Investigation of the Physicochemical, Beneficial Microorganism, and Bioactive Properties of Colostrum Samples from Different Sheep and Goat Breeds: The Case of Burdur Province

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2338-2346.7111

Keywords:

Colostrum, Beneficial Microorganism, Antioxidant, ACE-Inhibitor, Akkaraman

Abstract

In this study, the colostrum samples from six Akkaraman sheep and five Honamlı goats, which are industrially and economically significant breeds widely raised in Burdur (Turkey), were analyzed for their physicochemical and bioactive properties on the 1st, 2nd, and 3rd days after birth, as well as mature milk samples on the 15th day. It was found that sheep colostrum contained higher levels of total protein, dry matter, and fat compared to goat colostrum (p<0.05). The beneficial microorganism content in the colostrum samples of both breeds was determined to be above 7 log CFU/mL during the first 3 days after birth. The levels of total aerobic mesophilic bacteria (TAMB) in the sheep and goat colostrum samples were 8.82-8.03 and 8.52-8.33 log CFU/mL, Bifidobacterium spp. were 8.41-8.12 and 8.15-7.97 log CFU/mL, and Lactobacillus acidophilus were 7.61-6.78 and 7.85-7.61 log CFU/mL, respectively. To measure antioxidant activity, the 2,2’-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation, and trolox equivalent antioxidant capacity (TEAC) methods were used. The highest ABTS and TEAC antioxidant values were found on the 1st day in the sheep and goat colostrum samples at 67.44 and 71.32, and 20.76 and 24.65, respectively (p<0.05). The highest ACE-inhibitory activity was observed on the 2nd day in sheep colostrum samples at 32.39%, and on the 3rd day in goat colostrum samples at 42.29%. In mature milk samples, a decrease in bioactive properties was observed compared to colostrum samples in both animals. This study showed that the high ACE-inhibitory and antioxidant activity in the colostrum samples of Honamlı goats indicated a good protective ability against the formation of peroxyl radicals. This study revealed the value of colostrum from different small ruminant species in terms of bioactive properties and beneficial microorganism content.

References

Albera, E., & Kankofer, M. (2009). Antioxidants in colostrum and milk of sows and cows. Reproduction in Domestic Animals, 44, 606–611. https://doi.org/10.1111/j.1439-0531.2007.01027.x

Artym, J., & Zimecki, M. (2005). Rola laktoferryny w prawidłowym rozwoju noworodka The role of lactoferrin in the proper development of newborns. Postępy Higieny i Medycyny Doświadczalnej, 59, 421–432.

Ashok, N. R., & Aparna, H. S. (2017). Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition. Food Chemistry, 228, 582–594. https://doi.org/10.1016/j.foodchem.2017.02.007

AOAC, (1990). “Official Methods of Analysis”. 15 th ed., Arlington, VA.

Bashahun, G. M., & Amina, A. (2017). Colibacillosis in Calves: A review of literature. Journal of Veterinary Medical Science, 2, 62–71. https://doi.org/10.31248/JASVM2017.041

Bersuder, P., Hole, M., & Smith, G. (1998). Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. Journal of the American Oil Chemists Society, 75(2), 181–187.

Biswas, P., Vecchi, A., Mantegani, P., Mantelli, B., Fortis, C., & Lazzarin, A. (2007). Immunomodulatory effects of bovine colostrum in human peripheral blood mononuclear cells. New Microbiologica, 30, 447–454.

Ceniti, C., Costanzo, N., Morittu, V. M., Tilocca, B., Roncada, P., & Britti, D. (2022). Review: Colostrum as an Emerging food: Nutraceutical Properties and Food Supplement. Food Reviews International, 39(7), 4636–4664. https://doi.org/10.1080/87559129.2022.2034165

Chakrabarti, S., Guha, S., & Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11), 1738. https://doi.org/10.3390/nu10111738

Chen, B., Tang, G., Guo, W., Lei, J., Yao, J., & Xu, X. (2021). Detection of the core bacteria in colostrum and their association with the rectal microbiota and with milk composition in two dairy cow farms. Animals (Basel), 11(12). https://doi.org/10.3390/ani11123363

Chung, H., Pamp, S. J., Hill, J. A., Surana, N. K., Edelman, S. M., & Troy, E. B. (2012). Gut ımmune maturation depends on colonization with a host-specific microbiota. Cell, 149, 1578–1593.

