Antioxidative, Antimicrobial Activities and Fatty Acid Compositions of Four Agarics

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2257-2265.6972

Keywords:

Agarics, antioxidant, total phenols, antimicrobial activity, fatty acids, GC-MS

Abstract

The edible mushrooms are valued by people because they possess a large variety of secondary metabolites with diverse beneficial effects on human health. The Agaricales order is one of the largest taxon in fungal systematics represented by a number of edible species in Türkiye. This study aimed to evaluate the antioxidant and antimicrobial activities, as well as the fatty acid composition, of four Agarics (Agaricus bitorquis, Coprinopsis atramentaria, Coprinellus micaceus, and Leucoagaricus leucothites) collected from Nigde Province, Türkiye. The antioxidant capability was determined using DPPH assay and the total phenolic content was measured by Folin-Ciocalteu’s phenol reagent technique. Among the four species, A. bitorquis showed the highest DPPH radical scavenging activity (84.259±1.32%) and total phenolic content (1472.21±10.35µg GAE/mL). Gas chromatography-mass spectrometry (GC-MS) technique was performed for the analysis and characterization of the fatty acid compositions. Linoleic acid was the major fatty acid detected in all four species, with percentages ranging from 23.58% to 42.96%. The antimicrobial activity of the mushroom extracts was assessed using the disc diffusion method, and the ethanol extract of C. atramentaria showed the most significant effect on E. coli with a 29±0.6 mm inhibition zone diameter.

References

Akata, I., Ergönül, B., & Kalyoncu, F. (2012). Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. International Journal of Pharmacology, 8(2), 134-138. http://scialert.net/fulltext/?doi=ijp.2012.134.138&org=11

Akata, I., Zengin, G., Picot, C. M. N., & Mahomoodally, M. F. (2019). Enzyme inhibitory and antioxidant properties of six mushroom species from the Agaricaceae family. South African Journal of Botany, 120, 95–99. https://doi.org/10.1016/j.sajb.2018.01.008

Avcı, E., Avcı, G. A., & Kose, D. A. (2014). Determination of antioxidant and antimicrobial activities of medically important mushrooms using different solvents and chemical composition via GC/MS analyses. Journal of Food and Nutrition Research, 2(8), 429-434. https://doi.org/10.12691/jfnr-2-8-1

Aytar, E. C., Akata, I., & Acık, L. (2020). Antioxidant and antimicrobial activities of Armillaria mellea and Macrolepiota procera extracts. Mantar Dergisi, 11(2), 121-128.

Badalyan, S.M., Barkhudaryan, A., & Rapior, S. (2019). Recent progress in research on the pharmacological potential of mushrooms and prospects for their clinical application. Medicinal Mushrooms, 1-70. https://doi.org/10.1007/978-981-13-6382-5_1

Bal, C., Akgül, H., & Sevindik, M. (2019). The Antioxidant potential of ethanolic extract of edible mushroom Lycoperdon molle Pers. (Agaricomycetes). Eurasian Journal of Forest Science, 7(3), 277-283. https://doi.org/10.31195/ejejfs.591432

Barcelli, U. O., Miyata, J., Ito, Y., Gallon, L., Laskarzewski, P., Weiss, M., Hitzemann, R., & Pollak, V. E. (1986). Beneficial effects of polyunsaturated fatty acids in partially nephrectomized rats. Prostaglandins, 32(2), 211-219. https://doi.org/10.1016/0090-6980(86)90126-7

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0

Bonanome, A., & Grundy, S. M. (1988). Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. New England Journal of Medicine, 318(19), 1244-1248. https://doi.org/10.1056/NEJM198805123181905

Breitenbach, J., & Kränzlin, F. (1986). Fungi of Switzerland, vol. 2. Non-gilled fungi, Heterobasidiomycetes, Aphyllophorales, Gasteromycetes. Verlag Mykologia. Lucerna, Switzerland.

