Use of Nanoemulsion Technology in Dairy Industry

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2415-2428.6953

Keywords:

Nanoemulsions, milk technology, encapsulation, controlled release, functional dairy products

Abstract

Nanoemulsions, characterized by droplet sizes below 100 nm, are increasingly recognized for their applications in dairy technology. They are typically created using high-energy or low-energy methods and enable the encapsulation of functional food ingredients within droplets or at the interface, thereby increasing nutrient bioavailability and physical stability. The demand for nanoemulsions is increasing due to their applications in functional beverages and foods. In dairy-based products such as yogurt, cheese, and ice cream, nanoemulsions play multiple roles by stabilizing them and providing health benefits. They increase the physical stability of milk-based products, extend their shelf life, and improve sensory properties. Nanoemulsions also act as carriers for bioactive compounds, vitamins, and flavors, enriching the nutritional profile and consumer appeal of dairy products. Research on nanoemulsions is advancing due to their superior properties such as improved solubility, enhanced nutrient absorption, and controlled release capabilities. They are used in functional milk drinks, fortified milks, and milk-based supplements, contributing to the physical stability of products and offering health and nutritional benefits. Dairy products can be enriched with various functional ingredients by adding nanoemulsions. This review focuses on nanoemulsion formation and applications of nanoemulsion technology applied to dairy products within the scope of innovative approaches in the dairy industry and includes studies and results on this subject.

References

Abdelhamid, S. M., Edris, A. E., & Sadek, Z. (2023). Novel approach for the inhibition of Helicobacter pylori contamination in yogurt using selected probiotics combined with eugenol and cinnamaldehyde nanoemulsions. Food Chemistry, 417, 135877. https://doi.org/10.1016/j.foodchem.2023.135877

Abdelraouf, W., Mattr, A., El-Desouky, S., & Elrefaey, A. (2023). Preparation and characterization nanoemulsion moringa oil by whey protein and application in ice cream as a food model. Egyptian Journal of Dairy Science, 0(0). https://doi.org/10.21608/ejds.2023.207208.1012

Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid & Interface Science, 14(3-15). https://doi.org/10.1016/j.cocis.2008.01.002

Adel, K., Youssef, A., Awad, R., & Gamal El Din, A. (2023). Development of CS/WPC/MO-NE bionanocomposites for coating Ras cheese based on Moringa essential oil nanoemulsion. Al-Azhar Journal of Agricultural Research. https://doi.org/10.21608/ajar.2022.177011.1104

Aditya, N. P., Macedo, A. S., Doktorovova, S., Souto, E. B., Kim, S., Chang, P. S., & Ko, S. (2014). Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT - Food Science and Technology, 59(1), 115-121.

Ahmad, N., Alam, M. A., Ahmad, F. J., Sarafroz, M., Ansari, K., Sharma, S., & Amir, M. (2018). Ultrasonication techniques used for the preparation of novel Eugenol Nanoemulsion in the treatment of wounds healings and anti-inflammatory. Journal of Drug Delivery Science and Technology, 46, 461–473. https://doi.org/10.1016/j.jddst.2018.06.003

Alfaro, L., Hayes, D., Boeneke, C., Xu, Z., Bankston, D., Bechtel, P. J., & Sathivel, S. (2015). Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. LWT - Food Science and Technology, 62(2). https://doi.org/10.1016/j.lwt.2015.01.055

Anton, N., Benoit, J.-P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 128(2), 185–199.

Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. International Journal of Pharmaceutics, 377(1-2), 142–147.

Arul Raj, J., Suriya, J., Aliyas, S., Arul Soundara Rajan, Y. A. P., Murugan, K., Karuppiah, P., Arumugam, N., Almansour, A. I., & Karthikeyan, P. (2024). Spontaneous Nanoemulsification of Cinnamon Essential Oil: Formulation, Characterization, and Antibacterial and Antibiofilm Activity against Fish Spoilage Caused by Serratia Rubidaea BFMO8. Biotechnology and Applied Biochemistry. https://doi.org/10.1002/bab.2555.