Cushman, D. W., & Cheung, H. S. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20(7), 1637–1648. https://doi.org/10.1016/0006-2952(71)90292-9

de Lima, T. C., de Sobral, G. G., de França Queiroz, A. E. S., Chinelate, G. C. B., Porto, T. S., Oliveira, J. T. C., & Carneiro, G. F. (2024). Characterization of lyophilized equine colostrum. Journal of Equine Veterinary Science, 132, 104975. https://doi.org/10.1016/j.jevs.2023.104975

Donahue, M., Godden, S., Bey, R., Wells, S., Oakes, J., Sreevatsan, S., ... & Fetrow, J. (2012). Heat treatment of colostrum on commercial dairy farms decreases colostrum microbial counts while maintaining colostrum immunoglobulin G concentrations. Journal of Dairy Science, 95, 2697–2702. https://doi.org/10.3168/jds.2011-5184

Donnet-Hughes, A., Perez, P. F., Doré, J., Leclerc, M., Levenez, F., Benyacoub, J., ... & Schiffrin, E. J. (2010). Potential role of the intestinal microbiota of the mother in neonatal immune education. Proceedings of the Nutrition Society, 69(4), 407–415. https://doi.org/10.1017/S0029665110001898

Duan, H., Sun, Q., Chen, C., Wang, R., Yan, W. (2024). A review: The effect of bovine colostrum on ımmunity in people of all ages. Nutrients, 16(13), 2007. https://doi.org/10.3390/nu16132007

Elmaz, Ö., Dağ, B., Saatcı, M., Aktaş, H. A., Mamak, N., & Gök, B. (2012). The determination of some morphological characteristics of Honamlı goat and kids, defined as a new indigenius goat breed of Turkey. Kafkas Universitesi Veteriner Fakültesi Dergisi, 18(3): 481–485. https://doi.org/10.9775/kvfd.2011.5767

Elmaz, Ö., Ağaoğlu, Ö. K., Akbaş, A. A., Saatçi, M., & Metin, M. Ö. (2018). The present conditions of sheep farms in Burdur province in the Mediterranean region of Turkey. 1st ınternational symposium on silvopastoral systems and nomadic societies in Mediterranean countries, ISNOS-MED, 37–41.

Erdem, H., Atasever, S. (2005). Yeni doğan buzağılarda kolostrumun önemi. Anadolu Tarım Bilimleri Dergisi, 20(2), 79-84.

Farnaud, S., & Evans, R. W. (2005). Lactoferrin: The conductor of the immunological system? In Lactoferrin: The conductor of the immunological system? Nova Science Publishers. https://kclpure.kcl.ac.uk/portal/en/publications/lactoferrin-the-conductor-of-the-immunological-system(d71622ca-a367-48b5-87a9-5dc981c89933)/export.html

Flint, H. J., & Bayer, E. A. (2008). Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Annals of the New York Academy of Sciences, 1125, 280–288. https://doi.org/10.1196/annals.1419.022

Fu, Y., Young, J. F., Rasmussen, M. K., Dalsgaard, T. K., Lametsch, R., Aluko, R. E., & Therkildsen, M. (2016). Angiotensin I–converting enzyme–inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Food Research International, 89, 373–381. https://doi.org/10.1016/j.foodres.2016.08.037

Godden, S. M., Smolenski, D. J., Donahue, M., Oakes, J. M., Bey, R., Wells, S., Sreevatsan, S., Stabel, J., & Fetrow, J. (2012). Heat-Treated colostrum and reduced morbidity in preweaned dairy calves: Results of a randomized trial and examination of mechanisms of effectiveness. Journal of Dairy Science, 95, 4029–4040. https://doi.org/10.3168/jds.2011-5275

Halkman A. K ., (2005). Gıda mikrobiyolojisi uygulamaları. Başak Matbaacılık, 358s.

Hamouda, R. H., Thannaa, K. H., & Nabih, A. M. (2010). Bacteriological and pathological studies on some aerobic and anaerobic bacteria causing diarrhoea in camel calves. Veterinary Medicine Journal Giza, 58, 177–197.