Calvo, A. M., Wilson, R. A., Bok, J. W., & Keller, N. P. (2002). Relationship between secondary metabolism and fungal development, Microbiology and Molecular Biology Reviews, 66(3). https://doi.org/10.1128/mmbr.66.3.447-459.2002

Canlı, K., Akata, I., Yetgin, A., Benek, A., & Altuner, E. M. (2020). In vitro antimicrobial activity screening of leucoagaricus leucothites and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(2), 1250-1257. https://doi.org/10.29130/dubited.642707

Canpolat, Ş., & İşlek, C. (2023). The effect of arbuscular mycorrhiza on physiological and biochemical parameters and capsaicinoid production in Capsicum annuum L.: A comparative study of extraction methods and solvents. Archives of Biological Sciences, 75(3), 327-339. https://doi.org/10.2298/ABS230601027C

Canpolat, Ş., Akata, I., İşlek, Y., Canpolat, E., & İşlek, C. (2021). Total Phenolics, Antioxidative and Antimicrobial Activities of Some Edible Ascomycota Collected from Niğde. Turkish Journal of Agriculture-Food Science and Technology, 9(10), 1915-1920. https://doi.org/10.24925/turjaf.v9i10.1915-1920.4642

Davies, S.C., Fowler, T., Watson, J., Livermore, D.M., & Walker, D. (2013). Annual report of the chief medical officer: infection and the rise of antimicrobial resistance, Lancet 381,1606–1609, https://doi.org/10.1016/S0140-6736(13)60604-2.

Dogan, H.H., Duman, R., Özkalp, B., & Aydin, S. (2013). Antimicrobial activities of some mushrooms in Turkey. Pharmaceutical Biology, 51(6), 707-711. https://doi.org/10.3109/13880209.2013.764327

Dubost, N.J., Ou, B., & Beelman, R.B. (2007). Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chemistry, 105(2), 727–735. https://doi.org/10.1016/j.foodchem.2007.01.030

Düşgün, C., Kankılıç, T., İşlek, C., Balı, D. F., & Kankılıç, Ö. (2021). Antioxidant and Cytotoxic Potential of Local Endemic Plant Pastinaca zozimoides Fenzl. Turkish Journal of Agriculture-Food Science and Technology, 9(4), 646-649. https://doi.org/10.24925/turjaf.v9i4.646-649.3715

Emsen, B., & Guven, B. (2020). Activities of two edible macrofungi, Coprinus comatus and Leucoagaricus leucothites in human lymphocytes: cytogenetic and biochemical study. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(3), 361-368. https://doi.org/10.1080/11263504.2019.1612479

Gan, C.H., Amira, N.B., & Asmah, R. (2013). Antioxidant analysis of different types of edible mushrooms (Agaricus bisporous and Agaricus brasiliensis). International Food Research Journal, 20(3), 1095–1102.

Gąsecka, M., Magdziak, Z., Siwulski, M., & Mleczek, M. (2018). Profile of phenolic and organic acids, antioxidant properties, and ergosterol content in cultivated and wild growing species of Agaricus. European Food Research and Technology, 244, 259-268. https://doi.org/10.1007/s00217-017-2952-9

Giusti, A., Ricci, E., Gasperetti, L., Galgani, M., Polidori, L., Verdigi, F., Narducci, R., & Armani, A. (2021). Molecular identification of mushroom species in Italy: An ongoing project aimed at reinforcing the control measures of an increasingly appreciated sustainable food. Sustainability, 13(1), 238(1-8). https://doi.org/10.3390/su13010238

Glamočlija, J., Stojković, D., Nikolić, M., Ćirić, A., Reis, F. S., Barros, L., Ferreira, I.C. F .R., & Soković, M. (2015). A comparative study on edible Agaricus mushrooms as functional foods. Food & function, 6(6), 1900-1910. https://doi.org/10.1039/C4FO01135J

