Carbon Dots and Their Potential Usage in Food Analysis
DOI:
https://doi.org/10.24925/turjaf.v12is2.2398-2406.6858Keywords:
Carbon dots, Fluorescent, Food safety, Sensor, BiocompatibilityAbstract
Carbon dots (CDs), a novel member of the carbon nanomaterial class, exhibit dimensions smaller than 10 nm, high water solubility, biocompatibility, advanced optical properties, and low toxicity. In addition to these mentioned features, CDs surpass traditional analysis methods and other fluorescent carbon nanomaterials in the early detection of threats to food safety due to their environmentally friendly nature, easy and cost-effective synthesis methods, and straightforward applicability. Research indicates that the use of fluorescent CDs in food analysis enables the sensitive and highly selective detection of analytes. This review explores research on the application of CDs in the detection of residues and contaminants in the context of food safety and their use in food packaging.
References
Akhgari, F., Samadi, N., Farhadi, K., & Akhgari, M. (2017). A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin. Canadian Journal of Chemistry, 95(6), 641-648. doi:https://doi.org/10.1139/cjc-2016-0531
Amin, K. A., Hameid II, H. A., & Abd Elsttar, A. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10), 2994-2999. doi:https://doi.org/10.1016/j.fct.2010.07.039
Bhaisare, M. L., Gedda, G., Khan, M. S., & Wu, H.-F. (2016). Fluorimetric detection of pathogenic bacteria using magnetic carbon dots. Analytica chimica acta, 920, 63-71. doi:https://doi.org/10.1016/j.aca.2016.02.025
Boruah, J. S., & Chowdhury, D. (2020). Palmitic acid–carbon dot hybrid vesicles for absorption of uric acid. Applied Nanoscience, 10(7), 2207-2218. Retrieved from https://link.springer.com/article/10.1007/s13204-020-01374-2
Cancer, I. A. f. R. o. (2010). Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC monographs on the evaluation of carcinogenic risks to humans, 94. Retrieved from http://monographs.iarc.fr/ENG/Monographs/vol94/index.php
Chandra, S., Chowdhuri, A. R., Mahto, T. K., Samui, A., & kumar Sahu, S. (2016). One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like Escherichia coli. RSC advances, 6(76), 72471-72478. doi:https://doi.org/10.1039/C6RA15778E
Chandra, S., Mahto, T. K., Chowdhuri, A. R., Das, B., & kumar Sahu, S. (2017). One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (III). Sensors and Actuators B: Chemical, 245, 835-844. doi:https://doi.org/10.1016/j.snb.2017.02.017
Chazelas, E., Pierre, F., Druesne-Pecollo, N., Esseddik, Y., Szabo de Edelenyi, F., Agaesse, C., . . . Srour, B. (2022). Nitrites and nitrates from food additives and natural sources and cancer risk: results from the NutriNet-Santé cohort. International journal of epidemiology, 51(4), 1106-1119. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9365633/pdf/dyac046.pdf
Chen, Z., Wang, J., Miao, H., Wang, L., Wu, S., & Yang, X. (2016). Fluorescent carbon dots derived from lactose for assaying folic acid. Science China Chemistry, 59, 487-492.
Cui, C., Lei, J., Yang, L., Shen, B., Wang, L., & Zhang, J. (2018). Carbon-dot-encapsulated molecularly imprinted mesoporous organosilica for fluorescent sensing of rhodamine 6G. Research on Chemical Intermediates, 44, 4633-4640.
Cui, L., Ren, X., Sun, M., Liu, H., & Xia, L. (2021). Carbon Dots: Synthesis, Properties and Applications. Nanomaterials, 11(12), 3419.
Das, P., Ganguly, S., Bose, M., Mondal, S., Das, A. K., Banerjee, S., & Das, N. C. (2017). A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor ‘turn-off’probe for selective sensing of copper ions. Materials Science and Engineering: C, 75, 1456-1464. Retrieved from https://www.sciencedirect.com/science/article/pii/S0928493116324596?via%3Dihub
Deka, M. J., Chowdhury, D., & Nath, B. K. (2022). Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Letters, 32(5), 1131-1149. Retrieved from https://link.springer.com/article/10.1007/s42823-022-00347-5
Fan, Y., Qiao, W., Long, W., Chen, H., Fu, H., Zhou, C., & She, Y. (2022). Detection of tetracycline antibiotics using fluorescent “Turn-off” sensor based on S, N-doped carbon quantum dots. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 274, 121033. doi:https://doi.org/10.1016/j.saa.2022.121033
Fong, J. F. Y., Chin, S. F., & Ng, S. M. (2016). A unique “turn-on” fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosensors and Bioelectronics, 85, 844-852.
