The Phenolic Content and Antioxidant Capacity of Pumpkin, Rosehip and Pomegranate Seeds

Authors

DOI:

https://doi.org/10.24925/turjaf.v12is2.2347-2354.7145

Keywords:

Food waste seeds, Phenolic compounds, Bioactive components, HPLC-PDA

Abstract

Food waste is a significant problem worldwide. These food wastes, often discarded without any preliminary processing, can be rich in bioactive substances. In this study, the aim was to identify the phenolic compounds in pumpkin, rosehip and pomegranate seeds, which are frequently consumed in winter. For this purpose, ultrasonically assisted methanolic extracts were prepared from seeds separated from other waste parts (such as shells, stems, and leaves). The results indicated that pomegranate seeds had the highest total phenolic content, with 45.6±3.1 mg GAE/g sample (P<0.05). Similarly, pomegranate seeds also showed the highest total antioxidant capacity in both CUPRAC (114.7±2.6 mg torolox/g sample) and DPPH (71.2±3.8 mg torolox/g sample) analyses (P<0.05). In phenolic profiling analysis using HPLC-PDA, syringic acid was the most abundant compound in pumpkin seeds, (-)-catechin in rosehip seeds, and punicalagin derivatives in pomegranate seeds.

References

Ahmed, I. A. M., Özcan, M. M., Uslu, N., Mohammed, B. M., & Albakry, Z. (2024). The effect of sprouting and roasting on bioactive compounds, phenolic and fatty acid profiles and some element contents of pumpkin seeds. Journal of Food Measurement and Characterization, 18(1), 464–473. https://doi.org/10.1007/s11694-023-02195-x

Akomolafe, S. F. (2021). Effects of roasting on the phenolic phytochemicals and antioxidant activities of pumpkin seed. Vegetos, 34(3), 505–514. https://doi.org/10.1007/s42535-021-00226-w

Akomolafe, S. F., Oboh, G., Oyeleye, S., Molehin, O., & Ogunsuyi, O. (2016). Phenolic Composition and Inhibitory Ability of Methanolic Extract from Pumpkin (Cucurbita pepo L) Seeds on Fe-induced Thiobarbituric acid reactive species in Albino Rat’s Testicular Tissue In-Vitro. Journal of Applied Pharmaceutical Science, 115–120. https://doi.org/10.7324/JAPS.2016.60917

Alexandre, E. M. C., Silva, S., Santos, S. A. O., Silvestre, A. J. D., Duarte, M. F., Saraiva, J. A., & Pintado, M. (2019). Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Research International, 115, 167–176. https://doi.org/10.1016/j.foodres.2018.08.044

Alsataf, S., Başyiğit, B., & Karaaslan, M. (2021). Multivariate Analyses of the Antioxidant, Antidiabetic, Antimicrobial Activity of Pomegranate Tissues with Respect to Pomegranate Juice. Waste and Biomass Valorization, 12(11), 5909–5921. https://doi.org/10.1007/s12649-021-01427-9

Ambigaipalan, P., de Camargo, A. C., & Shahidi, F. (2017). Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chemistry, 221, 1883–1894. https://doi.org/10.1016/j.foodchem.2016.10.058

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x

Ayati, Z., Amiri, M. S., Ramezani, M., Delshad, E., Sahebkar, A., & Emami, S. A. (2019). Phytochemistry, Traditional Uses and Pharmacological Profile of Rose Hip: A Review. Current Pharmaceutical Design, 24(35), 4101–4124. https://doi.org/10.2174/1381612824666181010151849

Babbar, N., Oberoi, H. S., & Sandhu, S. K. (2015). Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues. Critical Reviews in Food Science and Nutrition, 55(3), 319–337. https://doi.org/10.1080/10408398.2011.653734

Bakir, S., Hall, R. D., de Vos, R. C. H., Mumm, R., Kadakal, Ç., & Capanoglu, E. (2023). Effect of drying treatments on the global metabolome and health-related compounds in tomatoes. Food Chemistry, 403, 134123. https://doi.org/10.1016/j.foodchem.2022.134123

Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047

Campos, L., Seixas, L., Henriques, M. H. F., Peres, A. M., & Veloso, A. C. A. (2022). Pomegranate Peels and Seeds as a Source of Phenolic Compounds: Effect of Cultivar, By-Product, and Extraction Solvent. International Journal of Food Science, 2022, 1–11. https://doi.org/10.1155/2022/9189575

Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., & de Vos, R. (2008). Changes in Antioxidant and Metabolite Profiles during Production of Tomato Paste. Journal of Agricultural and Food Chemistry, 56(3), 964–973. https://doi.org/10.1021/jf072990e

Chrubasik, C., Roufogalis, B., Müller‐Ladner, U., & Chrubasik, S. (2007). Systematic review on the Rosa canina effect and efficacy profiles. Focus on Alternative and Complementary Therapies, 12(s1), 14–14. https://doi.org/10.1111/j.2042-7166.2007.tb05861.x

Demir, N., Yildiz, O., Alpaslan, M., & Hayaloglu, A. A. (2014). Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Türkiye. LWT - Food Science and Technology, 57(1), 126–133. https://doi.org/10.1016/j.lwt.2013.12.038

Deng, G.-F., Shen, C., Xu, X.-R., Kuang, R.-D., Guo, Y.-J., Zeng, L.-S., Gao, L.-L., Lin, X., Xie, J.-F., Xia, E.-Q., Li, S., Wu, S., Chen, F., Ling, W.-H., & Li, H.-B. (2012). Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. International Journal of Molecular Sciences, 13(7), 8308–8323. https://doi.org/10.3390/ijms13078308

Derakhshan, Z., Ferrante, M., Tadi, M., Ansari, F., Heydari, A., Hosseini, M. S., Conti, G. O., & Sadrabad, E. K. (2018). Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food and Chemical Toxicology, 114, 108–111. https://doi.org/10.1016/j.fct.2018.02.023

Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014. https://doi.org/10.1021/jf0115589

Eikani, M. H., Golmohammad, F., & Homami, S. S. (2012). Extraction of pomegranate (Punica granatum L.) seed oil using superheated hexane. Food and Bioproducts Processing, 90(1), 32–36. https://doi.org/10.1016/j.fbp.2011.01.002

Elmastaş, M., Demir, A., Genç, N., Dölek, Ü., & Güneş, M. (2017). Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chemistry, 235, 154–159. https://doi.org/10.1016/j.foodchem.2017.05.004

Falcinelli, B., Marconi, O., Maranghi, S., Lutts, S., Rosati, A., Famiani, F., & Benincasa, P. (2017). Effect of Genotype on the Sprouting of Pomegranate (Punica granatum L.) Seeds as a Source of Phenolic Compounds from Juice Industry by-Products. Plant Foods for Human Nutrition, 72(4), 432–438. https://doi.org/10.1007/s11130-017-0645-y

FAO. (2024). Crops and livestock products. Https://Www.Fao.Org/Faostat/En/#data/QCL.

Fourati, M., Smaoui, S., Hlima, H. Ben, Elhadef, K., Braïek, O. Ben, Ennouri, K., Mtibaa, A. C., & Mellouli, L. (2020). Bioactive Compounds and Pharmacological Potential of Pomegranate (Punica granatum) Seeds - A Review. Plant Foods for Human Nutrition, 75(4), 477–486. https://doi.org/10.1007/s11130-020-00863-7

Gavarić, A., Pastor, K., Nastić, N., Vidović, S., Živanović, N., Simin, N., Duarte, A. R. C., & Vladić, J. (2023). Recovery of Polyphenols from Rosehip Seed Waste Using Natural Deep Eutectic Solvents and Ultrasonic Waves Simultaneously. Foods, 12(19), 3655. https://doi.org/10.3390/foods12193655

Guimarães, R., Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Studies on Chemical Constituents and Bioactivity of Rosa micrantha: An Alternative Antioxidants Source for Food, Pharmaceutical, or Cosmetic Applications. Journal of Agricultural and Food Chemistry, 58(10), 6277–6284. https://doi.org/10.1021/jf101394w

Hussain, A., Kausar, T., Din, A., Murtaza, M. A., Jamil, M. A., Noreen, S., Rehman, H. ur, Shabbir, H., & Ramzan, M. A. (2021). Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). Journal of Food Processing and Preservation, 45(6). https://doi.org/10.1111/jfpp.15542

Hussain, A., Kausar, T., Sehar, S., Sarwar, A., Ashraf, A. H., Jamil, M. A., Noreen, S., Rafique, A., Iftikhar, K., Quddoos, M. Y., Aslam, J., & Majeed, M. A. (2022). A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chemistry Advances, 1, 100067. https://doi.org/10.1016/j.focha.2022.100067

