Effects of Ultrasound Application on the Improvement of Probiotic Properties and Antioxidant Activity of Kluyveromyces marxianus, Saccharomyces cerevisiae var. boulardii and Saccharomyces cerevisiae

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2282-2291.7014

Keywords:

Ultrasound, Yeast, Probiotic Yeast, Antioxidan activity

Abstract

The objective of this study was to ascertain the impact of ultrasound application on the probiotic characteristics and antioxidant activity of yeasts. In this context, the pH changes, probiotic properties and antioxidant activities of K. marxianus (Km), S. boulardii (Sb) and S. cerevisiae (Sc) were determined by ultrasound application at different durations (5, 15, 30 and 60 minutes at 24 kHz). The lowest pH values were determined for cultures of Km (ultrasound non-applied K. marxianus), Sb-30 (30 min. ultrasound applied S. boulardii) and Sc-5 (5 min. ultrasound applied S. cerevisiae) as 4.48, 5.15 and 5.26, respectively. The hydrophobicity values of the yeast strains varied between 6% and 24%, increased with ultrasound application. Although S. boulardii had the highest tolerance to low pH and bile salts, the resistance of all yeast to low pH and bile salts decreased with ultrasound application. K. marxianus had the least survival under in vitro conditions, but ultrasound application increased survival of K. marxianus strains and slightly affected the survival rate of S. boulardii and S. cerevisiae. Increasing of duration time of ultrasound application resulted higher antioxidant activity and so the highest antioxidant activity was determined for Sb-60. Finally, ultrasound application could be used for the development of hydrophobicity and antioxidant properties of yeast cultures.

References

Al Daccache, M., Koubaa, M., Salameh, D., Maroun, R. G., Louka, N., & Vorobiev, E. (2020). Ultrasound-assisted fermentation for cider production from Lebanese apples. Ultrasonics Sonochemistry, 63, 104952. https://doi.org/10.1016/j.ultsonch.2019.104952

Argyri, A. A., Zoumpopoulou, G., Karatzas, K.-A. G., Tsakalidou, E., Nychas, G.-J. E., Panagou, E. Z., & Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33(2), 282-291. https://doi.org/10.1016/j.fm.2012.10.005

Bevilacqua, A., Racioppo, A., Sinigaglia, M., Speranza, B., Campaniello, D., & Corbo, M. R. (2019). A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food Microbiology, 78, 104-109. https://doi.org/10.1016/j.fm.2018.10.010

Borah, A. J., Agarwal, M., Goyal, A., & Moholkar, V. S. (2019). Physical insights of ultrasound-assisted ethanol production from composite feedstock of invasive weeds. Ultrasonics Sonochemistry, 51, 378-385. https://doi.org/10.1016/j.ultsonch.2018.07.046

García-Hernández, Y., Pérez-Sánchez, T., Boucourt, R., Balcázar, J. L., Nicoli, J. R., Moreira-Silva, J., . . . Albelo, N. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108, 125-132. https://doi.org/10.1016/j.rvsc.2016.08.009

Gholamhosseinpour, A., & Hashemi, S. M. B. (2019). Ultrasound pretreatment of fermented milk containing probiotic Lactobacillus plantarum AF1: Carbohydrate metabolism and antioxidant activity. Journal of Food Process Engineering, 42(1), e12930. https://doi.org/10.1111/jfpe.12930

Giordano, I., & Mauriello, G. (2023). Ultrasound Attenuation Improves Some Surface Properties of the Probiotic Strain Lacticaseibacillus casei ATCC 393. Microorganisms, 11(1), 142. https://doi.org/10.3390/microorganisms11010142

Goktas, H., Dertli, E., & Sagdic, O. (2021). Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. LWT, Food Science and Technology, 136, 110340. https://doi.org/10.1016/j.lwt.2020.110340

Goktas, H., Dikmen, H., Demirbas, F., Sagdic, O., & Dertli, E. (2021). Characterisation of probiotic properties of yeast strains isolated from kefir samples. International Journal of Dairy Technology, 74(4), 715-722. https://doi.org/10.1111/1471-0307.12802

Gotcheva, V., Hristozova, E., Hristozova, T., Guo, M., Roshkova, Z., & Angelov, A. (2002). Assessment of potential probiotic properties of lactic acid bacteria and yeast strains. Food Biotechnology, 16(3), 211-225. https://doi.org/10.1081/FBT-120016668

Greppi, A., Saubade, F., Botta, C., Humblot, C., Guyot, J.-P., & Cocolin, L. (2017). Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food. Food Microbiology, 62, 169-177. https://doi.org/10.1016/j.fm.2016.09.016