Hernández-Castellano, L. E., Almeida, A. M., Castro, N., & Argüello, A. (2014). The colostrum proteome, ruminant nutrition, and immunity. Current Protein & Peptide Science, 15(1), 64–74. https://doi.org/10.2174/138920371501140114103637

Hernández-Castellano, L. E., Almeida, A. M., Renaut, J., Argüello, A., Castro, N. (2016). A proteomics study of colostrum and milk from the two major small ruminant dairy breeds from the Canary Islands: A bovine milk comparison perspective. Journal of Dairy Research, 83(3), 366-374. https://doi.org/10.1017/S0022029916000273

IDF, (1987). Determination of total solids content. IDF Standard 21B. Brussels, Belgium: International Dairy.

İlktaç, H. Y., Aktaç, Ş., Güldemir, H. H., Semerci, S. Y., Batırel, S., & Garipağaoğlu, M. (2023). Kolostrum ve olgun anne sütünün makro besin ögesi bileşimini etkileyen maternal faktörler. Beslenme ve Diyet Dergisi, 51(1), 9–17. https://doi.org/10.33076/2023.BDD.1726

International Dairy Federation (IDF). (1987). Determination of total solids content (IDF Standard 21B).

Jami, E., Israel, A., Kotser, A., & Mizrahi, I. (2013). Exploring the Bovine Rumen Bacterial Community from Birth to Adulthood. ISME Journal, 7, 1069–1079. https://doi.org/10.1038/ismej.2013.2

Jitpakdee, J., Kantachote, D., Kanzaki, H., & Nitoda, T. (2021). Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production: Lower cholesterol with more beneficial compounds. LWT - Food Science and Technology, 135, Article 110061. https://doi.org/10.1016/j.lwt.2020.110061

Kalyan, S., Meena, S., Kapila, S., Yadav, R., & Deshwal, G. K. (2021). In vitro assessment of antioxidative potential of goat milk, casein and its hydrolysates: Comparison of goat milk with bovine and buffalo milk. Research Square, 1–19. https://doi.org/10.21203/rs.3.rs-546200/v1

Karlıdağ, M. (2020). Kolostrum: farmakolojik, nutrasötikal ve fonksiyonel özellikleri. Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi

Kashyap, R., Narayan, K. S., & Vij, S. (2022). Identification of antibacterial and immunomodulatory bioactive peptides generated from buffalo (Bubalus bubalis) colostrum whey fermented by Lactobacillus rhamnosus C25: LC-MS/MS-based analysis. Journal of Functional Foods, 95, 105158. https://doi.org/10.1016/j.jff.2022.105158

Kessler, E. C., Bruckmaier, R. M., Gross, J. J. (2021). Comparative estimation of colostrum quality by Brix refractometry in bovine, caprine, and ovine colostrum. Journal of Dairy Science, 104(2), 2438–2444. https://doi.org/10.3168/jds.2020-19020

Korhonen, H., & Pihlanto, A. (2007). Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Current Pharmaceutical Design, 13(8), 829–843. https://doi.org/10.2174/138161207780363112

Korhonen, H. J. (2010). Health-promoting proteins and peptides in colostrum and whey. Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, 1,151–168. https://doi.org/10.1002/9780813811048.ch11

Kumar, H., Kumar, S., Kumar, K. (2017). Chemical and immunological quality of sheep colostrum: effect of breed. Human Health and Nutrition, 67, 48–53.

Lopez, A. J., & Heinrichs, A. J. (2022). Invited review: The importance of colostrum in the newborn dairy calf. Journal of Dairy Science, 105(4), 2733–2749. https://doi.org/10.3168/jds.2020-20114

Malmuthuge, N., Griebel, P. J., & Guan, L. L. (2015). The gut microbiome and ıts potential role in the development and function of newborn calf gastrointestinal tract. Frontiers in Veterinary Science, 2, 36. https://doi.org/10.3389/fvets.2015.00036

Martini, M., Altomonte, I., Salari, F. (2012). The lipid component of Massese ewes’ colostrum: Morphometric characteristics of milk fat globules and fatty acid profile. International Dairy Journal, 24(2), 93–96. https://doi.org/10.1016/j.idairyj.2011.07.006

McGrath, B. A., Fox, P. F., McSweeney, P. L., & Kelly, A. L. (2016). Composition and properties of bovine colostrum: a review. Dairy Science & Technology, 96, 133–158. https://doi.org/10.1007/s13594-015-0258-x

