Microbial Exopolysaccharides, Their Structures, Formation Mechanisms, and Effects on Human Health: Food-Related Microorganisms
DOI:
https://doi.org/10.24925/turjaf.v12is2.2429-2440.6955Keywords:
Adhesion, Biofilm, Homopolysaccharides, Heteropolysaccharides, Food perspectiveAbstract
A biofilm is a complex matrix formed by microorganisms that includes exopolysaccharides, proteins, extracellular DNA, various enzymes, and the microorganisms themselves. Biofilm cell is a more stable form of microorganism than planktonic cell. Microbial cells attach themselves to the surface after certain signals or changes, colonize to create a more favorable environment for their growth and viability, and secrete exopolysaccharide. This component is the basic matrix of biofilm. The diversity of exopolysaccharides within biofilms varies significantly depending on their specific composition, contributing uniquely to the characteristics of biofilms. This diversity in biofilms underscores the need for targeted control strategies. Biofilms can be beneficial or harmful depending on the situation and where they develop. Accordingly, microbial biofilms have dual effects on health. Biofilms can have both harmful effects on health, such as contributing to antibiotic resistance and persistent infections, while biofilms formed by beneficial microorganisms play a crucial role in enhancing food functionality. Moreover, the formation of biofilm in certain foods can contribute to the enhancement of the product matrix, particularly by improving its texture. In this review, the structures of these biofilms, their basic components, their possible safety concerns, and health benefits are discussed. Moreover, this review deals with biofilm producing bacteria in foods and assesses the prevention strategies for biofilm formation within the food industry.
References
Abebe, G. M. (2020). The role of bacterial biofilm in antibotic resistance and food contamination. International Journal of Microbiology, 2020(1), 1705814. https://doi.org/10.1155/2020/1705814
Abedfar, A., & Hosseininezhad, M. (2016). Overview of the most important characterization of exopolysaccharides produced by probiotics bacteria and their biological function. ResearchGate. Journal of Environmental Science, Toxicology and Food Technology, 10, 47-55. https://doi.org/10.9790/2402-1011034755
Achinas, S., Yska, S. K., Charalampogiannis, N., Krooneman, J., & Euverink, G. J. W. (2020). A technological understanding of biofilm detection techniques: A Review. Materials, 13(14), 3147. https://doi.org/10.3390/ma13143147
Altieri, C., Ciuffreda, E., Maggio, B., & Sinigaglia, M. (2017). Lactic acid bacteria as starter cultures. In B. Sperenza, A. Bevilacqua, M. R. Corbo, & M. Sinigaglia (Eds.), Starter cultures in food production, pp. 1-15. https://doi.org/ 10.1002/9781118933794.ch1
Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R., & Cotter, P. D. (2019). Biofilms in food processing environments: challenges and opportunities. Annual Review of Food Science and Technology, 10(1), 173–195. https://doi.org/10.1146/annurev-food-032818-121805
Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190
Anguluri, K., La China, S., Brugnoli, M., De Vero, L., Pulvirenti, A., Cassanelli, S., & Gullo, M. (2022). Candidate acetic acid bacteria strains for levan production. Polymers, 14(10), 2000. https://doi.org/10.3390/polym14102000
Ayyash, M., Abu-Jdayil, B., Itsaranuwat, P., Galiwango, E., Tamiello-Rosa, C., Abdullah, H., Esposito, G., Hunashal, Y., Obaid, R. S., & Hamed, F. (2020). Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. International Journal of Biological Macromolecules, 144, 938–946. https://doi.org/10.1016/j.ijbiomac.2019.09.171
Banas, J. A., Fountain, T. L., Mazurkiewicz, J. E., Sun, K., & Vickerman, M. M. (2007). Streptococcus mutans glucan-binding protein- A affects Streptococcus gordonii biofilm architecture. FEMS Microbiology Letters, 267(1), 80–88. https://doi.org/10.1111/j.1574-6968.2006.00557.x