Artiga-Artigas, M., Acevedo-Fani, A., & Martín-Belloso, O. (2017). Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control, 76, 1-12.

Aswathanarayan, J. B., & Vittal, R. R. (2019). Nanoemulsions and their potential applications in food industry. Frontiers in Sustainable Food Systems, 3.:95. https://doi.org/10.3389/fsufs.2019.00095

Azrini, N., Azmi, N., Elgharbawy, A. A. M., Motlagh, S. R., & Samsudin, N. (2019). Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes, 7, 1–34.

Bagale, U., Kadi, A., Abotaleb, M., & Potoroko, I., Sonawane, S. H. (2023). Prospect of bioactive curcumin nanoemulsion as effective agency to improve milk based soft cheese by using ultrasound encapsulation approach. International Journal of Molecular Sciences, 24(3), 2663. https://doi.org/10.3390/ijms24032663

Bakry, M., Chen, Q., & Liang, L. (2019). Developing a mint yogurt enriched with omega-3 oil: Physiochemical, microbiological, rheological, and sensorial characteristics. Journal of Food Processing and Preservation, 43(12). https://doi.org/10.1111/jfpp.14287

Bedoya-Serna, C. M., Dacanal, G. C., Fernandes, A. M., & Pinho, S. C. (2018). Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Brazilian Journal of Microbiology, 49(4). https://doi.org/10.1016/j.bjm.2018.05.004

Ben Jemaa, M., Falleh, H., Neves, M. A., Isoda, H., Nakajima, M., & Ksouri, R. (2017). Quality preservation of deliberately contaminated milk using thyme free and nanoemulsified essential oils. Food Chemistry, 217, 726–734. https://doi.org/10.1016/j.foodchem.2016.09.030

Bénichou, A., Aserin, A., & Garti, N. (2004). Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Advances in Colloid and Interface Science. https://doi.org/10.1016/j.cis.2003.10.013

Borba, C. M., Araújo, G. M. S., Contessa, C. R., Dora, C. L., & Burkert, J. F. M. (2023). Influence of β-carotene nanoemulsions on technological parameters and stability in food matrices. Food and Bioprocess Technology, 16(11). https://doi.org/10.1007/s11947-023-03060-x

Borrin, T.R., Georges, E.L., Brito-Oliveira, T.C., Moraes, I.C.F. & Pinho, S.C. (2018), Technological and sensory evaluation of pineapple ice creams incorporating curcumin-loaded nanoemulsions obtained by the emulsion inversion point method. Intenational Journal Dairy Technology, 71: 491-500. https://doi.org/10.1111/1471-0307.12451

Cassiday, L. (2016). Food emulsifier fundamentals. International News on Fats, Oils and Related Materials, 27, 10–6. https://doi.org/10.21748/inform.11.2016.10

Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S., Li, B., & Li, Y. (2016). Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids, 61. https://doi.org/10.1016/j.foodhyd.2016.06.034

Dasgupta, N., & Ranjan, S. (2018). Food nanoemulsions: Stability, benefits, and applications. In: An Introduction to Food Grade Nanoemulsions. Environmental Chemistry for a Sustainable World. Springer, Singapore. https://doi.org/10.1007/978-981-10-6986-4_2

El-Sayed, H. S., & El-Sayed, S. M. (2021). A modern trend to preserve white soft cheese using nano-emulsified solutions containing cumin essential oil. Environmental Nanotechnology, Monitoring and Management, 16. https://doi.org/10.1016/j.enmm.2021.100499

El-Sayed, H. S., Youssef, K., & Hashim, A. F. (2022a). Stirred yogurt as a delivery matrix for freeze-dried microcapsules of synbiotic EVOO nanoemulsion and nanocomposite. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.893053

