Potential of Nisin and Newly Discovered Bacteriocins as Preservatives for Pasteurised Milk

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2196-2205.6774

Keywords:

Bacteriocins, nisin, pasteurisation, milk spoilage microorganisms, indicator strains

Abstract

Spoilage of pasteurized milk is mainly caused by the presence of organisms that either survive pasteurization (psychrotolerant spore-formers) or re-contaminate milk in the processing environment (post-pasteurisation contaminants).  Pasteurization of bovine milk by heat treating at 72°C for 15-30 seconds ensures milk quality without impairing its organoleptic and nutritional status and extends shelf life to 12-14 days at refrigeration temperatures. Nisin A is a class I bacteriocin known to inhibit gram positive bacteria and approved by the European Food and Safety Authority as a food preservative. It is commercially available as Nisaplin®, which contains a concentration of 2.5% w/w of nisin. This study examined the effect of Nisaplin® at different concentrations on spoilage of refrigerated commercial whole pasteurized milk over a period of 59 days. At a high concentration of 4 mgml-1, Nisaplin® reduced the total bacterial count below the limit of detection in the milk, and inhibition was visible for at least 14 days at 4°C. Previously isolated milk spoilage bacteria were identified using 16s rRNA gene sequencing and utilised as target indicators for bacteriocin production. Lactobacillus delbrueckii ssp. bulgaricus LMG6901, Microbacterium lacticum, and Pseudomonas aeruginosa were utilised as indicator strains in a screen of milk spoilage organisms for bacteriocin production. This resulted in identifying the putative bacteriocin producer Carnobacterium divergens, a lactic acid bacterium active against L. bulgaricus. The study concludes that Nisaplin® is effective in the reduction of microbial load and its effectiveness could be increased when combined with other preservative methods thus forming an extra hurdle in the milk.

References

Arqués, J. L., Rodríguez, E., Nuñez, M., & Medina, M. (2008). Inactivation of Gram-negative pathogens in refrigerated milk by reuterin in combination with nisin or the lactoperoxidase system. European Food Research and Technology, 227(1), 77–82. https://doi.org/10.1007/s00217-007-0695-8

Baglinière, F., Jardin, J., Gaucheron, F., de Carvalho, A. F., & Vanetti, M. C. D. (2017). Proteolysis of casein micelles by heat-stable protease secreted by Serratia liquefaciens leads to the destabilisation of UHT milk during its storage. International Dairy Journal, 68, 38–45. https://doi.org/10.1016/j.idairyj.2016.12.012

Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030

Brillet, A., Pilet, M. F., Prevost, H., Bouttefroy, A., & Leroi, F. (2004). Biodiversity of Listeria monocytogenes sensitivity to bacteriocin-producing Carnobacterium strains and application in sterile cold-smoked salmon. Journal of Applied Microbiology, 97(5), 1029–1037. https://doi.org/10.1111/j.1365-2672.2004.02383.x

Brillet, A., Pilet, M. F., Prevost, H., Cardinal, M., & Leroi, F. (2005). Effect of inoculation of Carnobacterium divergens V41, a biopreservative strain against Listeria monocytogenes risk, on the microbiological, chemical and sensory quality of cold-smoked salmon. International Journal of Food Microbiology, 104(3), 309–324. https://doi.org/10.1016/j.ijfoodmicro.2005.03.012

Castillejo, N., Martínez-Hernández, G. B., Gómez, P. A., Artés, F., & Artés-Hernández, F. (2016). Red fresh vegetables smoothies with extended shelf life as an innovative source of health-promoting compounds. Journal of Food Science and Technology, 53(3), 1475–1486. https://doi.org/10.1007/s13197-015-2143-2

Chen, H., & Zhong, Q. (2017). Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. International Journal of Food Microbiology, 260(April), 36–41. https://doi.org/10.1016/j.ijfoodmicro.2017.08.013

Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937

Daba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatalysis and Agricultural Biotechnology, 28(July), 101750. https://doi.org/10.1016/j.bcab.2020.101750

Deeth, H. (2017). Optimum thermal processing for extended shelf-life (Esl) milk. Foods, 6(11). https://doi.org/10.3390/foods6110102

Doll, E. V., Scherer, S., & Wenning, M. (2017). Spoilage of microfiltered and pasteurized extended shelf life milk is mainly induced by psychrotolerant spore-forming bacteria that often originate from recontamination. Frontiers in Microbiology, 8(JAN), 1–13. https://doi.org/10.3389/fmicb.2017.00135

Eisner, M. D. (2021). Direct and indirect heating of milk – A technological perspective beyond time-temperature profiles. International Dairy Journal, 122, 105145. https://doi.org/10.1016/j.idairyj.2021.105145