Ilyasoğlu, H. (2014). Characterization of Rosehip (Rosa canina L.) Seed and Seed Oil. International Journal of Food Properties, 17(7), 1591–1598. https://doi.org/10.1080/10942912.2013.777075

Kalamara, E., Goula, A. M., & Adamopoulos, K. G. (2015). An integrated process for utilization of pomegranate wastes — Seeds. Innovative Food Science & Emerging Technologies, 27, 144–153. https://doi.org/10.1016/j.ifset.2014.12.001

Kalaycıoğlu, Z., & Erim, F. B. (2017). Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496–507. https://doi.org/10.1016/j.foodchem.2016.10.084

Karaś, M., Szymanowska, U., Borecka, M., Jakubczyk, A., & Kowalczyk, D. (2024). Antioxidant Properties of Wafers with Added Pumpkin Seed Flour Subjected to In Vitro Digestion. Applied Sciences, 14(12), 5129. https://doi.org/10.3390/app14125129

Ko, K., Dadmohammadi, Y., & Abbaspourrad, A. (2021). Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. Foods, 10(3), 657. https://doi.org/10.3390/foods10030657

Krimer-Malešević, V. (2020). Pumpkin Seeds. In Nuts and Seeds in Health and Disease Prevention (pp. 533–542). Elsevier. https://doi.org/10.1016/B978-0-12-818553-7.00037-1

Kumaran, A., & Karunakaran, R. J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109–114. https://doi.org/10.1016/j.foodchem.2005.03.032

Lemus-Mondaca, R., Marin, J., Rivas, J., Sanhueza, L., Soto, Y., Vera, N., & Puente-Díaz, L. (2019). Pumpkin seeds (Cucurbita maxima). A review of functional attributes and by-products. Revista Chilena de Nutrición, 46(6), 783–791. https://doi.org/10.4067/S0717-75182019000600783

Macit, M., Aras, A., Capanoglu Güven, E., & Bakir, S. (2023). Investigating the Content and Bioaccessibility of Phenolic Compounds In Roots of Rosa canina L. and Rosa pimpinellifolia L. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 33(2), 163–173. https://doi.org/10.29133/yyutbd.1231881

Medveckienė, B., Kulaitienė, J., Jarienė, E., Vaitkevičienė, N., & Hallman, E. (2020). Carotenoids, Polyphenols, and Ascorbic Acid in Organic Rosehips (Rosa spp.) Cultivated in Lithuania. Applied Sciences, 10(15), 5337. https://doi.org/10.3390/app10155337

Mohagheghi, M., Rezaei, K., Labbafi, M., & Ebrahimzadeh Mousavi, S. M. (2011). Pomegranate seed oil as a functional ingredient in beverages. European Journal of Lipid Science and Technology, 113(6), 730–736. https://doi.org/10.1002/ejlt.201000334

Nawirska-Olszańska, A., Kita, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2013). Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1–4), 155–161. https://doi.org/10.1016/j.foodchem.2013.02.009

Nieto, G., Martínez-Zamora, L., Peñalver, R., Marín-Iniesta, F., Taboada-Rodríguez, A., López-Gómez, A., & Martínez-Hernández, G. B. (2023). Applications of Plant Bioactive Compounds as Replacers of Synthetic Additives in the Food Industry. Foods, 13(1), 47. https://doi.org/10.3390/foods13010047

Ozyurt, D., Demirata, B., Apak, R., Hamilton, J. F., Lewis, A. C., & Ozel, M. Z. (2016). GC⨯ GC-TOF/MS Chromatographic Analysis, Antioxidant Capacity and Phenolic Content of Rosa Canina L. at Different Maturities. Records of Natural Products, 10(4).

Park, H. M., Moon, E., Kim, A., Kim, M. H., Lee, S., Lee, J. B., Park, Y. K., Jung, H., Kim, Y., & Kim, S. Y. (2010). Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation. International Journal of Dermatology, 49(3), 276–282. https://doi.org/10.1111/j.1365-4632.2009.04269.x

Passafiume, R., Perrone, A., Sortino, G., Gianguzzi, G., Saletta, F., Gentile, C., & Farina, V. (2019). Chemical–physical characteristics, polyphenolic content and total antioxidant activity of three Italian-grown pomegranate cultivars. NFS Journal, 16, 9–14. https://doi.org/10.1016/j.nfs.2019.06.001