Fu, X., Sheng, L., Yu, Y., Ma, M., Cai, Z., & Huang, X. (2018). Rapid and universal detection of ovalbumin based on N, O, P-co-doped carbon dots-fluorescence resonance energy transfer technology. Sensors and Actuators B: Chemical, 269, 278-287.
Gan, L., Su, Q., Chen, Z., & Yang, X. (2020). Exploration of pH-responsive carbon dots for detecting nitrite and ascorbic acid. Applied Surface Science, 530, 147269. doi:https://doi.org/10.1016/j.apsusc.2020.147269
Gogoi, N., Agarwal, D. S., Sehgal, A., Chowdhury, D., & Sakhuja, R. (2017). One-pot synthesis of carbon nanodots in an organic medium with aggregation-induced emission enhancement (AIEE): a rationale for “enzyme-free” detection of cholesterol. ACS omega, 2(7), 3816-3827. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044871/pdf/ao7b00643.pdf
Hu, X., Shi, J., Shi, Y., Zou, X., Arslan, M., Zhang, W., . . . Xu, Y. (2019). Use of a smartphone for visual detection of melamine in milk based on Au@ Carbon quantum dots nanocomposites. Food chemistry, 272, 58-65. doi:https://doi.org/10.1016/j.foodchem.2018.08.021
Hua, J., Jiao, Y., Wang, M., & Yang, Y. (2018). Determination of norfloxacin or ciprofloxacin by carbon dots fluorescence enhancement using magnetic nanoparticles as adsorbent. Microchimica Acta, 185, 1-9.
Khan, A., Ezati, P., Kim, J.-T., & Rhim, J.-W. (2022). Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability. Materials Today Sustainability, 100306. doi:https://doi.org/10.1016/j.mtsust.2022.100306
Kilic, B., Dogan, V., Kilic, V., & Kahyaoglu, L. N. (2022). Colorimetric food spoilage monitoring with carbon dot and UV light reinforced fish gelatin films using a smartphone application. International Journal of Biological Macromolecules, 209, 1562-1572. doi:https://doi.org/10.1016/j.ijbiomac.2022.04.119
Koshy, R. R., Koshy, J. T., Mary, S. K., Sadanandan, S., Jisha, S., & Pothan, L. A. (2021). Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control, 126, 108039. doi:https://doi.org/10.1016/j.foodcont.2021.108039
Kwon, W., Lee, G., Do, S., Joo, T., & Rhee, S. W. (2014). Size‐controlled soft‐template synthesis of carbon nanodots toward versatile photoactive materials. Small, 10(3), 506-513.
Lai, I. P.-J., Harroun, S. G., Chen, S.-Y., Unnikrishnan, B., Li, Y.-J., & Huang, C.-C. (2016). Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensors and Actuators B: Chemical, 228, 465-470.
Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. In: Springer.
Li, B., Zhao, S., Huang, L., Wang, Q., Xiao, J., & Lan, M. (2021). Recent advances and prospects of carbon dots in phototherapy. Chemical engineering journal, 408, 127245. doi:https://doi.org/10.1016/j.cej.2020.127245
Li, H., Yan, X., Lu, G., & Su, X. (2018). Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides. Sensors and Actuators B: Chemical, 260, 563-570.
Li, Q., Song, P., & Wen, J. (2019). Melamine and food safety: A 10-year review. Current Opinion in Food Science, 30, 79-84. doi:https://doi.org/10.1016/j.cofs.2019.05.008
Li, Y., Li, H., Wang, T., Liu, G., Wang, G., Liu, M., . . . Li, K. (2023). Surface-molecularly imprinted ratiometric fluorescence sensor for fast, sensitive and selective determination of rhodamine 6G. Dyes and Pigments, 219, 111602. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0143720823005284
Li, Z., Yu, H., Bian, T., Zhao, Y., Zhou, C., Shang, L., . . . Zhang, T. (2015). Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 3(9), 1922-1928.
Liang, G., Zhai, H., Huang, L., Tan, X., Zhou, Q., Yu, X., & Lin, H. (2018). Synthesis of carbon quantum dots-doped dummy molecularly imprinted polymer monolithic column for selective enrichment and analysis of aflatoxin B1 in peanut. Journal of Pharmaceutical and Biomedical Analysis, 149, 258-264.
Lin, B., Yan, Y., Guo, M., Cao, Y., Yu, Y., Zhang, T., . . . Wu, D. (2018). Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides. Food chemistry, 245, 1176-1182.
