Effects of Different Processing Techniques and Sol-Gel Coating on Physical Properties of Starch and Clay-Based Biocomposite Material





Processing, Physical properties, biocomposite material, food packaging


This study investigated the effects of different processing techniques and sol-gel coating on the physical properties of biocomposite material. Two dispersion series from corn starch, clay, and sorbitol were prepared by conventional and microwave-assisted processing, and casting technique. One film from each series was sol-gel coated by immersion. All the samples were subjected to moisture content (MC), water solubility (WS), water absorption (WA), FT-IR, DSC, and SEM/digital microscopy tests. The results showed that the coated films contained higher MC (11.5±0.5%) than the non-coated films (5.3±0.6%) and absorbed less water (44.7±12.4%), compared to the non-coated ones (166.3±2.5%). Non-coated films exhibited less solubility in water (26.1±0.2%) than the coated ones (51.0±0.7%). FT-IR test detected cross-linking (1723 cm-1 ester) in the microwave-assisted coated film. The sol-gel coating increased the latent heat of melting and specific heat values by 14.9% and 19.4% for conventionally fabricated samples, and 22.3% and 25.3% for microwaved films, respectively, whereas it reduced the temperature of melting by 23.1% for conventionally fabricated ones, and 6.6% for microwaved ones. Microscopic tests revealed that microwaved compact morphology indicated better gelatinization of starch. Overall, microwaving and sol-gel coating need further investigation to improve the physical properties of biocomposite materials for food packaging.


Abotbina, W., Sapuan, S. M., Sultan, M. T. H., Alkbir, M. F. M., & Ilyas, R. A. (2021). Development and characterization of Cornstarch-Based bioplastics Packaging film using a combination of different plasticizers. Polymers, 13(20), 3487. DOI: 10.3390/polym13203487

Abdullah, N., Cai, J., Hafeez, M. A., Wang, Q., Farooq, S., Huang, Q., . . . Xiao, J. (2022). Biopolymer-based functional films for packaging applications: A review. Frontiers in Nutrition, 9, 1000116. DOI: 10.3389/fnut.2022.1000116

Adibi, A., Valdesueiro, D., Simon, L., Lenges, C. P., & Mekonnen, T. H. (2022). High barrier sustainable paper coating based on engineered polysaccharides and natural rubber. ACS Sustainable Chemistry & Engineering, 10(32), 10718–10732. DOI: 10.1021/acssuschemeng.2c03466

Aklouche L., Jean-Yves, M., Sid-Ahmed, R., Thierry, M., Luc, G., Stephane, C., & Zoulikha, M. (2019). Prediction of thermal conductivity and specific heat of native maize starch and comparison with HMT treated starch. Journal of Renewable Materials, 7(6), 535–546. DOI: 10.32604/jrm.2019.04361

Amaraweera, S. M., Gunathilake, C., Gunawardene, O. H. P., Dassanayake, R. S., Fernando, N. M., Wanninayaka, D. B., Rajapaksha, S. M., Manamperi, A., Gangoda, M., Manchanda, A. S., Fernando, C. N., Kulatunga, A., Manipura, A. (2022). Preparation and characterization of Dual-Modified CASSAVA Starch-Based biodegradable foams for sustainable packaging applications. ACS Omega, 7(23), 19579–19590. DOI: 10.1021/acsomega.2c01292

American Society for Testing and Materials (ASTM). (1998). Standard Test Method for Water Absorption of Plastics (ASTM Standard No: D 570-98). https://standards.globalspec.com/std/3813418/astm-d570-98

Avérous, L., & Halley, P. J. (2009b). Biocomposites based on plasticized starch. Biofuels, Bioproducts & Biorefining, 3(3), 329–343. DOI: 10.1002/bbb.135

Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal, 20, 1–9. DOI: 10.1016/j.nfs.2020.06.002

Basiak, E., Lenart, A., & Debeaufort, F. (2018). How glycerol and water contents affect the structural and functional properties of Starch-Based edible films. Polymers, 10(4), 412. DOI: 10.3390/polym10040412

Campardelli, R., Drago, E., & Perego, P. (2021). Biomaterials for Food Packaging: Innovations from Natural Sources. Chemical Engineering Transactions, 87, 571–576. DOI: 10.3303/cet2187096

Chung, Y., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E. P., & Lai, H. (2010b). Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymers, 79(2), 391–396. DOI: 10.1016/j.carbpol.2009.08.021

Deshwal, G. K., Panjagari, N. R., & Alam, T. (2019). An overview of paper and paper based food packaging materials: health safety and environmental concerns. Journal of Food Science and Technology/Journal of Food Science and Technology, 56(10), 4391–4403. DOI: 10.1007/s13197-019-03950-z