Günç Ergönül, P., Akata, I., Kalyoncu, F., & Ergönül, B. (2013). Fatty acid compositions of six wild edible mushroom species. The Scientific World Journal, 2013, 1-4. https://doi.org/10.1155/2013/163964

Heleno, S. A., Barros, L., Martins, A., Queiroz, M. J. R., Santos-Buelga, C., & Ferreira, I. C. (2012). Phenolic, polysaccharidic, and lipidic fractions of mushrooms from Northeastern Portugal: chemical compounds with antioxidant properties. Journal of agricultural and food chemistry, 60(18), 4634-4640. https://doi.org/10.1021/jf300739m

Heleno, S.A., Ferreira, R.C., Antonio, A.L., Queiroz, M.J.R.P., Barros, L., & Ferreira, I.C.F.R (2015). Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Bioscience, 11, 48–55. https://doi.org/10.1016/j.fbio.2015.04.006

Hibbett, D., Abarenkov, K., Kõljalg, U., Öpik, M., Chai, B., Cole, J., & Geiser, D. M. (2016). Sequence-based classification and identification of Fungi. Mycologia, 108(6), 1049-1068. https://doi.org/10.3852/16-130

Kang, J. X., & Leaf, A. (1996). Antiarrhythmic effects of polyunsaturated fatty acids: recent studies. Circulation, 94(7), 1774-1780. https://doi.org/10.1161/01.CIR.94.7.1774

Kaya, M., Berktaş, S., Adanacıoğlu, N., & Çam, M. (2021). Determination of total phenolic content, antioxidant activity and eritadenine compound of wild mushrooms in Kayseri region and cultivated medicinal mushrooms. GIDA-Journal of Food, 46(2), 376-395. https://doi.org/10.15237/gida.GD21007

Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J., Ro, H.M., & Chung, I.M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem, 56(16):7265–7270. https://doi.org/10.1021/jf8008553

Larsson, D. G., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269. https://doi.org/10.1038/s41579-021-00649-x

Lindequist, U., Niedermeyer, T.H., & Jülich, W.D. (2005). The pharmacological potential of mushrooms. Evidence-based complementary and alternative medicine, 2(3), 285-299. https://doi.org/10.1093/ecam/neh107

López-Miranda, J., Pérez-Martínez, P., & Pérez-Jiménez, F. (2006). Health benefits of monounsaturated fatty acids. In Improving the fat content of foods, 71-106. https://doi.org/10.1533/9781845691073.1.71

Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., ... & Schoch, C. L. (2020). Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding?. IMA fungus, 11(1), 1-32. https://doi.org/10.1186/s43008-020-00033-z

MacGowan, A., & Macnaughton, E. (2017). Antibiotic resistance. Medicine, 45(10), 622–628. https://doi.org/10.1016/j.mpmed.2017.07.006

Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310

Mensink, R. P., Zock, P. L., Kester, A. D., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. The American Journal of Clinical Nutrition, 77(5), 1146-1155. https://doi.org/10.1093/ajcn/77.5.1146

Nilsson, R.H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., & Tedersoo L. (2019). Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 17(2), 95-109. https://doi.org/10.1038/s41579-018-0116-y

Özdal, M., Gülmez, Ö., Özdal, Ö. G., & Algur, Ö. F. (2019). Antibacterial and antioxidant activity of mycelial extracts of different Pleurotus species. Food and Health, 5(1), 12-18.