Liu, J., Li, R., & Yang, B. (2020). Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 6(12), 2179-2195. doi:10.1021/acscentsci.0c01306
Liu, Y., Lu, Q., Hu, X., Wang, H., Li, H., Zhang, Y., & Yao, S. (2017). A nanosensor based on carbon dots for recovered fluorescence detection clenbuterol in pork samples. Journal of Fluorescence, 27, 1847-1853. Retrieved from https://link.springer.com/article/10.1007/s10895-017-2122-2
Lu, W., Gao, Y., Jiao, Y., Shuang, S., Li, C., & Dong, C. (2017). Carbon nano-dots as a fluorescent and colorimetric dual-readout probe for the detection of arginine and Cu 2+ and its logic gate operation. Nanoscale, 9(32), 11545-11552. Retrieved from https://pubs.rsc.org/en/content/articlelanding/2017/nr/c7nr02336g
Luo, X., Han, Y., Chen, X., Tang, W., Yue, T., & Li, Z. (2020). Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science & Technology, 95, 149-161. doi:https://doi.org/10.1016/j.tifs.2019.11.017
Ma, Q., Lu, X., Wang, W., Hubbe, M. A., Liu, Y., Mu, J., . . . Rojas, O. J. (2021). Recent developments in colorimetric and optical indicators stimulated by volatile base nitrogen to monitor seafood freshness. Food Packaging and Shelf Life, 28, 100634. doi:https://doi.org/10.1016/j.fpsl.2021.100634
Ma, X., Lin, S., Dang, Y., Dai, Y., Zhang, X., & Xia, F. (2019). Carbon dots as an “on-off-on” fluorescent probe for detection of Cu (II) ion, ascorbic acid, and acid phosphatase. Analytical and bioanalytical chemistry, 411, 6645-6653. Retrieved from https://link.springer.com/article/10.1007/s00216-019-02038-z
Manzoor, S., Dar, A. H., Dash, K. K., Pandey, V. K., Srivastava, S., Bashir, I., & Khan, S. A. (2023). Carbon dots applications for development of sustainable technologies for food safety: A comprehensive review. Applied Food Research, 100263. doi:https://doi.org/10.1016/j.afres.2023.100263
Miao, H., Wang, Y., & Yang, X. (2018). Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale, 10(17), 8139-8145. Retrieved from https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr02405g
Miao, X., Yan, X., Qu, D., Li, D., Tao, F. F., & Sun, Z. (2017). Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS applied materials & interfaces, 9(22), 18549-18556.
Moradi, M., Molaei, R., Kousheh, S. A., T. Guimarães, J., & McClements, D. J. (2023). Carbon dots synthesized from microorganisms and food by-products: Active and smart food packaging applications. Critical reviews in food science and nutrition, 63(14), 1943-1959. doi:https://doi.org/10.1080/10408398.2021.2015283
MP, A., Pardhiya, S., & Rajamani, P. (2022). Carbon dots: an excellent fluorescent probe for contaminant sensing and remediation. Small, 18(15), 2105579. doi:https://doi.org/10.1002/smll.202105579
Purbia, R., & Paria, S. (2016). A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosensors and Bioelectronics, 79, 467-475.
Qian, Z., Ma, J., Shan, X., Feng, H., Shao, L., & Chen, J. (2014). Highly luminescent N‐doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chemistry–A European Journal, 20(8), 2254-2263.
Qin, Y., Huang, P., & Wu, F.-Y. (2022). Histamine-responsive dye-incorporated carbon dots for visual monitoring of food spoilage. Sensors and Actuators B: Chemical, 365, 131911. doi:https://doi.org/10.1016/j.snb.2022.131911
Qu, J.-H., Wei, Q., & Sun, D.-W. (2018a). Carbon dots: Principles and their applications in food quality and safety detection. Critical reviews in food science and nutrition, 58(14), 2466-2475.
Qu, R., Zhang, W., Liu, N., Zhang, Q., Liu, Y., Li, X., . . . Feng, L. (2018b). Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: dynamic catalysis under natural light. ACS sustainable chemistry & engineering, 6(6), 8019-8028.
