Investigation of Chromosome Numbers and Plant Characteristics of Triticum compactum × Triticum turanicum Interspecific Hybrid in F2 Generation
DOI:
https://doi.org/10.24925/turjaf.v12is3.2675-2685.7162Keywords:
Interspecific hybrid, Khorasan wheat, Topbaş wheat, Nuclear DNA analysis, PentaploidAbstract
The objective of this study was to identify the plants with varying chromosome numbers in the F2 generation, resulting from interspecific hybrids between hexaploid Triticum compactum and tetraploid Triticum turanicum, and to examine the morphological, physiological and agronomic characteristics of these plants. Therefore, the objective was to assess the potential for developing monosomic lines (particularly pentaploid) for the D-genome of wheat, with a view to their utilization in future breeding programs of wheat, and to ascertain the correlation between the estimated chromosome numbers and the superior phenotypic characteristics of the plants in question. The germination percentage was determined by germinating 230 seeds, which will form the F2 generation of Triticum compactum × Triticum turanicum interspecific hybrid, in Petri dishes together with the parents. Thereafter, the plants were transferred to 2 m long rows, 30 cm between rows and 10 cm above rows. The F2 plants were subjected to evaluation in order to ascertain their morphological, physiological and agronomic characteristics. Furthermore, the nuclear DNA contents of the F2 plants were determined by flow cytometry, and chromosome numbers were estimated based on the DNA contents of the parents. Finally, the correlations between the estimated chromosome numbers and the measured plant traits were determined. The nuclear DNA contents of F2 plants exhibited variability, with values ranging between 7870.39 and 11632.1 pg. Additionally, three plants with 35 chromosomes were identified. The F2 plants showed superior physiological traits compared to the parents, however, they displayed lower values for spike traits that affect yield. The superior traits had by F2 plants can be observed in subsequent generations, thus providing a valuable genetic resource for breeding programs and certain genomic studies.
References
Ali, A., Galal, O. A., Hammad, S., & Gameil, L. (2020). Meiotic behavior of interspecific hybrids between hexaploid and tetraploid wheat species. Egyptian Journal of Genetics and Cytology, 49(1), 69-88. https://journal.esg.net.eg/index.php/EJGC/article/view/322/312
Aryavand, A., Ehdaie, B., Tran, B., & Waines, J. G. (2003). Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet Resour Crop Evol 50, 175–182. https://doi.org/10.1023/A:1022941532372
Austin, R. B., Ford, M. A., Miller, T. E., Morgan, C. L., & Parry, M. A. J. (1987). Variation in photosynthetic characteristics among Triticum species and attempts to exploit it in breeding. In Progress in Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986 (pp. 361-368). Dordrecht: Springer Netherlands.
Belea, A. (1992). Interspecific and Intergeneric Crosses in Cultivated Plants. Akademiai Kiado, Budapeste, Hungary. https://www.cabidigitallibrary.org/doi/full/10.5555/19931697625
Bilgrami, S. S., Houshmand, S. A., Khodambashi, M., Zandi, P., Siavoshi, M., Khademi, S., ... & Sorkheh, K. (2015). Photosynthetic performance in ploidy levels and amphyploids of wheat during developmental stages. JAPS: Journal of Animal & Plant Sciences, 25(6), 1633-1643.