El-Sayed, H. S., Fouad, M. T., & El-Sayed, S. M. (2022b). Enhanced microbial, functional and sensory properties of herbal soft cheese with coriander seeds extract nanoemulsion. Biocatalysis and Agricultural Biotechnology, 45. https://doi.org/10.1016/j.bcab.2022.102495

Espitia, P. J. P., Fuenmayor, C. A., & Otoni, C. G. (2019). Nanoemulsions: Synthesis, characterization, and application in bio-based active food packaging. Comprehensive Reviews in Food Science and Food Safety, 18(1), 264–285. https://doi.org/10.1111/1541-4337.12405

Flores-López, M. L., Cerqueira, M. A., de Rodríguez, D. J., & Vicente, A. A. (2016). Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. Food Engineering Reviews, 8(292-305). https://doi.org/10.1007/s12393-015-9135-x

Foo, M. L., Ooi, C. W., Tan, K. W., & Chew, I. M. L. (2022). Preparation of black cumin seed oil Pickering nanoemulsion with enhanced stability and antioxidant potential using nanocrystalline cellulose from oil palm empty fruit bunch. Chemosphere, 287, 132108. https://doi.org/10.1016/j.chemosphere.2021.132108

Sassi, G., Shankar, S., Jaiswal, L., Salmieri, S., Karboune, S., & Lacroix, M. (2024). Nanoemulsion-based spray-dried formulation of essential oils, whey protein isolate, and maltodextrin: An approach for antifungal preservation of grated mozzarella cheese. International Dairy Journal, 154, 105919. https://doi.org/10.1016/j.idairyj.2024.105919

Ghazy, O. A., Fouad, M. T., Saleh, H. H., Kholif, A. E., & Morsy, T. A. (2021). Ultrasound-assisted preparation of anise extract nanoemulsion and its bioactivity against different pathogenic bacteria. Food Chemistry, 341, 128259. https://doi.org/10.1016/j.foodchem.2020.128259

Ghosh, V., Mukherjee, A., & Chandrasekaran, N. (2013). Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 20(1), 338-344. https://doi.org/10.1016/j.ultsonch.2012.08.010

Gruenwald, J. (2009). Novel botanical ingredients for beverages. Clinics in Dermatology, 27(2), 210-216. https://doi.org/10.1016/j.clindermatol.2008.11.003

Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: Formation, properties, and applications. Soft Matter, 12(11), 2826-2841. https://doi.org/10.1039/C5SM02958A

Gulotta, A., Saberi, A. H., Nicoli, M. C., & McClements, D. J. (2014). Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: Formation using a spontaneous emulsification method. Journal of Agricultural and Food Chemistry, 62(7), 1720-1725. https://doi.org/10.1021/jf4054808

Gutiérrez, J. M., González, C., Maestro, A., Solè, I., Pey, C. M., & Nolla, J. (2008). Nano-emulsions: New applications and optimization of their preparation. Current Opinion in Colloid & Interface Science, 13(4), 245-251. https://doi.org/10.1016/j.cocis.2008.01.005

Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chemistry, 171, 117-122. https://doi.org/10.1016/j.foodchem.2014.08.087

Hendy, S. A. (2023). Production of functional Karish cheese fortified with vitamin D3 in nanoemulsion. Al-Azhar Journal of Agricultural Research, 48(1). https://doi.org/10.21608/ajar.2023.316054

Hidajat, M. J., Jo, W., Kim, H., & Noh, J. (2020). Effective droplet size reduction and excellent stability of limonene nanoemulsion formed by high-pressure homogenizer. Colloids and Interfaces, 4(1). https://doi.org/10.3390/colloids4010005

Hussein, J., El-Bana, M., Abdel Latif, Y., El-Sayed, S., Youssef, A., Elnaggar, M., & Medhat, D. (2023). Processed cheeses fortified by Laurus nobilis L. extract nanoemulsion ameliorate hyperhomocysteinemia in Ehrlich ascites carcinoma model. Egyptian Journal of Chemistry, 66(2), 199-211. https://doi.org/10.21608/ejchem.2022.135198.5944