Désiré, A. Y., Charlemagne, N., Roger, K. B., Souleymane, C., Georges, A. N., Marianne, S., & FabriceAchille, T. (2018). Effect of glycerol, peanut oil and soybean lecithin contents on the properties of biodegradable film of improved cassava starches from Côte d’Ivoire. International Journal of Environment, Agriculture and Biotechnology, 3(4), 1432–1440. DOI: 10.22161/ijeab/3.4.39

D’hooge, D. R., Ragaert, K., De Santis, R., Gloria, A. (2017). Design and fabrication methods for biocomposites. In: Ambrosio, L (editor). Bioemdical Composites. Cambridge, MA: Woodhead Publishing, Elsevier eBooks. pp. 17–36. ISBN: 978-0-08-100752-5.

Frangopoulos, T., Marinopoulou, A., Goulas, A., Likotrafiti, E., Rhoades, J., Petridis, D., . . . Karageorgiou, V. (2023). Optimizing the functional properties of Starch-Based biodegradable films. Foods, 12(14), 2812. DOI: 10.3390/foods12142812

García-Guzmán, L., Cabrera-Barjas, G., Soria-Hernández, C. G., Castaño, J., Guadarrama-Lezama, A. Y., & Llamazares, S. R. (2022). Progress in Starch-Based materials for food packaging applications. Polysaccharides, 3(1), 136–177. DOI: 10.3390/polysaccharides3010007

Gazonato, E. C., Maia, A. a. D., Da Silva Moris, V. A., & De Paiva, J. M. F. (2019). Thermomechanical Properties of Corn Starch Based Film Reinforced with Coffee Ground Waste as Renewable Resource. Materials Research, 22(2), e20180416. DOI: 10.1590/1980-5373-mr-2018-0416

Gerezgiher, A. G., & Szabó, T. (2022). Crosslinking of starch using citric acid. Journal of Physics. Conference Series, 2315(1), 012036. DOI: 10.1088/1742-6596/2315/1/012036

Glenn, G. M., Klamczynski, A. K., Holtman, K. M., Shey, J., Chiou, B., Berrios, J., . . . Imam, S. H. (2007). Heat expanded Starch-Based compositions. Journal of Agricultural and Food Chemistry, 55(10), 3936–3943. DOI: 10.1021/jf0630163

Goslinska, M., & Heinrich, S. (2019). Characterization of waxes as possible coating material for organic aerogels. Powder Technology, 357, 223–231. DOI: 10.1016/j.powtec.2019.08.096

Halonen, N., Pálvölgyi, P. S., Bassani, A., Fiorentini, C., Nair, R., Spigno, G., Kordas, K. (2020). Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers. Journal of Materials Research and Technology/Journal of Materials Research and Technology, 15, 1342–1355. DOI: 10.1016/j.jmrt.2021.09.003

Hazrol, M., Sapuan, S., Zainudin, E., Zuhri, M., & Wahab, N. A. (2021). Corn Starch (Zea mays) Biopolymer Plastic Reaction in Combination with Sorbitol and Glycerol. Polymers, 13(2), 242. DOI: 10.3390/polym13020242

Hosseinihashemi, S. K., Modirzare, M., Safdari, V., & Kord, B. (2011). Decay resistance, hardness, water absorption, and thickness swelling of a bagasse fiber/plastic composite. Bioresources, 6(3), 3289–3299. DOI: 10.15376/biores.6.3.3289-3299

Islam, H. B. M. Z., Susan, M. a. B. H., & Imran, A. B. (2020). Effects of plasticizers and clays on the physical, chemical, mechanical, thermal, and morphological properties of potato Starch-Based nanocomposite films. ACS Omega, 5(28), 17543–17552. DOI: 10.1021/acsomega.0c02012

Ibrahim, M., Sapuan, S., Zainudin, E., & Zuhri, M. (2019). Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers. International Journal of Food Properties, 22(1), 925–941. DOI: 10.1080/10942912.2019.1618324

Kunam, P. K., Ramakanth, D., Akhila, K., & Gaikwad, K. K. (2022). Bio-based materials for barrier coatings on paper packaging. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-022-03241-2

Lei, Q., Pan, J., Bao, J., Huang, Z., & Zhang, Y. (2014). Analysis and modeling of moisture sorption behavior for antimicrobial composite protein films. Bio-medical Materials and Engineering, 24(6), 1969–1978. DOI: 10.3233/bme-141006