Meira, S. M. M., Daroit, D. J., Helfer, V. E., Correa, A. F. P., Segalin, J., Carro, S., & Brandelli, A. (2012). Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Research International, 48, 322–329. https://doi.org/10.1016/j.foodres.2012.05.011

Minato, H., Otsuka, M., Shirasaka, S., Itabashi, H., & Mitsumori, M. (1992). Colonization of microorganisms in the rumen of young calves. Journal of General and Applied Microbiology, 38, 447–456. https://doi.org/10.2323/jgam.38.447

Minda, H., Kovács, A., Funke, S., Szász, M., Burus, I., Molnár, S., ... & Decsi, T. (2004). Changes of fatty acid composition of human milk during the first month of lactation: a day-to-day approach in the first week. Annals of Nutrition and Metabolism, 48(3), 202–209. https://doi.org/10.1159/000079821

Miranda, C., Igrejas, G., & Poeta, P. (2023). Bovine colostrum: Human and animal health benefits or route of transmission of antibiotic resistance-One Health perspective. Antibiotics, 12(7), Article 156. https://doi.org/10.3390/antibiotics12071156

Munir, M., Nadeem, M., Mahmood Qureshi, T., Gamlath, C. J., Martin, G. J. O., Hemar, Y., & Ashokkumar, M. (2020). Effect of sonication, microwaves, and high-pressure processing on ACE-inhibitory activity and antioxidant potential of Cheddar cheese during ripening. Ultrasonics Sonochemistry, 67, 105–140. https://doi.org/10.1016/j.ultsonch.2020.105140

Oussaief, O., Jrad, Z., Adt, I., Dbara, M., Khorchani, T., & El-Hatmi, H. (2020). Antioxidant activities of enzymatic-hydrolysed proteins of dromedary (Camelus dromedarius) colostrum. International Journal of Dairy Technology, 73, 333–340. https://doi.org/10.1111/1471-0307.12709

Ovet, C. (2023). Colostrum induced passive immune transfer in lambs. Journal of Istanbul Veterinary Sciences, 7(2), 80–88. https://doi.org/10.30704/http-www-jivs-net.1335313

Öner, Z., & Aloğlu, H. Ş (2018). Süt ve Süt Ürünleri Analiz Yöntemleri. Sidas Medya Ltd. Şti., Çankaya, İzmir.

Park, Y. W., Juárez, M., Ramos, M., Haenlein, G. (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research, 68(1-2), 88–113. https://doi.org /10.1016/j.smallrumres.2006.09.013

Polidori, P., Rapaccetti, R., Klimanova, Y., Zhang, J. J., Santini, G., & Vincenzetti, S. (2022). Nutritional parameters in colostrum of different mammalian species. Beverages, 8(3), 54. https://doi.org/10.3390/beverages8030054

Puppel, K., Gołębiewski, M., Grodkowski, G., Solarczyk, P., Kostusiak, P., Klopčič, M., & Sakowski, T. (2020). Use of somatic cell count as an indicator of colostrum quality. Plos One, 15(8), e0237615. https://doi.org/10.1371/journal.pone.0237615

Puppel, K., Gołębiewski, M., Konopka, K., Kunowska-Słósarz, M., Słósarz, J., Grodkowski, G., … & Sakowski, T. (2020). Relationship between the quality of colostrum and the formation of microflora in the digestive tract of calves. Animals, 10(8), 1293. https://doi.org/10.3390/ani10081293

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radical Biology and Medicine, 26(9), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rohit, A. C., Sathisha, K., & Aparna, H. S. (2012). A variant peptide of buffalo colostrum β-lactoglobulin inhibits angiotensin I-converting enzyme activity. European Journal of Medicinal Chemistry, 53, 211–219. https://doi.org/10.1016/j.ejmech.2012.03.057

Romero, T., Beltrán, M. C., Rodríguez, M., De Olives, A. M., & Molina, M. P. (2013). Goat colostrum quality: Litter size and lactation number effects. Journal of Dairy Science, 96(12), 7526–7531. https://doi.org/10.3168/jds.2013-6900

Roy, D. (2001). Media for the isolation and enumeration of bifidobacteria in dairy products. International Journal of Food Microbiology, 69(3), 167–182. https://doi.org/10.1016/S0168-1605(01)00496-2

Sadat, L., Çakir-Kiefer, C., N’Negue, M. A., Gaillard, J. L., Girardet, J. M., & Miclo, L. (2011). Isolation and identification of antioxidant peptides from bovine α-lactalbumin. International Dairy Journal, 21(4), 214–221. https://doi.org/10.1016/j.idairyj.2010.11.011

Sánchez-Macías, D., Moreno-Indias, I., Castro, N., Morales-delaNuez, A., Argüello, A. (2014). From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. Journal of Dairy Science, 97(1), 10–16. https://doi.org/10.3168/jds.2013-6811

Sharma, S., Singh, R., & Rana, S. (2011). Bioactive peptides: A review. International Journal of Bioautomation, 15, 223–250.