El Dessouky Abdel-Aziz, M., Darwish, M. S., Mohamed, A. H., El-Khateeb, A. Y., & Hamed, S. E. (2020). Potential activity of aqueous fig leaves extract, olive leaves extract and their mixture as natural preservatives to extend the shelf life of pasteurized buffalo milk. Foods, 9(5), 1–22. https://doi.org/10.3390/foods9050615

Gradisteanu Pircalabioru, G., Popa, L. I., Marutescu, L., Gheorghe, I., Popa, M., Czobor Barbu, I., Cristescu, R., & Chifiriuc, M. C. (2021). Bacteriocins in the era of antibiotic resistance: rising to the challenge. In Pharmaceutics (Vol. 13, Issue 2, pp. 1–15). MDPI AG. https://doi.org/10.3390/pharmaceutics13020196

Hantsis-Zacharov, E., & Halpern, M. (2007). Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Applied and Environmental Microbiology, 73(22), 7162–7168. https://doi.org/10.1128/AEM.00866-07

Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei group: History and health related applications. In Frontiers in Microbiology (Vol. 9, Issue SEP). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.02107

https://www.cso.ie/en/releasesandpublications/er/ms/milkstatisticsjuly2021/ 06th September 2021.

https://www.3r-kenya.org/dairy/) 02nd September 2021.

https://www.the-star.co.ke/news/2021-06-13-cost-of-milk-production-still-high-at-sh23-alitre-says-munya/) 13th September 2021.

https://www.alibaba.com/product-detail/Nisin-Nisinnisin-Best-Price-Food-Grade_1600288836248.html?spm=a2700.7724857.normal_offer.d_image.33904e4dExL5Jg&s=p ) 13th September 2021.

Ibarra-Sánchez, L. A., El-Haddad, N., Mahmoud, D., Miller, M. J., & Karam, L. (2020). Invited review: Advances in nisin use for preservation of dairy products. Journal of Dairy Science, 103(3), 2041–2052. https://doi.org/10.3168/jds.2019-17498

Machado, S. G., Baglinière, F., Marchand, S., Coillie, E. Van, Vanetti, M. C. D., Block, J. De, & Heyndrickx, M. (2017). The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology, 8(MAR), 1–22. https://doi.org/10.3389/fmicb.2017.00302

Martin, N. H., Boor, K. J., & Wiedmann, M. (2018). Symposium review: Effect of post-pasteurization contamination on fluid milk quality. Journal of Dairy Science, 101(1), 861–870. https://doi.org/10.3168/jds.2017-13339

Martinez, R. C. R., Alvarenga, V. O., Thomazini, M., Fávaro-Trindade, C. S., & Sant’Ana, A. de S. (2016). Assessment of the inhibitory effect of free and encapsulated commercial nisin (Nisaplin®), tested alone and in combination, on Listeria monocytogenes and Bacillus cereus in refrigerated milk. LWT - Food Science and Technology, 68, 67–75. https://doi.org/10.1016/j.lwt.2015.12.027

McAuley, C. M., Singh, T. K., Haro-Maza, J. F., Williams, R., & Buckow, R. (2016). Microbiological and physicochemical stability of raw, pasteurised or pulsed electric field-treated milk. Innovative Food Science and Emerging Technologies, 38, 365–373. https://doi.org/10.1016/j.ifset.2016.09.030

Meliani, A., & Bensoltane, A. (2015). Review of Pseudomonas Attachment and Biofilm Formation in Food Industry. Poultry, Fisheries & Wildlife Sciences, 03(01). https://doi.org/10.4172/2375-446x.1000126

Melini, F., Melini, V., Luziatelli, F., & Ruzzi, M. (2017). Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality. Beverages, 3(4), 54. https://doi.org/10.3390/beverages3040054

Métivier, A., Pilet, M. F., Dousset, X., Sorokine, O., Anglade, P., Zagorec, M., Piard, J. C., Marion, D., Cenatiempo, Y., & Fremaux, C. (1998). Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: Primary structure and genomic organization. Microbiology, 144(10), 2837–2844. https://doi.org/10.1099/00221287-144-10-2837

Nasr, N. F., & Elshaghabee, F. M. F. (2019). Enhancement of Shelf Life of Pasteurized Milk Using Nisplin® Essential Oils Emulsion. International Journal of Current Microbiology and Applied Sciences, 8(09), 257–266. https://doi.org/10.20546/ijcmas.2019.809.031

P.R.Thorat, P. V. D. (2013). Bacteriocin review. International Journal of Advanced Research in Engeneering and Applied Sciences, 2(1).