Camerlengo, F., Sestili, F., Cammerata, A., Kuzmanovic, L., Ceoloni, C., Sissons, M., & Lafiandra, D. (2022). Introgression of gluten protein genes associated with the D-genome of bread wheat into durum wheat. Journal of Cereal Science, 107, 103515. https://doi.org/10.1016/j.jcs.2022.103515
Cseuz, L., Pauk, J., Kertesz, Z., Matus, J., Fonad, P., Tari, I. & Erdei, L. (2002). Wheat breeding for tolerance to drought stress at the cereals research non-profit company. Acta Biol. Szeged, 46(3-4), 25-26. https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2227/2219
Del Blanco, I. A., Rajaram, S., Kronstad, W. E., & Reynolds, M. P. (2000). Physiological performance of synthetic hexaploid wheat‐derived populations. Crop Science, 40(5), 1257-1263. https://doi.org/10.2135/cropsci2000.4051257x
Feldman, M. (2001). Origin of cultivated wheat. In: Bonjean, A.P., Angus, W.J. (eds) The world wheat book: a history of wheat breeding. Lavoisier Publishing Inc., Secaucus https://www.cabidigitallibrary.org/doi/full/10.5555/20013074831
Grausgruber, H., Oberforster, M., Ghambashidze, G., & Ruckenbauer, P. (2005). Yield and agronomic traits of Khorasan wheat (Triticum turanicum Jakubz.).Field Crops Research, 91, 319–327. https://doi.org/10.1016/j.fcr.2004.08.001
Gruet, C., Abrouk, D., Börner, A., Muller, D., & Moënne-Loccoz, Y. (2024). D genome acquisition and breeding have had a significant impact on interaction of wheat with ACC deaminase producers in soil or ACC deaminase potential activity in the rhizosphere. Soil Biology and Biochemistry, 193, 109392. https://doi.org/10.1016/j.soilbio.2024.109392
Han, C., Ryan, P. R., Yan, Z., & Delhaize, E. (2014). Introgression of a 4D chromosomal fragment into durum wheat confers aluminium tolerance. Ann. Bot. 114, 135–144. https://doi.org/10.1093/aob/mcu070
Han, C., Zhang, P., Ryan, P. R., Rathjen, T. M., Yan, Z., & Delhaize, E. (2016). Introgression of genes from bread wheat enhances the aluminium tolerance of durum wheat. Theor. Appl. Genet. 129, 729–739. https://doi.org/10.1007/s00122-015-2661-3
Hassan, M. I., Mohamed, E. A., El-rawy, M. A., & Amein, K. A. (2016). Evaluating interspecific wheat hybrids based on heat and drought stress tolerance. Journal of Crop Science and Biotechnology, 19(1), 85-98. https://doi.org/10.1007/s12892-015-0085-x
Hayashi, M., Kato, J., Ohashi, H., & Mii, M. (2009). Unreduced 3x gamete formation of allotriploid hybrid derived from the cross of Primula denticulata (4x)× P. rosea (2x) as a causal factor for producing pentaploid hybrids in the backcross with pollen of tetraploid P. denticulate. Euphytica, 169(1), 123-131. https://doi.org/10.1007/s10681-009-9955-y
Huang, M.L., Deng, X.P., Zhou, S.L. & Zhao, Y.Z. (2007). Grain yield and water use efficiency of Diploid, Tetraploid and Hexaploid wheats. Acta Ecol. Sin. 27(3): 1113‒1121.
Igrejas, G., Ikeda, T. M., & Guzmán, C. (2020). Wheat quality for improving processing and human health. Springer, Cham https://link.springer.com/book/10.1007/978-3-030-34163-3?page=2#toc
ISTA, (2003). International Rules for Seed Testing. International Seed Testing Association, Basserdorf, Switzerland.
Jackson, P., Robertson, M., Cooper, M., & Hammer, G. (1996). The role of physiological understanding in plant breeding, from a breeding perspective, Field Crops Res., 49, 11–37. https://doi.org/10.1016/S0378-4290(96)01012-X
Kalous, J. R., Martin, J. M., Sherman, J. D., Heo, H. Y., Blake, N. K., Lanning, S. P., ... & Talbert, L. E. (2015). Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross. Theoretical and Applied Genetics, 128, 1799-1811. https://doi.org/10.1007/s00122-015-2548-3
Kihara, H. (1982). Wheat Studies Retrospect and Prospect. Development in Crops Science 3. Elsevier Scientific Publishing Company, Amsterdam
Liu, H., Ma, J., Tu, Y., Zhu, J., Ding, P., Liu, J., ... & Lan, X. (2020). Several stably expressed QTL for spike density of common wheat (Triticum aestivum) in multiple environments. Plant Breeding, 139(2), 284-294. https://doi.org/10.1111/pbr.12782
Mao, H., Chen, M., Su, Y., Wu, N., Yuan, M., Yuan, S., ... & Chen, Y. (2018). Comparison on photosynthesis and antioxidant defense systems in wheat with different ploidy levels and octoploid triticale. International journal of molecular sciences, 19(10), 3006. https://doi.org/10.3390/ijms19103006
Martin, A., Simpfendorfer, S., Hare, R. A., Eberhard, F. S., & Sutherland, M. (2011). Retention of D genome chromosomes in pentaploid wheat crosses. Heredity, 107(4), 315-319. https://doi.org/10.1038/hdy.2011.17