Banerjee, D., Shivapriya, P. M., Gautam, P. K., Misra, K., Sahoo, A. K., & Samanta, S. K. (2019). A review on basic biology of bacterial biofilm infections and their treatments by nanotechnology-based approaches. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 90(2), 243–259. https://doi.org/10.1007/s40011-018-01065-7
Barzegari, A., Kheyrolahzadeh, K., Khatibi, S. M. H., Sharifi, S., Memar, M. Y., & Vahed, S. Z. (2020). The battle of probiotics and their derivatives against biofilms. Infection and Drug Resistance, 13, 659–672. https://doi.org/10.2147/idr.s232982
Bedasa, S., Shiferaw, D., Abraha, A., & Moges, T. (2018). Occurrence and antimicrobial susceptibility profile of Escherichia coli O157:H7 from food of animal origin in Bishoftu town, Central Ethiopia. International Journal of Food Contamination, 5(1), 1-8. https://doi.org/10.1186/s40550-018-0064-3
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition & Metabolism, 61(2), 160–174. https://doi.org/10.1159/000342079
Berthold-Pluta, A. M., Pluta, A. S., Garbowska, M., & Stasiak-Różańska, L. (2019). Exopolysaccharide-producing lactic acid bacteria–health-promoting properties and application in the dairy industry. Postępy Mikrobiologii-Advancements of Microbiology, 58(2), 191-204. https://doi.org/10.21307/PM-2019.58.2.191
Birkenhauer, E., & Neethirajan, S. (2015). Prevention and control of biofilms in the food industry and bio‐nanotechnology approaches. Biofilms in the Food Environment, 84-130. https://doi.org/10.1002/9781118864036.ch4
Binda, S., Hill, C., Johansen, E., Obis, D., Pot, B. D., Sanders, M. E., Tremblay, A., & Ouwehand, A. C. (2020). Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Frontiers in Microbiology, 11, 1662. https://doi.org/10.3389/fmicb.2020.01662
Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3), 529–563. https://doi.org/10.3934/microbiol.2017.3.529
Bustamante-Torres, M., Arcentales-Vera, B., Estrella-Nuñez, J., Yánez-Vega, H., & Bucio, E. (2022). Antimicrobial activity of composites-based on biopolymers. Macromol, 2(3), 258–283. https://doi.org/10.3390/macromol2030018
Carradori, S., Di Giacomo, N., Lobefalo, M., Luisi, G., Campestre, C., & Sisto, F. (2020). Biofilm and quorum sensing inhibitors: The road so far. Expert Opinion on Therapeutic Patents, 30(12), 917-930. https://doi.org/10.1080/13543776.2020.1830059
Chemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
Chen, M., Yu, Q., & Sun, H. (2013). Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14(9), 18488–18501. https://doi.org/10.3390/ijms140918488
Cherny, K. E., & Sauer, K. (2020). Untethering and degradation of the polysaccharide matrix are essential steps in the dispersion response of Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 202(3), 10-1128. https://doi.org/10.1128/jb.00575-19.
Choi, E., Murray, B., & Choi, S. (2023). Biofilm and cancer: interactions and future directions for cancer therapy. International Journal of Molecular Sciences, 24(16), 12836. https://doi.org/10.3390/ijms241612836
Colagiorgi, A., Festa, R., Di Ciccio, P.A., Gogliettino, M., Balestrieri, M., Palmieri, G., & Anastasio, A., Ianieri, A. (2020). Rapid biofilm eradication of the antimicrobial peptide 1018-K6 against Staphylococcus aureus: A new potential tool to fight bacterial biofilms. Food Control, 107, 106815. https://doi.org/10.1016/j.foodcont.2019.106815
Coleman, R.J., Patel, Y.N., & Harding, N.E. (2008). Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. Journal of Industrial Microbiology and Biotechnology/Journal of Industrial Microbiology & Biotechnology, 35(4), 263–274. https://doi.org/10.1007/s10295-008-0303-3
Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318–1322. https://doi.org/10.1126/science.284.5418.1318
Das, K., Rajawat, M. V. S., Saxena, A. K., & Prasanna, R. (2017). Development of Mesorhizobium ciceri-based biofilms and analyses of their antifungal and plant growth promoting activity in chickpea challenged by fusarium wilt. Indian Journal of Microbiology, 57(1), 48–59. https://doi.org/10.1007/s12088-016-0610-8
De Souza, E. L., De Oliveira, K. R., & De Oliveira, M. E. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Current Opinion in Food Science, 49, 100981. https://doi.org/10.1016/j.cofs.2022.100981.
