849733007

Matsuda, K., Buckingham, S. D., Kleier, D., Rauh, J. J., Grauso, M., & Sattelle, D. B. (2001). Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 22(11), 573-80. https://doi.org/10.1016/s0165-6147(00)01820-4

Naraharisetti, S. B., Aggarwal, M., Ranganathan, V., Sarkar, S. N., Kataria, M., & Malik, J. K. (2009). Effects of simultaneous repeated exposure at high levels of arsenic and malathion on hepatic drug biotransforming enzymes in broiler chickens. Environmental Toxicology and Pharmacology, 28(2), 213-218. https://doi.org/10.1016/j.etap.2009.04.006

Nur, G., Caylak, E., Kilicle, P. A., Sandayuk, S., & Celebi, O. O. (2022). Immunohistochemical distribution of Bcl-2 and p53 apoptotic markers in acetamiprid-induced nephrotoxicity. Open Medicine (Wars), 17(1), 1788-1796. https://doi.org/10.1515/med-2022-0603

Nur, G., Deveci, H. A., & Koc, E. (2021). Preservation of Vitamin-E Against Nephrotoxic Effect Induced by Subacute Dichlorvos Application. Fresenius Environmental Bulletin, 30(7), 8651-8659

Nur, G., Akar, F., & Akar, F. (2023a). The Effects of Neonicotinoid Insecticide/Thiamethoxamin on Environmental and Aquatic Ecosystems. International Journal of Advanced Natural Sciences and Engineering Researches, 7(10), 466-472.

Nur, G., Caylak, E., Deveci, H. A., Kılıcle, P. A, & Deveci, A. (2023b). The protective effect of caffeic acid phenethyl ester in the nephrotoxicity induced by α-cypermethrin. Open Medicine, 18(1): 20230781. https://doi.org/10.1515/med-2023-0781

Önen, Ö., Kılıçle, P. A., Adalı, Y., & Beşeren, H. (2018). The Histopathological and Genotoxic Effects of Neonicotinoid Pesticides. Bozok Medical Journal, 8(1), 139-147.

Phogat, A., Singh, J., Kumar, V., & Malik, V. (2023). Berberine mitigates acetamiprid-induced hepatotoxicity and inflammation via regulating endogenous antioxidants and NF-κB/TNF-α signaling in rats. Environmental Science and Pollution Research, 30(37), 87412-87423. https://doi.org/10.1007/s11356-023-28279-1

Ploumaki, I., Triantafyllou, E., Koumprentziotis, I. A., Karampinos, K., Drougkas, K., Karavolias, I., Trontzas, I., & Kotteas, E. A. (2023). Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. Clinical and Translational Oncology, 25(6), 1554-1578. https://doi.org/10.1007/s12094-022-03070-9

Pramanik, S. K., Bhattacharyya, J., Dutta, S., Dey, P. K., & Bhattacharyya, A. (2006). Persistence of Acetamiprid in/on Mustard (Brassica juncea L.). Bulletin of Environmental Contamination and Toxicology, 76(2), 356-60. https://doi.org/10.1007/s00128-006-0929-7

Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y., & Wang, J. (2022). The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology, 12, 985363. https://doi.org/10.3389/fonc.2022.985363

Rasgele, P. G., Oktay, M., Kekecoglu, M., Muranli, F. D. G. (2015). The histopathological investigation of liver in experimental animals after shortterm exposures to pesticides. Bulgarian Journal of Agricultural Science, 21(2), 446-453.

Seidal, T., Balaton, A. J., & Battifora, H. (2001). Interpretation and quantification of immunostains. The American Journal of Surgical Pathology, 25, 1204-1207. https://doi.org/10.1097/00000478-200109000-00013

Sangha, K. G., Kamalpreet K., Khera S.K., & Balwinder S. (2011). Toxicological Effects of Cypermethrin on Female Albino Rats. Toxicology International, 18, 5-8. https://doi.org/10.4103/0971-6580.75844

Shu, S., Ju, G., & Fan, L. (1988). The glucose oxidase-dabnickel in peroxidase histochemistry of the nervous system. Neuroscience Letters, 85, 169-171. https://doi.org/10.1016/0304-3940(88)90346-1

Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 20, 175-193. https://doi.org/10.1038/s41580-018-0089-8

Soujanya, S., Lakshman, M., Kumar, A. A., & Reddy, A. G. (2013). Evaluation of the protective role of vitamin C in imidacloprid-induced hepatotoxicityin male Albino rats. Journal of Natural Science, Biology and Medicine, 4(1), 63-7. https://doi.org/10.4103/0976-9668.107262

Suvarna, K. S., Layton, C., & Bancroft, J. D. (2019). Bancroft’s theory and practice of histological techniques. E-Book, 8th edition. Elsevier Health Sciences, https://doi.org/10.1016/C2015-0-00143-5

Swelam, E. S., Abdallah, I. S., & Mossa, A. T. H. (2017). Ameliorating Effect of Zinc Against Oxidative Stress and Lipid Peroxidation Induced by Fipronil in Male Rats. Journal of Pharmacology and Toxicology, 12(1), 24-32. https://doi.org/10.3923/jpt.2017.24.32

Toghan, R., Amin, Y. A., Ali, R. A., Fouad, S. S., Ahmed, M. A. B., & Salih, S. M. M. (2022). Protective effects of Folic acid against reproductive, hematological, hepatic, and renal toxicity induced by Acetamiprid in male Albino rats. Toxicology, 469, 153115. https://doi.org/10.1016/j.tox.2022.153115

Wu, J., Wang, K., & Zhang, H. (2012). Dissipation and residue of acetamiprid in watermelon and soil in the open field. Bulletin of Environmental Contamination and Toxicology, 89, 644-648. https://doi.org/10.1007/s00128-012-0733-5

Yousef, H. N., Ibraheim, S. S., Ramadan, R. A., & Aboelwafa, H. R. (2022). The Ameliorative Role of Eugenol against Silver Nanoparticles-Induced Hepatotoxicity in Male Wistar Rats. Oxidative Medicine and Cellular Longevity, 2022, 3820848. https://doi.org/10.1155/2022/3820848

Zhu, Q. Y. (1989). Analysis of blood vessel invasion by cells of thyroid follicular carcinoma using image processing combined with immunohistochemistry. National Medical Journal of China, 69(10), 573-575

Zoumenou, B. G. Y. M., Aïna, M. P., Imorou. Toko, I., Igout, A., Douny, C., Brose, F., Schiffers, B., Gouda, I., Chabi Sika, K., Kestemont, P., & Scippo, M. L. (2019). Occurrence of Acetamiprid Residues in Water Reservoirs in the Cotton Basin of Northern Benin. Bulletin of Environmental Contamination and Toxicology, 102(1), 7-12. https://doi.org/10.1007/s00128-018-2476-4

Downloads

Published

10.06.2024

How to Cite

Nur, G. (2024). The Effect of Acetamiprid Administration on Bcl-2 Immunoreactivity in the Liver. Turkish Journal of Agriculture - Food Science and Technology, 12(6), 940–947. https://doi.org/10.24925/turjaf.v12i6.940-947.6576

Issue

Section

Research Paper