Lewicka, K., Siemion, P., & Kurcok, P. (2015). Chemical Modifications of starch: microwave effect. International Journal of Polymer Science, 2015, 1–10. DOI: 10.1155/2015/867697

Liu, L., Shi, S., Zhang, Y., Li, Y., Guo, J., & Zhang, M. (2022). Effect of microwave freeze drying on moisture migration and gel characteristics of egg white protein. Journal of Food Processing and Preservation, 46(9), 116-123. DOI: 10.1111/jfpp.16899

Lu, Y., Weng, L., & Cao, X. (2005b). Biocomposites of Plasticized Starch Reinforced with Cellulose Crystallites from Cottonseed Linter. Macromolecular Bioscience, 5(11), 1101–1107. DOI: 10.1002/mabi.200500094

Lu, Z., Zhang, H., Toivakka, M., & Xu, C. (2024). Current progress in functionalization of cellulose nanofibers (CNFs) for active food packaging. International Journal of Biological Macromolecules, 267, 131490. DOI: 10.1016/j.ijbiomac.2024.131490

Lukasiewicz, M., & Kowalski, S. (2011). Low power microwave‐assisted enzymatic esterification of starch. Stärke/Starch, 64(3), 188–197. DOI: 10.1002/star.201100095

Mariam, I., Cho, K. Y., & Rizvi, S. S. (2008). Thermal properties of Starch-Based biodegradable foams produced using supercritical fluid extrusion (SCFX). International Journal of Food Properties, 11(2), 415–426. DOI: 10.1080/10942910701444705

Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice Starch-Based Bio-Plastics as alternative packaging materials. Fibers, 7(4), 32. DOI: 10.3390/fib7040032

Medina, O. J., V. PhD, MSc, O. H. P. C., & MSc, C. a. O. (2012). Modified Arracacha Starch Films Characterization and Its Potential Utilization as Food Packaging. Vitae, 19(2), 186–196. DOI: 10.17533/udea.vitae.10004

Mettler Toledo. (2022). Application Handbooks from the technology leader in thermal analysis. Available from: from http://www.mt.com/ta-handbooks [Accessed 27 December 2023]

Molina, P., Borja, S., Valle, V., Mena, L., & Cadena, F. (2020). Dual Modification of Starch Via Gamma Irradiation and Subsequent Chemical Treatment with Urea for the Development of Adhesives. Revista PolitéCnica (Quito. En LíNea), 46(1), 39–46. DOI: 10.33333/rp.vol46n1.04

Mostafa, H. M., Sourell, H. (2009). Equilibrium Moisture Content of Some Bioplastic Materials for Agricultural Use (Drip Tubes). Agricultural Engineering International: the CIGR Ejournal, XI: 1-10.

Müller, C. M., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82–87. DOI: 10.1016/j.carbpol.2007.07.026

Nasir, N. N., & Othman, S. A. (2021). The Physical and Mechanical Properties of Corn-based Bioplastic Films with Different Starch and Glycerol Content. Journal of Physical Science, 32(3), 89–101. DOI: 10.21315/jps2021.32.3.7

Oluwasina, O. O., Akinyele, B. P., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2021). Evaluation of the effects of additives on the properties of starch-based bioplastic film. SN Applied Sciences/SN Applied Sciences, 3(4), 421. DOI: 10.1007/s42452-021-04433-7

Onyeaka, H., Obileke, K., Makaka, G., & Nwokolo, N. (2022). Current research and applications of Starch-Based biodegradable films for food packaging. Polymers, 14(6), 1126. DOI: 10.3390/polym14061126

Othman, S. H., Kechik, N. R. A., Shapi’i, R. A., Talib, R. A., & Tawakkal, I. S. M. A. (2019). Water sorption and mechanical properties of Starch/Chitosan nanoparticle films. Journal of Nanomaterials, 2019, 1–12. DOI: 10.1155/2019/3843949

Paixão, L. C., Lopes, I. A., Filho, A. K. D. B., & Santana, A. A. (2019). Alginate biofilms plasticized with hydrophilic and hydrophobic plasticizers for application in food packaging. Journal of Applied Polymer Science, 136(48), 48263. DOI: 10.1002/app.48263

Perera, K. Y., Jaiswal, A. K., & Jaiswal, S. (2023). Biopolymer-Based Sustainable Food Packaging Materials: Challenges, solutions, and applications. Foods, 12(12), 2422. DOI: 10.3390/foods12122422

Punia, S., Whiteside, W. S., Suri, S., Barua, S., & Phimolsiripol, Y. (2022). Native and modified biodegradable starch‐based packaging for shelf‐life extension and safety of fruits/vegetables. International Journal of Food Science & Technology, 58(2), 862–DOI: 10.1111/ijfs.16219