Del Pozo, J. L., & Patel, R. (2007). The challenge of treating biofilm-associated bacterial infections. Clinical Pharmacology and Therapeutics/Clinical Pharmacology & Therapeutics, 82(2), 204–209. https://doi.org/10.1038/sj.clpt.6100247
Demirbilek, S. K. (2018). Salmonellosis in animals. In InTech eBooks. https://doi.org/10.5772/intechopen.72192
Di Martino, P., (2018). Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiology, 4(2), 274–288. https://doi.org/10.3934/microbiol.2018.2.274
Dincer, S., Uslu, F. M., & Delik, A. (2020). Antibiotic resistance in biofilm. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.92388
Endersen, L., O'Mahony, J., Hill, C., Ross, R. P., McAuliffe, O., & Coffey, A. (2014). Phage therapy in the food industry. Annual Review of Food Science and Technology, 5(1), 327-349. https://doi.org/10.1146/annurev-food-030713-092415
Elafify, M., Liao, X., Feng, J., Ahn, J., & Ding, T. (2024). Biofilm formation in food industries: Challenges and control strategies for food safety. Food Research International, 190, 114650. https://doi.org/10.1016/j.foodres.2024.114650
Facciolà, A., Riso, R., Avventuroso, E., Visalli, G., Delia, S. A., & Laganà, P. (2017). Campylobacter: from microbiology to prevention. PubMed, 58(2), E79–E92. https://pubmed.ncbi.nlm.nih.gov/28900347
Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633. https://doi.org/10.1038/nrmicro2415
Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269–275. https://doi.org/10.1128/jb.176.2.269-275.1994
Gao, J., Sadiq, F. A., Zheng, Y., Zhao, J., He, G., & Sang, Y. (2022). Biofilm-based delivery approaches and specific enrichment strategies of probiotics in the human gut. Gut Microbes, 14(1), 2126274.
García-Díez, J., & Saraiva, C. (2021). Use of starter cultures in foods from animal origin to improve their safety. International Journal of Environmental Research and Public Health, 18(5), 2544. https://doi.org/10.3390/ijerph18052544
Ghanbari, A., Dehghany, J., Schwebs, T., Müsken, M., Häussler, S., & Meyer-Hermann, M. (2016). Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms. Scientific Reports, 6(1), 1-12. https://doi.org/10.1038/srep32097
Ghozali, M., Meliana, Y., & Chalid, M. (2021). Synthesis and characterization of bacterial cellulose by Acetobacter xylinum using liquid tapioca waste. Materials Today: Proceedings, 44, 2131–2134. https://doi.org/10.1016/j.matpr.2020.12.274
Giudici, P., De Vero, L., & Gullo, M. (2017). Chapter 10: Vinegars. In İ. Y. Şengün (Ed.) Acetic acid bacteria: fundamentals and food applications, pp. 261-287. CRC Press, Taylor & Francis Group, Boca Raton.
Gowrishankar, S., & Pandian, S. K. (2017). Modulation of Staphylococcus epidermidis (RP62A) extracellular polymeric layer by marine cyclic dipeptide-cyclo( l -leucyl- l -prolyl) thwarts biofilm formation. Biochimica Et Biophysica Acta. Biomembranes, 1859(7), 1254–1262. https://doi.org/10.1016/j.bbamem.2017.04.009
Grishkin, V., Iakushkin, O., & Stepenko, N. (2017). Biofouling detection based on image processing technique, Computer Science and Information Technologies (CSIT), 158-161, https://doi.org/10.1109/csitechnol.2017.8312162
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95-108. https://doi.org/10.1038/nrmicro821
Han, S., Lu, Y., Xie, J., Fei, Y., Zheng, G., Wang, Z., Liu, J., Lu, L., Ling, Z., Berglund, B., Yao, M., & Li, L. (2021). Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Frontiers in Cellular and Infection Microbiology, 11, 609722. https://doi.org/10.3389/fcimb.2021.609722
Hansson, I., Sandberg, M., Habib, I., Lowman, R., & Engvall, E. O. (2018). Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transboundary and Emerging Diseases, 65, 30–48. https://doi.org/10.1111/tbed.12870
Hernández-Jiménez, E., Del Campo, R., Toledano, V., Vallejo-Cremades, M. T., Muñoz, A., Largo, C., Arnalich, F., García-Rio, F., Cubillos-Zapata, C., & López-Collazo, E. (2013). Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer? Biochemical and Biophysical Research Communications, 441(4), 947–952. https://doi.org/10.1016/j.bbrc.2013.11.012.
Høiby, N. (2017). A short history of microbial biofilms and biofilm infections. APMIS. Acta Pathologica, Microbiologica Et Immunologica Scandinavica, 125(4), 272–275. https://doi.org/10.1111/apm.12686.