Ibrahim, R. A., Abd El-Salam, B. A., Alsulami, T., Ali, H. S., Hoppe, K., & Badr, A. N. (2023). Neoteric biofilms applied to enhance the safety characteristics of Ras cheese during ripening. Foods, 12(19). https://doi.org/10.3390/foods12193548

Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, C., Garcia, M. J., Azemar, N., & Solans, C. (2002). Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir, 18(1), 26-30. https://doi.org/10.1021/la0108011

Jafari, S. M., & McClements, D. J. (2017). Nanotechnology approaches for increasing nutrient bioavailability. In F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 81, pp. 1-30). Academic Press. https://doi.org/10.1016/bs.afnr.2016.11.002

Jin, W., Xu, W., Liang, H., Li, Y., Liu, S., & Li, B. (2016). Nanoemulsions for food: Properties, production, characterization, and applications. In D. Julian McClements & L. J. Decker (Eds.), Emulsions (pp. 1-36). Academic Press. https://doi.org/10.1016/B978-0-12-804306-6.00001-5

Jintapattanakit, A. (2018). Preparation of nanoemulsions by phase inversion temperature (PIT) method. Pharmaceutical Sciences Asia, 45(1), 1-12. https://doi.org/10.29090/psa.2018.01.017.0037

Jose, D., Muenmuang, C., Kitiborwornkul, N., Yasurin, P., Asavasanti, S., Tantayotai, P., & Sriariyanun, M. (2022). Effect of surfactants and co-surfactants in formulation of noni fruit extract in virgin coconut oil-based emulsion. Journal of the Indian Chemical Society, 99(10), 100729. https://doi.org/10.1016/j.jics.2022.100729

Joung, H. J., Choi, M. J., Kim, J. T., Park, S., Park, H., & Shin, G. (2016). Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. Journal of Food Science, 81(6), N1427-N1436. https://doi.org/10.1111/1750-3841.13224

Kelmann, R. G., Kuminek, G., Teixeira, H. F., & Koester, L. S. (2007). Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. International Journal of Pharmaceutics, 342(1-2), 231-239. https://doi.org/10.1016/j.ijpharm.2007.05.030

Kentish, S., Wooster, T. J., Ashokkumar, M., Balachandran, S., Mawson, R., & Simons, L. (2008). The use of ultrasonics for nanoemulsion preparation. Innovative Food Science & Emerging Technologies, 9(2), 170-175. https://doi.org/10.1016/j.ifset.2007.07.005

Kheawfu, K., Pikulkaew, S., Rades, T., Müllertz, A., & Okonogi, S. (2018). Development and characterization of clove oil nanoemulsions and self-microemulsifying drug delivery systems. Journal of Drug Delivery Science and Technology, 46, 330-338. https://doi.org/10.1016/j.jddst.2018.05.018

Ko, J. A., Kim, J., Doh, H., & Park, H. J. (2024). Quality evaluation and storage test for capsaicin-fortified yogurt based on the multilayer nanoemulsion system. Food Science and Biotechnology, 33(2), 441-451. https://doi.org/10.1007/s10068-023-01386-y

Komaiko, J. S., & McClements, D. J. (2016). Formation of food-grade nanoemulsions using low-energy preparation methods: A review of available methods. Comprehensive Reviews in Food Science and Food Safety, 15(2), 331-352. https://doi.org/10.1111/1541-4337.12189

Koroleva, M. Y., & Yurtov, E. V. (2012). Nanoemulsions: The properties, methods of preparation and promising applications. Russian Chemical Reviews, 81(1), 21-43. https://doi.org/10.1070/RC2012v081n01ABEH004239

Kumar, D. L., & Sarkar, P. (2018). Encapsulation of bioactive compounds using nanoemulsions. Environmental Chemistry Letters, 16(1), 59-70. https://doi.org/10.1007/s10311-017-0663-x