Saad, S. M., Abdullah, J., Abd Rashid, S., Fen, Y. W., Salam, F., & Yih, L. H. (2023). Carbon dots-silver based fluorescence assay for the detection of Escherichia Coli O157: H7. Journal of Smart Sensor and Materials, 1(3). Retrieved from https://www.researchgate.net/profile/Suria-Saad/publication/340734783_A_carbon_dots_based_fluorescence_sensing_for_the_determination_of_Escherichia_coli_O157H7/links/6531fdda5d51a8012b567e4a/A-carbon-dots-based-fluorescence-sensing-for-the-determination-of-Escherichia-coli-O157H7.pdf
Shi, R., Feng, S., Park, C. Y., Park, K. Y., Song, J., Park, J. P., . . . Park, T. J. (2020). Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosensors and Bioelectronics, 167, 112519. doi:https://doi.org/10.1016/j.bios.2020.112519
Shi, X., Wei, W., Fu, Z., Gao, W., Zhang, C., Zhao, Q., . . . Lu, X. (2019). Review on carbon dots in food safety applications. Talanta, 194, 809-821. doi:https://doi.org/10.1016/j.talanta.2018.11.005
Su, A., Wang, D., Shu, X., Zhong, Q., Chen, Y., Liu, J., & Wang, Y. (2018). Synthesis of fluorescent carbon quantum dots from dried lemon peel for determination of carmine in drinks. Chemical Research in Chinese Universities, 34, 164-168.
Sun, X.-Y., Wu, L.-L., Shen, J.-S., Cao, X.-G., Wen, C., Liu, B., & Wang, H.-Q. (2016). Highly selective and sensitive sensing for Al 3+ and F− based on green photoluminescent carbon dots. RSC advances, 6(99), 97346-97351.
Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. A. S., Pathak, P., . . . Xie, S.-Y. (2006). Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757. doi:10.1021/ja062677d
Tian, J., An, M., Zhao, X., Wang, Y., & Hasan, M. (2023). Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis. ACS omega, 8(10), 9031-9039. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018703/pdf/ao2c07986.pdf
Varvara, M., Bozzo, G., Celano, G., Disanto, C., Pagliarone, C. N., & Celano, G. V. (2016). The use of ascorbic acid as a food additive: technical-legal issues. Italian journal of food safety, 5(1).
Veissi, M., Maktabi, S., Ramezani, Z., & Khosravi, M. (2021). Highly sensitive fluorescence assay of enterotoxin A in milk using carbon quantum dots as a fluorophore. Food Analytical Methods, 14, 1815-1825. Retrieved from https://link.springer.com/article/10.1007/s12161-021-02009-0
Wang, N., Wang, Y., Guo, T., Yang, T., Chen, M., & Wang, J. (2016). Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosensors and Bioelectronics, 85, 68-75.
Wang, R., Xu, Y., Zhang, T., & Jiang, Y. (2015a). Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe. Analytical Methods, 7(5), 1701-1706.
Wang, S., Wang, Y., Yang, K., Zhong, Y., Yang, X., & Chen, Z. (2017). Synthesis of carbon dots originated from hydroxypropylmethyl cellulose for sensing ciprofloxacin. Analytical Sciences, 33(10), 1129-1134. Retrieved from https://link.springer.com/article/10.2116/analsci.33.1129
Wang, S., Zhang, Y., Zhuo, P., Hu, Q., Chen, Z., & Zhou, L. (2020). Identification of eight pathogenic microorganisms by single concentration-dependent multicolor carbon dots. Journal of Materials Chemistry B, 8(27), 5877-5882. Retrieved from https://pubs.rsc.org/en/content/articlelanding/2020/tb/d0tb00834f
Wang, T., Luo, H., Jing, X., Yang, J., Huo, M., & Wang, Y. (2021). Synthesis of fluorescent carbon dots and their application in ascorbic acid detection. Molecules, 26(5), 1246. Retrieved from https://mdpi-res.com/d_attachment/molecules/molecules-26-01246/article_deploy/molecules-26-01246-v2.pdf?version=1614569278
Wang, Y., Wu, W.-t., Wu, M.-b., Xie, H., Hu, C., Wu, X.-y., & Qiu, J.-s. (2015b). Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Materials, 30(6), 550-559.
Wawrzyniak, J., Ryniecki, A., & Zembrzuski, W. (2005). Application of voltammetry to determine vitamin C in apple juices. Acta Scientiarum Polonorum Technologia Alimentaria, 4(2), 5-16.
Xu, J., Zhou, Y., Cheng, G., Dong, M., Liu, S., & Huang, C. (2015). Carbon dots as a luminescence sensor for ultrasensitive detection of phosphate and their bioimaging properties. Luminescence, 30(4), 411-415.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
Xu, Z.-L., Ye, S.-L., Luo, L., Hua, X., Lai, J.-X., Cai, X.-P., . . . Chen, Y.-p. (2020). Fluorescent enzyme-linked immunoassay based on silane-doped carbon dots for sensitive detection of microcystin-LR in water and crucian samples. Science of The Total Environment, 708, 134614. doi:https://doi.org/10.1016/j.scitotenv.2019.134614
Yan, F., Shi, D., Zheng, T., Yun, K., Zhou, X., & Chen, L. (2016). Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and l-cysteine by means of fluorescence “Off–On” switching. Sensors and Actuators B: Chemical, 224, 926-935.