Hu, M. X., Li, J. N., Guo, Q., Zhu, Y. Q., & Niu, H. M. (2019). Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production. Journal of Agricultural and Food Chemistry, 67(11), 3198–3208. https://doi.org/10.1021/acs.jafc.8b05024
Hu, X., Zhang, H., Wang, Y., Shiu, B. C., Lin, J. H., Zhang, S., Lou, C, W., & Li, T. T. (2022). Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives. Chemical Engineering Journal, 450, 138129. https://doi.org/10.1016/j.cej.2022.138129
Ivanenko, N. (2021). Biofilm and tumor: interpretation of interaction and treatment strategies. Review. Medical Science of Ukraine (MSU), 17(1), 104-120. https://doi.org/10.32345/2664-4738.1.2021.13
Jeong, D., Kim, D. H., Kang, I. B., Kim, H., Song, K. Y., Kim, H. S., & Seo, K. H. (2017). Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control, 78, 436–442. https://doi.org/10.1016/j.foodcont.2017.02.033.
Johansen, C., Falholt, P., & Gram, L. (1997). Enzymatic removal and disinfection of bacterial biofilms. Applied and Environmental Microbiology, 63(9), 3724–3728. https://doi.org/10.1128/aem.63.9.3724-3728.1997
Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm matrixome: extracellular components in structured microbial communities. Trends in Microbiology, 28(8), 668–681. https://doi.org/10.1016/j.tim.2020.03.016
Kavitake, D., Devi, P. B., Singh, S. P., & Shetty, P. H. (2016). Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. International Journal of Biological Macromolecules, 86, 681–689. https://doi.org/10.1016/j.ijbiomac.2016.01.099
Knetsch, M. L. W., & Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers, 3(1), 340–366. https://doi.org/10.3390/polym3010340
Kubota, H., Senda, S., Nomura, N., Tokuda, H., & Uchiyama, H. (2008). Biofilm formation by lactic acid bacteria and resistance to environmental stress. Journal of Bioscience and Bioengineering, 106(4), 381–386. https://doi.org/10.1263/jbb.106.381
Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307(8), 481–489. https://doi.org/10.1016/j.ijmm.2017.09.016.
Laranjo, M., Potes, M. E., & Elias, M. (2019). Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology, 10, 853. https://doi.org/10.3389/fmicb.2019.00853
Laxmi, V.M., Latha, D., & Jayasree, A. (2018). Production and characterization of curdlan from Agrobacterium sp. International Journal of Pharmaceutical Sciences and Research, 9(11), 4871-4874. https://doi.org/10.13040/IJPSR.0975-8232.9(11).4871-74
Li, X., Chen, D., & Xie, S. (2021). Current progress and prospects of organic nanoparticles against bacterial biofilm. Advances in Colloid and Interface Science, 294, 102475. https://doi.org/10.1016/j.cis.2021.102475
Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20(2), 449. https://doi.org/10.3390/ijms20020449
Lindsay, D., & Von Holy, A. (2006). What food safety professionals should know about bacterial biofilms. British Food Journal, 108(1), 27–37. https://doi.org/10.1108/00070700610637616
Loeffler, D. (2006). Modern brewery sanitation. In Brewing, pp. 308-334. Woodhead Publishing. https://doi.org/10.1533/9781845691738.308
López, D., Vlamakis, H., & Kolter, R. (2010). Biofilms. Cold Spring Harbor Perspectives in Biology, 2(7), a000398. https://doi.org/10.1101/cshperspect.a000398
Lorenzo, J. M., Munekata, P., Domínguez, R., Pateiro, M., Saraiva, J., & Franco Ruiz, D. (2018). Main groups of microorganisms of relevance for food safety and stability: general aspects and overall description. In F. J. Barba, A. S. Sant'Ana, V. Orlien, M., Kouuba (Eds.), Innovative technologies for food preservation, pp. 53-107. Academic Press. https://doi.org/10.1016/B978-0-12-811031-7.00003-0
Machado, I., Silva, L. R., Giaouris, E. D., Melo, L. F., & Simões, M. (2020). Quorum sensing in food spoilage and natural-based strategies for its inhibition. Food Research International, 127, 108754. https://doi.org/10.1016/j.foodres.2019.108754
Malheiro, J., & Simões, M. (2017). Antimicrobial resistance of biofilms in medical devices. In Elsevier eBooks , pp. 97–113. https://doi.org/10.1016/b978-0-08-100382-4.00004-6
Mayton, H. M., Walker, S. L., & Berger, B. W. (2021). Disrupting irreversible bacterial adhesion and biofilm formation with an engineered enzyme. Applied and Environmental Microbiology, 87(13), e00265-21. https://doi.org/10.1128/AEM.00265-21
Meng, X., Pijning, T., Dobruchowska, J. M., Yin, H., Gerwig, G. J., & Dijkhuizen, L. (2016). Structural determinants of alternating (α1 → 4) and (α1 6) linkage specificity in reuteransucrase of Lactobacillus reuteri. Scientific Reports, 6(1), 35261. https://doi.org/10.1038/srep35261
Meyer, B. (2003). Approaches to prevention, removal and killing of biofilms. International Biodeterioration & Biodegradation, 51(4), 249–253. https://doi.org/10.1016/s0964-8305(03)00047-7
Molobela, I.P., Cloete, T.E., & Beukes, M. (2010). Protease and amylase enzymes for biofilm removal and degradation of extracellular polymeric substances (EPS) produced by Pseudomonas fluorescens bacteria. African Journal of Microbiology Research, 4, 1515-1524.
Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology, 18(4), 195-210. https://doi.org/10.1038/s41579-019-0313-3
Nejadmansouri, M., Razmjooei, M., Safdarianghomsheh, R., Shad, E., Delvigne, F., & Khalesi, M. (2021). Semi-continuous production of xanthan in biofilm reactor using Xanthomonas campestris. Journal of Biotechnology, 328, 1–11. https://doi.org/10.1016/j.jbiotec.2021.01.004.
Niculescu, A. G., & Grumezescu, A. M. (2021). Photodynamic therapy—an up-to-date review. Applied Sciences, 11(8), 3626. https://doi.org/10.3390/app11083626
Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences, 13(12), 14002–14015. https://doi.org/10.3390/ijms131114002.
Olaimat, A. N. , Osaili, T. M. , Al-Holy, M. A., Al-Nabulsi, A. A, Obaid, R. S., Alaboudi, A. R., Ayyash, M., & Holley, R. (2020). Microbial safety of oily, low water activity food products: A review. Food Microbiology, 92, 103571. https://doi.org/10.1016/j.fm.2020.103571
Ortiz-Soto, M. E., Olivares-Illana, V., & López-Munguía, A. (2004). Biochemical properties of inulosucrase from Leuconostoc citreum CW28 used for inulin synthesis. Biocatalysis and Biotransformation, 22(4), 275–281. https://doi.org/10.1080/10242420400014251.
Osemwegie, O. O., Adetunji, C. O., Ayeni, E. A., Adejobi, O. I., Arise, R. O., Nwonuma, C. O., & Oghenekaro, A. O. (2020). Exopolysaccharides from bacteria and fungi: current status and perspectives in Africa. Heliyon, 6(6), e04205. https://doi.org/10.1016/j.heliyon.2020.e04205.
Özkan, E. R., Demirci, T., Öztürk, H. N., & Akın, N. (2020). Screening Lactobacillus strains from artisanal Turkish goat skin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. Journal of the Science of Food and Agriculture, 101(7), 2799–2808. https://doi.org/10.1002/jsfa.1090.
Pal, A., & Paul, A. K. (2013). Optimization of cultural conditions for production of extracellular polymeric substances (EPS) by serpentine rhizobacterium Cupriavidus pauculus KPS 201. Journal of Polymers, 2013(1), 1–7. https://doi.org/10.1155/2013/692374.
Palomba, S., Cavella, S., Torrieri, E., Piccolo, A., Mazzei, P., Blaiotta, G., Ventorino, V., & Pepe, O. (2012). polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. Applied and Environmental Microbiology, 78(8), 2737–2747. https://doi.org/10.1128/aem.07302-11.
Parkinson, N., Johnson, E., & Ito, K. (2017). Botulism. In C. E. R. Dodd, T. Aldsworth, R. A. Stein, D. O. Cliver, H.P. Riemann (Eds.), Foodborne diseases, pp. 381-393. Elsevier, https://doi.org/10.1016/B978-0-12-385007-2.00019-X
Percival, S. L., Malic, S., Cruz, H., & Williams, D. W. (2011). Introduction to biofilms. In Springer series on biofilms, pp. 41–68. https://doi.org/10.1007/978-3-642-21289-5_2.