Pujol, L., Johnson, N. B., Magras, C., Albert, I., & Membré, J. M. (2015). Added value of experts’ knowledge to improve a quantitative microbial exposure assessment model - Application to aseptic-UHT food products. International Journal of Food Microbiology, 211, 6–17. https://doi.org/10.1016/j.ijfoodmicro.2015.06.015

Radha, K., Sciences, A., & Veterinary, K. (2014). Nisin as a biopreservative for pasteurized milk. Indian Journal of Veterinery and Animal Sciences Research, 43(December), 436–444.

Ranieri, M. L., Ivy, R. A., Robert Mitchell, W., Call, E., Masiello, S. N., Wiedmann, M., & Boor, K. J. (2012). Real-time PCR detection of Paenibacillus spp. in raw milk to predict shelf life performance of pasteurized fluid milk products. Applied and Environmental Microbiology, 78(16), 5855–5863. https://doi.org/10.1128/AEM.01361-12

Rawat, S. (2015). Food Spoilage: Microorganisms and their prevention. Pelagia Research Library Asian Journal of Plant Science and Research, 5(4), 47–56. www.pelagiaresearchlibrary.com

Ribeiro Júnior, J. C., de Oliveira, A. M., Silva, F. de G., Tamanini, R., de Oliveira, A. L. M., & Beloti, V. (2018). The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75–83. https://doi.org/10.3168/jds.2017-13069

Saad, M. A., Ombarak, R. A., & Abd Rabou, H. S. (2019). Effect of nisin and lysozyme on bacteriological and sensorial quality of pasteurized milk. Journal of Advanced Veterinary and Animal Research, 6(3), 403–408. https://doi.org/10.5455/javar.2019.f360

Schmidt, V. S. J., Kaufmann, V., Kulozik, U., Scherer, S., & Wenning, M. (2012). Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland. International Journal of Food Microbiology, 154(1–2), 1–9. https://doi.org/10.1016/j.ijfoodmicro.2011.12.002

Shimizu, H., Mizuguchi, T., Tanaka, E., & Shioya, S. (1999). Nisin Production by a Mixed-Culture System Consisting of Lactococcus lactis and Kluyveromyces marxianus. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY (Vol. 65, Issue 7). https://journals.asm.org/journal/aem

Silva, C. C. G., Silva, S. P. M., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9(APR). https://doi.org/10.3389/fmicb.2018.00594

Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. Ben, Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. In FEMS Microbiology Reviews (Vol. 45, Issue 1). Oxford University Press. https://doi.org/10.1093/femsre/fuaa039

Susanto, M. (2017). INFLUENCE OF NISIN TO THE LACTIC ACID BACTERIA GROWTH AND INFLUENCE OF NISIN TO THE LAB GROWTH AND MILK-CHEESE MADELEINE SUSANTO Thesis Submitted in Partial Fulfilment of The Requirements for.

Trmčić, A., Martin, N. H., Boor, K. J., & Wiedmann, M. (2015). A standard bacterial isolate set for research on contemporary dairy spoilage. Journal of Dairy Science, 98(8), 5806–5817. https://doi.org/10.3168/jds.2015-9490

Twomey, E., Hill, C., & Field, D. (2021). Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. International Journal of Microbioogy, 2021(9990635), 1–19.

Wang, L., Dekker, M., Heising, J., Zhao, L., & Fogliano, V. (2023). Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. In Critical Reviews in Food Science and Nutrition. Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2023.2205937

Wirjantoro, T. I., Lewis, M. J., Grandison, A. S., Williams, G. C., & Delves-Broughton, J. (2001). The effect of nisin on the keeping quality of reduced heat-treated milks. Journal of Food Protection, 64(2), 213–219. https://doi.org/10.4315/0362-028X-64.2.213

Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M. J., Galtier, P., Gundert‐Remy, U., Kuhnle, G. G., Lambré , C., Leblanc, J., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens‐Berendsen, I., Woutersen, R. A., … Gott, D. (2017). Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. EFSA Journal, 15(12). https://doi.org/10.2903/j.efsa.2017.5063

Zhang, Z., Vriesekoop, F., Yuan, Q., & Liang, H. (2014). Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chemistry, 150, 307–312. https://doi.org/10.1016/j.foodchem.2013.10.160

Ziyaina, M., Govindan, B. N., Rasco, B., Coffey, T., & Sablani, S. S. (2018). Monitoring Shelf Life of Pasteurized Whole Milk Under Refrigerated Storage Conditions: Predictive Models for Quality Loss. Journal of Food Science, 83(2), 409–418. https://doi.org/10.1111/1750-3841.13981

Downloads

Published

12.12.2024

How to Cite

Okiko, G., Sugrue, I., Ogutu, F. O., & Ross, P. (2024). Potential of Nisin and Newly Discovered Bacteriocins as Preservatives for Pasteurised Milk. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2196–2205. https://doi.org/10.24925/turjaf.v12is2.2196-2205.6774