Yan, J., Fu, Q., Zhang, S., Shi, X., Zhang, Y., Hou, J., . . . Ai, S. (2023). Fluorescent filter paper with pH-responsive carbon dots for the on-site detection of biogenic amines in food. New Journal of Chemistry, 47(16), 7588-7594. doi:https://doi.org/10.1039/D3NJ00646H
Yang, L., Deng, W., Cheng, C., Tan, Y., Xie, Q., & Yao, S. (2018a). Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS applied materials & interfaces, 10(4), 3441-3448.
Yang, M., Li, B., Zhong, K., & Lu, Y. (2018b). Photoluminescence properties of N-doped carbon dots prepared in different solvents and applications in pH sensing. Journal of Materials Science, 53(4), 2424-2433.
Yang, P., Zhu, Z., Chen, M., Zhou, X., & Chen, W. (2019). Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 301-308. doi:https://doi.org/10.1016/j.saa.2019.01.043
Yang, X., Xu, J., Luo, N., Tang, F., Zhang, M., & Zhao, B. (2020). N, Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food chemistry, 310, 125832. doi:https://doi.org/10.1016/j.foodchem.2019.125832
Yao, D., Li, C., Wen, G., Liang, A., & Jiang, Z. (2020). A highly sensitive and accurate SERS/RRS dual-spectroscopic immunosensor for clenbuterol based on nitrogen/silver-codoped carbon dots catalytic amplification. Talanta, 209, 120529. doi:https://doi.org/10.1016/j.talanta.2019.120529
Yu, M., Zhang, H., Liu, Y., Zhang, Y., Shang, M., Wang, L., . . . Lv, X. (2022a). A colorimetric and fluorescent dual-readout probe based on red emission carbon dots for nitrite detection in meat products. Food chemistry, 374, 131768. doi:https://doi.org/10.1016/j.foodchem.2021.131768
Yu, Y., Zhang, L., Gao, X., Feng, Y., Wang, H., Lei, C., . . . Liu, S. (2022b). Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. Biosensors, 12(12), 1158. Retrieved from https://mdpi-res.com/d_attachment/biosensors/biosensors-12-01158/article_deploy/biosensors-12-01158-v2.pdf?version=1671522355
Zhang, X., Chen, C., Peng, D., Zhou, Y., Zhuang, J., Zhang, X., . . . Hu, C. (2020). pH-Responsive carbon dots with red emission for real-time and visual detection of amines. Journal of Materials Chemistry C, 8(33), 11563-11571. doi:https://doi.org/10.1039/D0TC02597F
Zhang, Y., Cui, P., Zhang, F., Feng, X., Wang, Y., Yang, Y., & Liu, X. (2016). Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta, 152, 288-300.
Zhang, Y., Zhang, W., Chen, K., Yang, Q., Hu, N., Suo, Y., & Wang, J. (2018a). Highly sensitive and selective colorimetric detection of glutathione via enhanced Fenton-like reaction of magnetic metal organic framework. Sensors and Actuators B: Chemical, 262, 95-101.
Zhang, Z., Chen, J., Duan, Y., Liu, W., Li, D., Yan, Z., & Yang, K. (2018b). Highly luminescent nitrogen‐doped carbon dots for simultaneous determination of chlortetracycline and sulfasalazine. Luminescence, 33(2), 318-325.
Zhao, C., Jiao, Y., Zhang, L., & Yang, Y. (2018). One-step synthesis of S, B co-doped carbon dots and their application for selective and sensitive fluorescence detection of diethylstilbestrol. New Journal of Chemistry, 42(4), 2857-2864.
Zhong, D., Zhuo, Y., Feng, Y., & Yang, X. (2015). Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus. Biosensors and Bioelectronics, 74, 546-553.
Zhou, L., Lin, Y., Huang, Z., Ren, J., & Qu, X. (2012). Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2+ and biothiols in complex matrices. Chemical communications, 48(8), 1147-1149. Retrieved from https://pubs.rsc.org/en/content/articlelanding/2012/cc/c2cc16791c
Zhou, M., Zhou, Z., Gong, A., Zhang, Y., & Li, Q. (2015). Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron (III) ions sensors and bioimaging. Talanta, 143, 107-113.
Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., & Yang, B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano research, 8, 355-381.
Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., & Zhou, X. (2017). The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta, 184, 1899-1914.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.