Pires, D., Melo, L., Boas, D. V., Sillankorva, S., & Azeredo, J. (2017). Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology, 39, 48–56. https://doi.org/10.1016/j.mib.2017.09.004
Pokhrel, S., Boonmee, N., Tulyaprawat, O., Pharkjaksu, S., Thaipisutikul, I., Chairatana, P., Ngamskulrungroj, P., & Mitrpant, C. (2022). Assessment of biofilm formation by Candida albicans strains isolated from hemocultures and their role in pathogenesis in the zebrafish model. Journal of Fungi, 8(10), 1014. https://doi.org/10.3390/jof8101014
Pourmehdiabadi, A., Nobakht, M. S., Hajjam Balajorshari, B., Yazdi, M. R., & Amini, K. (2024). Investigating the effects of zinc oxide and titanium dioxide nanoparticles on the formation of biofilm and persister cells in Klebsiella pneumoniae. Journal of Basic Microbiology, 64(5), 2300454. https://doi.org/10.1002/jobm.202300454
Qiu, W., Wang, Q., Li, M., Li, N., Wang, X., Yu, J., Li, F., & Wu, D. (2021). Peptidoglycan-inspired peptide-modified injectable hydrogels with enhanced elimination capability of bacterial biofilm for chronic wound healing. Composites. Part B, Engineering, 227, 109402. https://doi.org/10.1016/j.compositesb.2021.109402
Ramakrishnan, R., Singh, A. K., Singh, S., Chakravortty, D., & Das, D. (2022). Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. The Journal of Biological Chemistry, 298(9), 102352. https://doi.org/10.1016/j.jbc.2022.102352
Rather, M. A., Gupta, K., Bardhan, P., Borah, M., Sarkar, A., Eldiehy, K. S. H., Bhuyan, S., & Mandal, M. (2021). Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, 61(5), 380–395. https://doi.org/10.1002/jobm.202000678
Ribeiro, M., Gomes, I. B., Saavedra, M. J., & Simões, M. (2022). Photodynamic therapy and combinatory treatments for the control of biofilm‐associated infections. Letters in Applied Microbiology, 75(3), 548-564. https://doi.org/10.1111/lam.13762
Roca, C., Alves, V. D., Freitas, F., & Reis, M. a. M. (2015). Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Frontiers in Microbiology, 6, 288. https://doi.org/10.3389/fmicb.2015.00288
Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10), 571-586. https://doi.org/10.1038/s41579-020-0385-0
Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79–89. https://doi.org/10.1016/j.carbpol.2019.04.025.
Satpathy, S., Sen, S. K., Pattanaik, S., & Raut, S. (2016). Review on bacterial biofilm: An universal cause of contamination. Biocatalysis and Agricultural Biotechnology, 7, 56–66. https://doi.org/10.1016/j.bcab.2016.05.002
Sauer, K, Stoodley, P, Goeres, D. M., Hall-Stoodley, L., Burmølle, M., Stewart, P.S., & Bjarnsholt, T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 20(10), 608-620. https://doi.org/10.1038/s41579-022-00767-0
Saxena, P., Joshi, Y., Rawat, K., & Bisht, R. (2018). Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian Journal of Microbiology, 59(1), 3–12. https://doi.org/10.1007/s12088-018-0757-6
Schilcher, K., & Horswill, A. R. (2020). Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84(3), 10-1128. https://doi.org/10.1128/mmbr.00026-19
Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 75(5), 955–962. https://doi.org/10.1007/s00253-007-0945-5
Seo, H. J., & Kang, S. S. (2020). Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control, 117, 107361. https://doi.org/10.1016/j.foodcont.2020.107361
Shamloo, E., Hosseini, H., Abdi Moghadam, Z., Halberg Larsen, M., Haslberger, A., & Alebouyeh, M. (2019). Importance of Listeria monocytogenes in food safety: a review of its prevalence, detection, and antibiotic resistance. Iranian Journal of Veterinary Research, 20(4), 241-254. https://doi.org/10.1128/mmbr.00026-19
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control, 8(1), 1-10. https://doi.org/10.1186/s13756-019-0533-3.
Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407–413. https://doi.org/10.1016/j.tifs.2009.01.054.