Silva, J. A. G., Silveira, M. D. M., Leão, P. V. T., Cunha, J. V. T. D., Dias, M. B. D. C., Lima, M. S. D., Silva, M. A. P. D. (2022). Chemical profile colostrum, quality refrigerated and frozen milk of santa inês sheep. Ciência Rural, 52(8), e20200986. https://doi.org/10.1590/0103-8478cr20200986

Sousa, Y. R., Medeiros, L. B., Pintado, M. M. E., & Queiroga, R. C. (2019). Goat milk oligosaccharides: Composition, analytical methods and bioactive and nutritional properties. Trends in Food Science & Technology, 92, 152–161. https://doi.org/10.1016/j.tifs.2019.07.052

Suo, C., Yin, Y., Wang, X., Lou, X., Song, D., Wang, X., & Gu, Q. (2012). Effects of Lactobacillus plantarum ZJ316 on Pig Growth and Pork Quality. BMC Veterinary Research, 8, 89.

Tekinşen, O.C. Nizamlıoğlu M. 2001. Süt Kimya, Selçuk Üniversitesi Veteriner Fakültesi, Birinci baskı, Selçuk Üniversitesi Vakfı Yayınları, 18–19–128– 129.

Turkish Standards Institution. (1978). Peynirde yağ miktarı tayini (Van Gulik Metodu). Turkish Standards Institution.

Westhoff, T. A., Borchardt, S., Mann, S. (2024). Nutritional and management factors that influence colostrum production and composition in dairy cows. Journal of Dairy Science. 107(7), 4109–4128. https://doi.org/10.3168/jds.2023-24349

Van, H. I., Goossens, K., Vandaele, L., & Opsomer, G. (2020). Invited review: MicroRNAs in bovine colostrum-focus on their origin and potential health benefits for the calf. Journal of Dairy Science, 103(1), 1–15. https://doi.org/10.3168/jds.2019-16959

Yalçıntaş, Y. M., Duman, H., Rocha, J. M., Bartkiene, E., Karav, S., & Ozoğul, F. (2024). Role of bovine colostrum against various diseases. Food Bioscience, 61(104818), 1–13. https://doi.org/10.1016/j.fbio.2024.104818

Yang, X., Chen, J., & Zhang, F. (2009). Research on the chemical composition of Saanen goat colostrum. International Journal of Dairy Technology, 62(4), 500–504. https://doi.org/10.1111/j.1471-0307.2009.00515.x

Yasir, M., Al-Zahrani, I. A., Khan, R., Soliman, S. A., Turkistani, S. A., Alawi, M., & Azhar, E. I. (2024). Microbiological risk assessment and resistome analysis from shotgun metagenomics of bovine colostrum microbiome. Saudi Journal of Biological Sciences, 31(4), 103957. https://doi.org/10.1016/j.sjbs.2024.103957

Zarcula, S., Cernescu, H., Mircu, C., Tulcan, C., Morvay, A., Baul, S., & Popovici, D. (2010). Influence of breed, parity and food intake on chemical composition of first colostrum in cow. Scientific Papers Animal Science and Biotechnologies, 43(1), 154–154.

Zhang, L. J., Sen, G. L., Ward, N. L., Johnston, A., Chun, K., Chen, Y., & Gallo, R. L. (2016). Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity, 45(1), 119–130. https://doi.org/10.1016/j.immuni.2016.06.021

Downloads

Published

12.12.2024

How to Cite

Ertürkmen, P., Atçalı, T., & Uğur Geçer, E. (2024). Investigation of the Physicochemical, Beneficial Microorganism, and Bioactive Properties of Colostrum Samples from Different Sheep and Goat Breeds: The Case of Burdur Province. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2338–2346. https://doi.org/10.24925/turjaf.v12is2.2338-2346.7111