Gut, A. M., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2018). Salmonella infection–prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology, 164(11), 1327-1344. https://doi.org/10.1099/mic.0.000709

Gut, A. M., Vasiljevic, T., Yeager, T., & Donkor, O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods, 58, 56-66. https://doi.org/10.1016/j.jff.2019.04.046

Hashemi, S. M. B., & Gholamhosseinpour, A. (2020). Effect of ultrasonication treatment and fermentation by probiotic Lactobacillus plantarum strains on goat milk bioactivities. International Journal of Food Science & Technology, 55(6), 2642-2649. https://doi.org/10.1111/ijfs.14517

Holzapfel, W. H. (2006). Introduction to prebiotics and probiotics. Probiotics in food safety and human health, 10, 1-33.

Hotel, A. C. P., & Cordoba, A. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention, 5(1), 1-10. Available from: http://pc.ilele.hk/public/pdf/20190225/bd3689dfc2fd663bb36def1b672ce0a4.pdf

Kumura, H., Tanoue, Y., Tsukahara, M., Tanaka, T., & Shimazaki, K. (2004). Screening of dairy yeast strains for probiotic applications. Journal of Dairy Science, 87(12), 4050-4056. https://doi.org/10.3168/jds.S0022-0302(04)73546-8

Lanchun, S., Bochu, W., Zhiming, L., Chuanren, D., Chuanyun, D., & Sakanishi, A. (2003). The research into the influence of low-intensity ultrasonic on the growth of S. cerevisiaes. Colloids and Surfaces B: Biointerfaces, 30(1-2), 43-49. https://doi.org/10.1016/S0927-7765(03)00023-7

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., . . . Dupont, D. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J

Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410-417. https://doi.org/10.1016/j.ultsonch.2016.06.001

Racioppo, A., Corbo, M. R., Piccoli, C., Sinigaglia, M., Speranza, B., & Bevilacqua, A. (2017). Ultrasound attenuation of lactobacilli and bifidobacteria: Effect on some technological and probiotic properties. International Journal of Food Microbiology, 243, 78-83. https://doi.org/10.1016/j.ijfoodmicro.2016.12.011

Saber, A., Alipour, B., Faghfoori, Z., & Khosroushahi, A. Y. (2017a). Secretion metabolites of dairy Kluyveromyces marxianus AS41 isolated as probiotic, induces apoptosis in different human cancer cell lines and exhibit anti-pathogenic effects. Journal of Functional Foods, 34, 408-421. https://doi.org/10.1016/j.jff.2017.05.007

Saber, A., Alipour, B., Faghfoori, Z., & Khosroushahi, A. Y. (2017b). Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines. Nutrition Research, 41, 36-46. https://doi.org/10.1016/j.nutres.2017.04.001

Sadeghi, A., Ebrahimi, M., Shahryari, S., Kharazmi, M. S., & Jafari, S. M. (2022). Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2022.08.018

Speranza, B., Campaniello, D., Altieri, C., Sinigaglia, M., Bevilacqua, A., & Corbo, M. R. (2020). Ultrasonic Modulation of the Technological and Functional Properties of Yeast Strains. Microorganisms, 8(9), 1399. https://doi.org/10.3390/microorganisms8091399

Tomičić, Z. M., Čolović, R. R., Čabarkapa, I. S., Vukmirović, Đ. M., Đuragić, O. M., & Tomičić, R. M. (2016). Beneficial properties of probiotic yeast Saccharomyces boulardii. Food and Feed Research, 43(2), 103-110. https://doi.org/10.5937/FFR1602103T

Unban, K., Chaichana, W., Baipong, S., Abdullahi, A. D., Kanpiengjai, A., Shetty, K., & Khanongnuch, C. (2021). Probiotic and antioxidant properties of lactic acid bacteria isolated from indigenous fermented tea leaves (Miang) of north thailand and promising application in synbiotic formulation. Fermentation, 7(3), 195. https://doi.org/10.3390/fermentation7030195

Vinderola, C. G., & Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Research International, 36(9-10), 895-904. https://doi.org/10.1016/S0963-9969(03)00098-X

Yeo, S.-K., & Liong, M.-T. (2013). Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT-Food Science and Technology, 51(1), 289-295. https://doi.org/10.1016/j.lwt.2012.09.026

Downloads

Published

12.12.2024

How to Cite

Goktas, H., Turali, D., Agan, C., & Sagdic, O. (2024). Effects of Ultrasound Application on the Improvement of Probiotic Properties and Antioxidant Activity of Kluyveromyces marxianus, Saccharomyces cerevisiae var. boulardii and Saccharomyces cerevisiae. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2282–2291. https://doi.org/10.24925/turjaf.v12is2.2282-2291.7014