Laouini, A., Fessi, H., & Charcosset, C. (2012). Membrane emulsification: A promising alternative for vitamin E encapsulation within nano-emulsion. Journal of Membrane Science, 423, 85-96. https://doi.org/10.1016/j.memsci.2012.07.013

Leong, T. S. H., Wooster, T. J., Kentish, S. E., & Ashokkumar, M. (2009). Minimising oil droplet size using ultrasonic emulsification. Ultrasonics Sonochemistry, 16(6), 721-727. https://doi.org/10.1016/j.ultsonch.2009.02.005

Maali, A., & Hamed Mosavian, M. T. (2013). Preparation and application of nanoemulsions in the last decade (2000–2010). Journal of Dispersion Science and Technology, 34(1), 92-105. https://doi.org/10.1080/01932691.2011.648498

McClements, D. J., & Rao, J. J. (2011). Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food Hydrocolloids, 25(6), 1413-1423. https://doi.org/10.1016/j.foodhyd.2010.12.007

McClements, D. J. (2012). Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter, 8(6), 1719-1729. https://doi.org/10.1039/C2SM06903B

McCourt, A. F., Mulrooney, S. L., & O'Neill, G. J., et al. (2021). Postprandial 25-hydroxyvitamin D response varies according to the lipid composition of a vitamin D3 fortified dairy drink. International Journal of Food Sciences and Nutrition, 72(2), 198-210. https://doi.org/10.1080/09637486.2021.1984400

Mehrnia, M., Jafari, S. M., Makhmal-Zadeh, B. S., & Maghsoudlou, Y. (2015). Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification. International Journal of Biological Macromolecules, 84, 261-267. https://doi.org/10.1016/j.ijbiomac.2015.11.002

Mohammadi Jarchelo, H., Hosseini Ghaboos, S. H., & Almasi, H. (2022). Investigation of the physical properties of gluten-based active film containing free and encapsulated marjoram (Origanum majorana L.) essential oil and evaluation of its performance in the control of microbial spoilage in UF cheese and red meat. Journal of Food Science and Technology (Iran), 19(130), 121-133. https://doi.org/10.22034/FSCT.19.130.121

Mohammed, N. K., Muhialdin, B. J., & Meor Hussin, A. S. (2020). Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream. Food Science and Nutrition, 8(6), 2608-2618. https://doi.org/10.1002/fsn3.1500

Naseema, A., Kovooru, L., Behera, A. K., Kumar, K. P., & Srivastava, P. (2020). A critical review of synthesis procedures, applications and future potential of nanoemulsions. Advances in Colloid and Interface Science, 102318. https://doi.org/10.1016/j.cis.2020.102318

Oh, D. H., Balakrishnan, P., Oh, Y. K., Kim, D. D., Yong, C. S., & Choi, H. G. (2011). Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. International Journal of Pharmaceutics, 404(1-2), 191-197. https://doi.org/10.1016/j.ijpharm.2010.11.029

Panchal, B., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2021). Influence of fat globule size, emulsifiers, and cream-aging on microstructure and physical properties of butter. International Dairy Journal, 117, 105003. https://doi.org/10.1016/j.idairyj.2021.105003

Panghal, A., Chhikara, N., Anshid, V., Charan, M. V. S. C., Surendran, V., Malik, A., & Dhull, S. B. (2019). Nanoemulsions: A promising tool for dairy sector. In Nanotechnology in the Life Sciences. Springer. https://doi.org/10.1007/978-3-030-16522-2_8

Polat Yemiş, G., Sezer, E., & Sıçramaz, H. (2022). Inhibitory effect of sodium alginate nanoemulsion coating containing myrtle essential oil (Myrtus communis L.) on Listeria monocytogenes in Kasar cheese. Molecules, 27(21), 7298. https://doi.org/10.3390/molecules27217298

Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids, 25(5), 1000-1008. https://doi.org/10.1016/j.foodhyd.2010.09.017

Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release, 270, 203-225. https://doi.org/10.1016/j.jconrel.2017.11.049

Rao, S., Radhakrishnan, P., Valiathan, S., & M, S. (2023). Rosehip oil nanoemulsion as a stable delivery system for omega-3 fatty acids to enhance the nutritional value of yogurt. Food Chemistry Advances, 3, 100545. https://doi.org/10.1016/j.focha.2023.100545

Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International, 54(1), 812-820. https://doi.org/10.1016/j.foodres.2013.08.013

Saffarionpour, S. (2019). Preparation of food flavor nanoemulsions by high- and low-energy emulsification approaches. In Food Engineering Reviews, 11(4), 259-289. https://doi.org/10.1007/s12393-019-09197-0

Salama, H. H., El-Sayed, H. S., Kholif, A. M. M., & Edris, A. E. (2022). Essential oils nanoemulsion for the flavoring of functional stirred yogurt: Manufacturing, physicochemical, microbiological, and sensorial investigation. Journal of the Saudi Society of Agricultural Sciences, 21(6). https://doi.org/10.1016/j.jssas.2021.10.001

Salem, M. A., & Ezzat, S. M. (2019). Nanoemulsions in food industry. Some New Aspects of Colloid Systems in Foods, IntechOpen 2(12) 238–267.https://doi.org/10.5772/intechopen.79447.

Salvia-Trujillo, L., Soliva-Fortuny, R., Rojas-Graü, M. A., McClements, D. J., & Martín-Belloso, O. (2017). Edible nanoemulsions as carriers of active ingredients: A review. Annual Review of Food Science and Technology, 8, 439–466. DOI:10.1146/annurev-food-030216-025908

Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development – a food industry perspective. Trends in Food Science & Technology, 17, 547-556. https://doi.org/10.1016/j.tifs.2006.04.010

Santana, R. C., Perrechil, F. A., & Cunha, R. L. (2013). High- and low-energy emulsifications for food applications: A focus on process parameters. Food Engineering Reviews, 5(2), 107–122. https://doi.org/10.1007/s12393-013-9065-4

Shamsara, O., Muhidinov, Z. K., Jafari, S. M., Bobokalonov, J., Jonmurodov, A., Taghvaei, M., & Kumpugdee-Vollrath, M. (2015). Effect of ultrasonication, pH, and heating on stability of apricot gum-lactoglobuline two layer nanoemulsions. International Journal of Biological Macromolecules, 81, 1019–1025. https://doi.org/10.1016/j.ijbiomac.2015.09.056

Sheth, T., Seshadri, S., Prileszky, T., & Helgeson, M. E. (2020). Multiple nanoemulsions. Nature Reviews Materials, 5, 214–228. https://doi.org/10.1038/s41578-019-0161-9

Shakeel, F., Baboota, S., Ahuja, A., Ali, J., & Shafiq, S. (2009). Celecoxib Nanoemulsion for Transdermal Drug Delivery: Characterization and in Vitro Evaluation.” Journal of Dispersion Science and Technology 30(6) 834–842. https://doi.org/10.1080/01932690802644012

Silva, H. D., Cerqueira, M. A., & Vicente, A. (2012). Nanoemulsions for food applications: Development and characterization. Food and Bioprocess Technology, 5, 854–867. https://doi.org/10.1007/s11947-011-0683-7

Silva, H. D., Cerqueira, M. A., & Vicente, A. A. (2015). Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. Journal of Food Engineering, 167, 89–98. https://doi.org/10.1016/j.jfoodeng.2015.07.037

Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nanoemulsions. Current Opinion in Colloid & Interface Science, 10(3), 102–110. https://doi.org/10.1016/j.cocis.2005.06.004

Solans, C., Morales, D., & Homs, M. (2016). Spontaneous emulsification. Current Opinion in Colloid & Interface Science, 22, 88–93.