Peng, M., Lu, D., Liu, J., Jiang, B., & Chen, J. (2021). Effect of Roasting on the Antioxidant Activity, Phenolic Composition, and Nutritional Quality of Pumpkin (Cucurbita pepo L.) Seeds. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.647354

Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2012). Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37(1), 82–87. https://doi.org/10.1016/j.indcrop.2011.12.004

Sabraoui, T., Khider, T., Nasser, B., Eddoha, R., Moujahid, A., Benbachir, M., & Essamadi, A. (2020). Determination of Punicalagins Content, Metal Chelating, and Antioxidant Properties of Edible Pomegranate (Punica granatum L ) Peels and Seeds Grown in Morocco. International Journal of Food Science, 2020, 1–8. https://doi.org/10.1155/2020/8885889

Shashni, S., & Sharma, S. (2022). Antioxidant activities of dried wild rosehips (Rosa moschata) of Kullu Valley, Northwestern Indian Himalaya. Indian Journal of Natural Products and Resources. https://doi.org/10.56042/ijnpr.v13i3.52195

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent (pp. 152–178). https://doi.org/10.1016/S0076-6879(99)99017-1

Smaoui, S., Hlima, H. Ben, Mtibaa, A. C., Fourati, M., Sellem, I., Elhadef, K., Ennouri, K., & Mellouli, L. (2019). Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Science, 158, 107914. https://doi.org/10.1016/j.meatsci.2019.107914

Tarım ve Orman Bakanlığı. (2022a). Kuşburnu Fizibilite Raporu ve Yatırımcı Rehberi. Https://Www.Tarimorman.Gov.Tr/BUGEM/Belgeler/YATIRIMCI%20REHBER%C4%B0/KUSBURNU%20F%C4%B0Z%C4%B0B%C4%B0L%C4%B0TE%20RAPORU.Pdf .

Tarım ve Orman Bakanlığı. (2022b). Nar Yetiştiriciliği . Https://Arastirma.Tarimorman.Gov.Tr/Alata/Belgeler/Brosurler/Brosur2022/NarYeti%C5%9Ftiricili%C4%9Fi-NesrinKARATA%C5%9E.Pdf.

Tumbas, V. T., Čanadanović-Brunet, J. M., Gille, L., Đilas, S. M., & Ćetković, G. S. (2012). Characterization of the free Radical Scavenging Activity of Rose Hip ( Rosa canina L.) Extract. International Journal of Food Properties, 15(1), 188–201. https://doi.org/10.1080/10942911003754742

Tylewicz, U., Nowacka, M., Martín-García, B., Wiktor, A., & Gómez Caravaca, A. M. (2018). Target sources of polyphenols in different food products and their processing by-products. In Polyphenols: Properties, Recovery, and Applications (pp. 135–175). Elsevier. https://doi.org/10.1016/B978-0-12-813572-3.00005-1

Ünlü, A., Arslan, Z. F., ARSLAN, R., & CEYLAN, F. (2023). Ülkesel ve Bölgesel Ölçekte Türkiye’nin Bitkisel Atık Miktarları. Düzce Üniversitesi Ziraat Fakültesi Dergisi, 1(1), 26–37.

Vilas-Boas, A. A., Pintado, M., & Oliveira, A. L. S. (2021). Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns. Foods, 10(7), 1564. https://doi.org/10.3390/foods10071564

Viuda‐Martos, M., Fernández‐López, J., & Pérez‐Álvarez, J. A. (2010). Pomegranate and its Many Functional Components as Related to Human Health: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(6), 635–654. https://doi.org/10.1111/j.1541-4337.2010.00131.x

Vodnar, D. C., Călinoiu, L. F., Dulf, F. V., Ştefănescu, B. E., Crişan, G., & Socaciu, C. (2017). Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231, 131–140. https://doi.org/10.1016/j.foodchem.2017.03.131

Wongnarat, C., & Srihanam, P. (2017). Phytochemical and Antioxidant Activity in Seeds and Pulp of Grape Cultivated in Thailand. Oriental Journal of Chemistry, 33(1), 113–121. https://doi.org/10.13005/ojc/330112

Downloads

Published

12.12.2024

How to Cite

Bakır, S. (2024). The Phenolic Content and Antioxidant Capacity of Pumpkin, Rosehip and Pomegranate Seeds. Turkish Journal of Agriculture - Food Science and Technology, 12(s2), 2347–2354. https://doi.org/10.24925/turjaf.v12is2.2347-2354.7145