Palacios, I., Lozano, M., Moro, C., D’Arrigo, M., Rostagno, M.A., Martínez, J.A., García-Lafuente, A., & Guillamón, E. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128, 674–678. https://doi.org/10.1016/j.foodchem.2011.03.085

Pereira, E., Barros, L., Martins, A., & Ferreira, I. C. (2012). Towards chemical and nutritional inventory of Portuguese wild edible mushrooms in different habitats. Food Chemistry, 130(2), 394-403. https://doi.org/10.1016/j.foodchem.2011.07.057

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity, 2017, 1-13. https://doi.org/10.1155/2017/8416763

Redhead, S. A., Vilgalys, R., Moncalvo, J. M., Johnson, J., & Hopple Jr, J. S. (2001). Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon, 50(1), 203–241. https://doi.org/10.2307/1224525

Ribeiro, B., de Pinho, P. G., Andrade, P. B., Baptista, P., & Valentão, P. (2009). Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal, 93(1), 29-35. https://doi.org/10.1016/j.microc.2009.04.005

Rustan, A. C., & Drevon, C. A. (2001). Fatty acids: structures and properties. Encyclopedia of Life Sciences, 1-7. https://doi.org/10.1038/npg.els.0003894

Saridogan, B. G. O., Islek, C., Baba, H., Akata, I., & Sevindik, M. (2021). Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae). Fresenius Environmental Bulletin, 30(5), 5400-5404.

Salter, A. M. (2013). Dietary fatty acids and cardiovascular disease. Animal, 7, 163-171. https://doi.org/10.1017/S1751731111002023

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., ... & White, M. M. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the national academy of Sciences, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109

Selem, E., Alp, Y., Sensoy, S., Uzun, Y., Cavusoglu, S., Karatas, N., ... & Szopa, A. (2021). Biochemical and morphological characteristics of some macrofungi grown naturally. Journal of Fungi, 7(10), 851. https://doi.org/10.3390/jof7100851

Sevindik, M., & Bal, C. (2021). Antioxidant, antimicrobial, and antiproliferative activities of wild mushroom, Laeticutis cristata (Agaricomycetes), from Turkey. International Journal of Medicinal Mushrooms, 23(11), 85-90. https://doi.org/10.1615/IntJMedMushrooms.2021040415

Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), 945-948.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology, 299, 152-178, https://doi.org/10.1016/S0076-6879(99)99017-1

Species Fungorum, http://www.speciesfungorum.org/Names/Names.asp, 07 October 2022.

Taviano, M. F., Filocamo, A., Ragusa, S., Cacciola, F., Dugo, P., Mondello, L., ... & Miceli, N. (2018). Phenolic profile, antioxidant, and cytotoxic properties of polar extracts from leaves and flowers of Isatis tinctoria L.(Brassicaceae) growing in Sicily. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152(4), 795-803. https://doi.org/10.1080/11263504.2017.1338629

Tsai, S.Z., Tsai, H.L., & Mau, J.L. (2007). Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWTFood Science and Technology, 40, 1392–1402. https://doi.org/10.1016/j.lwt.2006.10.001

Wasser, S. P. (1977). New and rare species of Agaricaceae Cohn. family. Ukr Bot Zh.

White, T.J., Bruns, T., Lee, S.J.W.T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1): 315-322.

Williams, C. M. (2000). Dietary fatty acids and human health. In Annales de zootechnie (Vol. 49). EDP Sciences.

Yang, L., Yang, C., Chu, C., Wan, M., Xu, D., Pan, D., Xia. H., Wang, S.K., Shu, G., Chen, S., & Sun, G. (2022). Beneficial effects of monounsaturated fatty acid‐rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n‐6/n‐3 fatty acid ratio on the health of rats. Journal of the Science of Food and Agriculture, 102, 7172-7185. https://doi.org/10.1002/jsfa.12083

Yilmaz, N., Türkekul, I., Bulut, S., & Sahin, F. (2013). Fatty acid composition in ten mushroom species collected from Turkey's middle black sea region. Asian Journal of Chemistry, 25(3), 1216-1220.

Downloads

Published

12.12.2024

How to Cite

Canpolat, Şükrü, Yürümez Canpolat, E., İşlek, Y., Akata, I., & İşlek, C. (2024). Antioxidative, Antimicrobial Activities and Fatty Acid Compositions of Four Agarics . Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2257–2265. https://doi.org/10.24925/turjaf.v12is2.2257-2265.6972