Razavi, R., Tajik, H., Moradi, M., Molaei, R., & Ezati, P. (2020b). Antimicrobial, microscopic and spectroscopic properties of cellulose paper coated with chitosan sol-gel solution formulated by epsilon-poly-l-lysine and its application in active food packaging. Carbohydrate Research, 489, 107912. DOI: 10.1016/j.carres.2020.107912

Reichert, C. L., Bugnicourt, E., Coltelli, M., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martínez, B. P., Alonso, R. F., Agostinis, L., Verstichel, S., Six, L., De Mets, S., Macedo, E. A., Ißbrücker, C., Geerinck, R., Nettleton, D. F., Campos, I., Sauter, E., Pieczyk, P., Schmid, M. (2020). Bio-Based packaging: materials, modifications, industrial applications and sustainability. Polymers, 12(7), 1558. 1558. DOI: 10.3390/polym12071558

Rout, S. S., & Pradhan, K. C. (2024b). A review on antimicrobial nano-based edible packaging: Sustainable applications and emerging trends in food industry. Food Control, 163, 110470. DOI: 10.1016/j.foodcont.2024.110470

Shapi’i, R. A., Othman, S. H., Basha, R. K., & Naim, M. N. (2022). Mechanical, thermal, and barrier properties of starch films incorporated with chitosan nanoparticles. Nanotechnology Reviews, 11(1), 1464–1477. DOI: 10.1515/ntrev-2022-0094

Shogren, R. L., & Biswas, A. (2006). Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohydrate Polymers, 64(1), 16–21. DOI: 10.1016/j.carbpol.2005.10.018

Slavutsky, A. M., Bertuzzi, M. A., & Armada, M. (2012). Water barrier properties of starch-clay nanocomposite films. Brazilian Journal of Food Technology/Brazilian Journal of Food Technology, 15(3), 208–218. DOI: 10.1590/s1981-67232012005000014

Suárez-Vega, A., Berriozabal, G., De Iriarte, J. P., Lorenzo, J., Álvarez, N., Dominguez-Meister, S., . . . Braceras, I. (2024). On the antimicrobial properties and endurance of eugenol and 2-phenylphenol functionalized sol-gel coatings. Heliyon, 10(8), e29146. DOI: 10.1016/j.heliyon.2024.e29146

Suh, J. H., Ock, S. Y., Park, G. D., Lee, M. H., & Park, H. J. (2020). Effect of moisture content on the heat-sealing property of starch films from different botanical sources. Polymer Testing, 89, 106612. DOI: 10.1016/j.polymertesting.2020.106612

Tafa, K. D., Satheesh, N., & Abera, W. (2023). Mechanical properties of tef starch based edible films: Development and process optimization. Heliyon, 9(2), e13160. DOI: 10.1016/j.heliyon.2023.e13160

Tan, I., Wee, C. C., Sopade, P. A., & Halley, P. J. (2004). Estimating the specific heat capacity of Starch‐Water‐Glycerol systems as a function of temperature and compositions. Stärke/Starch, 56(1), 6–12. DOI: 10.1002/star.200300209

Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1). DOI: 10.1038/s41598-021-93094-y

Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. DOI: 10.1016/j.ijbiomac.2019.03.190

Wilhelm, H., Sierakowski, M., Souza, G., & Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers, 52(2), 101–110. DOI: 10.1016/s0144-8617(02)00239-

Yusuf, M., Khan, S. A. (2022). Biomaterials in Food Packaging (1st ed.). In: Yusuf M, Khan SA (editors). Biometerials in Food Packaging. Singapore: Jany Stanford Publishing, pp. 121-131. ISBN: 9789814877985.

Zailani, M. A., Kamilah, H., Husaini, A., Seruji, A. Z. R. A., & Sarbini, S. R. (2022). Functional and digestibility properties of sago (Metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocolloids, 122, 107042. DOI: 10.1016/j.foodhyd.2021.107042

Zhu, J., Li, L., Zhang, S., Li, X., & Zhang, B. (2016). Multi-scale structural changes of starch-based material during microwave and conventional heating. International Journal of Biological Macromolecules, 92, 270–277. DOI: 10.1016/j.ijbiomac.2016.07.030




How to Cite

Tekiner, İsmail H. (2024). Effects of Different Processing Techniques and Sol-Gel Coating on Physical Properties of Starch and Clay-Based Biocomposite Material. Turkish Journal of Agriculture - Food Science and Technology, 12(6), 966–977. https://doi.org/10.24925/turjaf.v12i6.966-977.6632



Research Paper