Martin, A., Simpfendorfer, S., Hare, R., & Sutherland, M. (2013). Introgression of hexaploid sources of crown rot resistance into durum wheat. Euphytica, 192, 463–470. https://doi.org/10.1007/s10681-013-0890-6
Mohamed, E. A., Mousa, Y. Q., & Hassan, M. I. (2020). Assessment of crossability between tetraploid and hexaploid wheat genotypes and evaluating their hybrids for salinity tolerance. Journal of Agricultural Chemistry and Biotechnology, 11(5), 155-163. https://doi.org/10.21608/jacb.2020.100749
Muenchrath, D., Campbell, A., Merrick, L., Lübberstedt, T., & Fei, S. Z. (2023). Ploidy: Polyploidy, Aneuploidy, and Haploidy. Crop Genetics. Iowa State University Digital Press. https://doi.org/10.31274/isudp.2023.130
Muqaddasi, Q. H., Brassac, J., Koppolu, R., Plieske, J., Ganal, M. W., & Röder, M. S. (2019). TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Scientific reports, 9(1), 13853. https://doi.org/10.1038/s41598-019-50331-9
Nilsson-Ehle, H. (1911). Kreuzungsuntersuchungen an Hafer und Weizen. II. Lunds Univ. Årsskr. N. F. Afd. 2 Bd 7 Nr 6. 2–82
Özkan, H., Genç, İ. (1998). A study on some characteristics of the F2 Aneuploid plants having different chromosome Number in the interspecific hybridization between Triticum aestivum x Triticum durum. ANADOLU Journal of Aegean Agricultural Research Institute, 8(1), 16-25. https://dergipark.org.tr/en/download/article-file/20116
Padmanaban, S., Zhang, P., Hare, R. A., Sutherland, M. W., & Martin, A. (2017). Pentaploid wheat hybrids: applications, characterization, and challenges. Frontiers in Plant Science, 8, 358. https://doi.org/10.3389/fpls.2017.00358
Padmanaban, S., Zhang, P., Sutherland, M. W., Knight, N. L., & Martin, A. (2018). A cytological and molecular analysis of D-genome chromosome retention following F2–F6 generations of hexaploid× tetraploid wheat crosses. Crop and Pasture Science, 69(2), 121-130.
Reynolds, M., Manes, Y., Izanloo, A., & Langridge, P. (2009). Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 155, 309–320. https://doi.org/10.1111/j.1744-7348.2009.00351.x
Shao, H. B., Chu, L. Y., Jaleel, C. A., Manivannan, P., Panneerselvam, R., & Shao, M. A. (2009). Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Critical reviews in biotechnology, 29(2), 131-151. https://doi.org/10.1080/07388550902869792
Sheedy, J. G., McKay, A. C., Lewis, J., Vanstone, V. A., Fletcher, S., Kelly, A., & Thompson, J. P. (2015). Cereal cultivars can be ranked consistently for resistance to root-lesion nematodes (Pratylenchus thornei & P. neglectus) using diverse procedures. Australasian Plant Pathology, 44, 175-182. https://doi.org/10.1007/s13313-014-0333-4
Sheedy, J. G., Thompson, J. P., & Kelly, A. (2012). Diploid and tetraploid progenitors of wheat are valuable sources of resistance to the root lesion nematode Pratylenchus thornei. Euphytica, 186, 377-391. https://doi.org/10.1007/s10681-011-0617-5
Thompson, J. P., Zwart, R. S., & Butler, D. (2012). Inheritance of resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus) in five doubled haploid populations of wheat. Euphytica, 188, 209–219. https://doi.org/10.1007/s10681-012-0689-x
Wang, H. Y., Liu, D. C., Yan, Z. H., Wei, Y. M., & Zheng, Y. L. (2005). Cytological characteristics of F2 hybrids between Triticum aestivum L. and T. durum Desf. with reference to wheat breeding. Journal of applied genetics, 46(4), 365-369. https://europepmc.org/article/med/16278508
Wenkel, K. O., Brozio, S., Gebbers, R., & Mirschel, W. (2003). Approaches to site-specific nitrogen fertilization. Archives of Agronomy and Soil Science, 49(2), 149-162. https://doi.org/10.1080/0365034031000085237
Yan, X., Wang, S., Yang, B., Zhang, W., Cao, Y., Shi, Y., ... & Jing, R. (2020). QTL mapping for flag leaf-related traits and genetic effect of QFLW-6A on flag leaf width using two related introgression line populations in wheat. PLoS One, 15(3), e0229912. https://doi.org/10.1371/journal.pone.0229912
Zhang, Z. B., Shan, L., & Xu, Q. (2000). Background analysis of chromosome controling genetic of water use efficiency of Triticum. Yi Chuan xue bao= Acta Genetica Sinica, 27(3), 240-246.
Zwer, P. K., Sombrero, A., Rickman, R. W., & Klepper, B. (1995). Club and common wheat yield component and spike development in the Pacific Northwest. Crop science, 35(6), 1590-1597. https://doi.org/10.2135/cropsci1995.0011183X003500060012x
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.