Solè, I., Pey, C. M., Maestro, A., González, C., Porras, M., Solans, C., & Gutiérrez, J. M. (2010). Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale-up. Journal of Colloid and Interface Science, 344(2), 417–423.

Sonneville-Aubrun, O., Babayan, D., Bordeaux, D., Lindner, P., Rata, G., & Cabane, B. (2009). Phase transition pathways for the production of 100 nm oil-in-water emulsions. Physical Chemistry Chemical Physics, 11(1), 101–110.

Sridhar, A., Ponnuchamy, M., Kumar, P. S., & Kapoor, A. (2021). Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: A review. Environmental Chemistry Letters, 19, 1715–1735. https://doi.org/10.1007/s10311-020-01126-2

Subasi, A., Alickovic, E., & Kevric, J. (2017). Diagnosis of chronic kidney disease by using random forest. In CMBEBIH 2017 (pp. 589–594). Singapore: Springer.

Sugumar, S., Singh, S., Mukherjee, A., & Chandrasekaran, N. (2015). Nanoemulsion of orange oil with non-ionic surfactant produced emulsion using ultrasonication technique: Evaluating against food spoilage yeast. Applied Nanoscience, 6, 113–120. https://doi.org/10.1007/s13204-015-0412-z

Tan, C., & McClements, D. J. (2021). Application of advanced emulsion technology in the food industry: A review and critical evaluation. Foods, 10(4), 812. https://doi.org/10.3390/foods10040812

Teo, S. H., Chee, C. Y., Fahmi, M. Z., Wibawa Sakti, S. C., & Lee, H. V. (2022). Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules, 27(21), 7170. https://doi.org/10.3390/molecules27217170

Umaraw, P., & Verma, A. K. (2017). Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Critical Reviews in Food Science and Nutrition, 57(6), 1270–1279. https://doi.org/10.1080/10408398.2014.986563

Unilever. (2011). Available online at: http://www.unilever.com/innovation/productinnovations/coolicecreaminnovations/?WT.LHNAV=Cool_ice_cream_innovations (accessed April 13, 2011).

Versino, F., Lopez, O. V., Garcia, M. A., & Zaritzky, N. E. (2016). Starch-based films and food coatings: An overview. Starch - Stärke, 68, 1026–1037. https://doi.org/10.1002/star.201600095

Walker, R. M., Decker, E. A., & McClements, D. J. (2015). Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering, 164, 10–20. https://doi.org/10.1016/j.jfoodeng.2015.04.028

Xue, J., Davidson, P. M., & Zhong, Q. (2013). Thymol nanoemulsified by whey protein-maltodextrin conjugates: The enhanced emulsifying capacity and antilisterial properties in milk by propylene glycol. Journal of Agricultural and Food Chemistry, 61(51), 12720-12726. https://doi.org/10.1021/jf4043437

Zambrano-Zaragoza, M. L., González-Reza, R., Mendoza-Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T. F., Mendoza-Elvira, S., & Quintanar-Guerrero, D. (2018). Nanosystems in edible coatings: A novel strategy for food preservation. International Journal of Molecular Sciences, 19(3), 705. https://doi.org/10.3390/ijms19030705

Zhang, Y., & Zhong, Q. (2017). Solid-in-oil-in-water emulsions for delivery of lactase to control in vitro hydrolysis of lactose in milk. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.7b03787.s001

Zhong, J., Yang, R., Cao, X., Liu, X., & Qin, X. (2018). Improved physicochemical properties of yogurt fortified with fish oil/γ-oryzanol by nanoemulsion technology. Molecules, 23(1), 56. https://doi.org/10.3390/molecules23010056

Downloads

Published

12.12.2024

How to Cite

Kaptan, B. (2024). Use of Nanoemulsion Technology in Dairy Industry. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2415–2428. https://doi.org/10.24925/turjaf.v12is2.2415-2428.6953