Simões, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 43(4), 573-583. https://doi.org/10.1016/j.lwt.2009.12.008
Singh, R., Ray, P., Das, A., & Sharma, M. (2010). Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Antimicrobial Chemotherapy, 65(9), 1955–1958. https://doi.org/10.1093/jac/dkq257
Song, Y., Sun, M., Feng, L., Liang, X., Song, X., Mu, G., Tuo, Y., Jiang, S., & Qian, F. (2020). Antibiofilm activity of Lactobacillus plantarum 12 exopolysaccharides against Shigella flexneri. Applied and Environmental Microbiology, 86(15), e00694-20. https://doi.org/10.1128/AEM.00694-20
Songca, S. P., & Adjei, Y. (2022). Applications of antimicrobial photodynamic therapy against bacterial biofilms. International Journal of Molecular Sciences, 23(6), 3209. https://doi.org/10.3390/ijms23063209
Speranza, B., & Corbo, M. R. (2017). The impact of biofilms on food spoilage. In Elsevier eBooks, pp. 259–282. https://doi.org/10.1016/b978-0-08-100502-6.00014-5.
Sullivan, G. J., Delgado, N. N., Maharjan, R., & Cain, A. K. (2020). How antibiotics work together: molecular mechanisms behind combination therapy. Current Opinion in Microbiology, 57, 31-40. https://doi.org/10.1016/j.mib.2020.05.012
Squires, R. (2018). Bacteriophage therapy for management of bacterial infections in veterinary practice: what was once old is new again. New Zealand Veterinary Journal, 66(5), 229–235. https://doi.org/10.1080/00480169.2018.1491348
Tang, L., Pillai, S., Revsbech, N. P., Schramm, A., Bischoff, C., & Meyer, R. L. (2010). Biofilm retention on surfaces with variable roughness and hydrophobicity. Biofouling, 27(1), 111–121. https://doi.org/10.1080/08927014.2010.544848
Tarannum, N., Hossain, T. J., Ali, F., Das, T., Dhar, K., & Nafiz, I. H. (2023). Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. LWT - Food Science and Technology, 186, 115263. https://doi.org/10.1016/j.lwt.2023.115263
Tian, F., Li, J., Nazir, A., & Tong, Y. (2021). Bacteriophage–a promising alternative measure for bacterial biofilm control. Infection and Drug Resistance, 14, 205-217. https://doi.org/10.2147/IDR.S290093
Topka-Bielecka, G., Dydecka, A., Necel, A., Bloch, S., Nejman-Faleńczyk, B., Węgrzyn, G., & Węgrzyn, A. (2021). Bacteriophage-derived depolymerases against bacterial biofilm. Antibiotics (Basel, Switzerland), 10(2), 175. https://doi.org/10.3390/antibiotics10020175
Toushik, S. H., Mizan, M. F. R., Hossain, M. I., & Ha, S. D. (2020). Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends in Food Science & Technology, 99, 413–425. https://doi.org/10.1016/j.tifs.2020.03.019
Upadhyay, A., Pal, D., & Kumar, A. (2023). Substantial relation between the bacterial biofilm and oncogenesis progression in host. Microbial Pathogenesis, 175, 105966. https://doi.org/10.1016/j.micpath.2022.105966
Valen, H., Scheie A. (2018). Biofilms and their properties. European Journal of Oral Sciences, 126, 13-18. https://doi.org/10.1111/eos.12425
Valentine, M. E., Kirby, B. D., Withers, T. R., Johnson, S. L., Long, T. E., Hao, Y., Lam, J. S., Niles, R. M., & Yu, H. D. (2019). Generation of a highly attenuated strain of Pseudomonas aeruginosa for commercial production of alginate. Microbial Biotechnology, 13(1), 162–175. https://doi.org/10.1111/1751-7915.13411
Van Hijum, S. a. F. T., Van Geel-Schutten, G. H., Rahaoui, H., Van Der Maarel, M. J. E. C., & Dijkhuizen, L. (2002). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Applied and Environmental Microbiology, 68(9), 4390–4398. https://doi.org/10.1128/aem.68.9.4390-4398.2002
Vankerckhoven, E., Verbessem, B., Crauwels, S., Declerck, P., Muylaert, K., Willems, K. A., & Rediers, H. (2011). Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system. Water Science & Technology, 64(6), 1247–1253. https://doi.org/10.2166/wst.2011.718
Vera-González, N., & Shukla, A. (2020). Advances in biomaterials for the prevention and disruption of Candida biofilms. Frontiers in Microbiology, 11, 538602. https://doi.org/10.3389/fmicb.2020.538602.
Verhoef, R., de Waard, P., Schols, H.A., Siika-aho, M., & Voragen, A.G., (2003). Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide. Carbohydrate Research, 338(18), 1851-1859. https://doi.org/10.1016/S0008-6215(03)00261-1
Vuotto, C., Longo, F., & Donelli, G., (2014). Probiotics to counteract biofilm-associated infections: promising and conflicting data. International Journal of Oral Science, 6(4), 189-194. https://doi.org/10.1038/ijos.2014.52
Wallis, J. K., Krömker, V., & Paduch, J. H. (2018). Biofilm formation and adhesion to bovine udder epithelium of potentially probiotic lactic acid bacteria. AIMS microbiology, 4(2), 209–224. https://doi.org/10.3934/microbiol.2018.2.209
Wang, S., Zhao, Y., Breslawec, A. P., Liang, T., Deng, Z., Kuperman, L. L., & Yu, Q. (2023). Strategy to combat biofilms: a focus on biofilm dispersal enzymes. Npj Biofilms and Microbiomes, 9(1), 63. https://doi.org/10.1038/s41522-023-00427-y
Wang, J., Lu, X., Wang, C., Yue, Y., Wei, B., Zhang, H., Wang, H.,& Chen, J. (2024). Research progress on the combination of quorum-sensing inhibitors and antibiotics against bacterial resistance. Molecules, 29(7), 1674. https://doi.org/10.3390/molecules29071674
Wang, H., Wang, H., Xing, T., Wu, N., Xu, X., & Zhou, G. (2016). Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. LWT - Food Science and Technology, 66, 298–304. https://doi.org/10.1016/j.lwt.2015.10.049.
Wang, Y., Sun, L., Hu, L., Wang, Z., Wang, X., & Dong, Q. (2022). Adhesion and kinetics of biofilm formation and related gene expression of Listeria monocytogenes in response to nutritional stress. Food Research International, 156, 111143. https://doi.org/10.1016/j.foodres.2022.111143
West, T.P. (2021). Synthesis of the microbial polysaccharide gellan from dairy and plant-based processing coproducts. Polysaccharides, 2(2), 234–244. https://doi.org/10.3390/polysaccharides2020016
Wu, J., Zhang, Y., Ye, L., & Wang, C. (2021). The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydrate Polymers, 253, 117308. https://doi.org/10.1016/j.carbpol.2020.117308
Xiu, A., Zhou, M., Zhu, B., Wang, S., & Zhang, J. (2011). Rheological properties of Salecan as a new source of thickening agent. Food Hydrocolloids, 25(7), 1719–1725. https://doi.org/10.1016/j.foodhyd.2011.03.013.
Yin, W., Wang, Y., Liu, L., & He, J. (2019b). Biofilms: the microbial “protective clothing” in extreme environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423
Yoshida, K., Tashiro, Y., May, T., & Okabe, S. (2015). Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling. Water Research, 76, 33–42. https://doi.org/10.1016/j.watres.2015.02.045
Yüksel, F. N., Buzrul, S., Akçelik, M., & Akçelik, N. (2018). Inhibition and eradication of Salmonella Typhimurium biofilm using P22 bacteriophage, EDTA and nisin. Biofouling, 34(9), 1046–1054. https://doi.org/10.1080/08927014.2018.1538412.
Zajšek, K., Kolar, M., & Goršek, A. (2011). Characterisation of the exopolysaccharide kefiran produced by lactic acid bacteria entrapped within natural kefir grains. International Journal of Dairy Technology, 64(4), 544–548. https://doi.org/10.1111/j.1471-0307.2011.00704.x
Zayed, A., Mansour, M. K., Sedeek, M. S., Habib, M. H., Ulber, R., & Farag, M. A. (2022). Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: Novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives. Critical Reviews in Biotechnology, 42(4), 597–617. https://doi.org/10.1080/07388551.2021.1942779
Zhao, A., Sun, J., & Liu, Y. (2023). Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13, 1-23. https://doi.org/10.3389/fcimb.2023.1137947
Zhao, M., Zhang, H., Xu, X., Li, S., & Xu, H. (2021). A strategy for the synthesis of low-molecular-weight welan gum by eliminating capsule form of Sphingomonas strains. International Journal of Biological Macromolecules, 178, 11–18. https://doi.org/10.1016/j.ijbiomac.2021.02.157
Zhu, T., Yang, C., Bao, X., Chen, F., & Guo, X. (2022). Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 5(4), 179-186. https://doi.org/10.1016/j.gaost.2022.06.003
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.