Improving Energy Efficiency and Environmental Mitigation Through Irrigation Management in Irrigated-Wheat Production

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i1.194-203.7231

Keywords:

Winter wheat, Supplemental irrigation, Energy efficiency, GHG emissions, Environmental pollution

Abstract

The aim of this work was to evaluate the potential for environmental mitigation, including the reduction of total greenhouse gas (GHG) emissions from agricultural inputs, and the potential for improving the energy efficiency in winter wheat production by managing irrigation water. In this context, the data on the required production inputs and product yield were obtained from the field experiment on supplemental irrigation in wheat in Konya in the 2018-2020 period. Five different irrigation regimes were considered in the study, namely: TTS, irrigation equal to the amount of moisture reduction in the 0-90 cm soil layer during the three critical development periods of wheat; KTS-1, irrigation with 90 mm of water during the three critical development periods of wheat; KTS-2, irrigation with 70 mm of water during the three critical development periods of wheat; KTS-3, irrigation with 50 mm of water during the three critical development periods of wheat, and Y, non -irrigated (rainfed). According to the results obtained from the study, the highest grain yield (7918 kg ha-1) and energy output (285857 MJ ha-1) were obtained in the TTS application, while the best energy productivity (0,935 kg MJ-1) with energy efficiency ratio (12,46) and the lowest environmental pollution (2272 kgCO2 eq ha-1) were achieved under the KTS-3 regime. The analysis of energy efficiency and environmental pollution in this research led to very important findings. In regions like Konya, where agricultural land is abundant and water resources are limited, it has been observed that instead of full irrigation (TTS) where high yield per unit area (1 ha) is obtained, the same amount of product can be produced from 1,04 ha under KTS-2 and 1,09 ha under KTS-3 regime. In this way, irrigation water savings of 32,4% to 49% can be achieved without a decrease in product quantity, while greenhouse gas emissions can be reduced by 10,3% to 15,6%.

References

Acaroğlu, M., & Aksoy, A.Ş. (2005). The cultivation and energy balance of Miscanthus×giganteus production in Türkiye. Biomass and Bioenergy, 29(1):42–48.

Acaroğlu, M. (2001). Tarımsal üretimde enerji bilançoları-I. Selçuk Teknik Online Dergisi, 2(2): 1-9.

Anonim. (2017). Türkiye’de Sulanan Bitkilerin Bitki Su Tüketimleri. Tarım ve Orman Bakanlığı, Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü web sayfası. https://www.tarimorman.gov.tr/TAGEM/Menu/28/Yayinlar_veriler.

Anonim. (2024). Konya tarımı. Konya İl Tarım ve Orman Müdürlüğü. https://konya.tarimorman.gov.tr/Link/16/E-Kutuphane.

ASAE.(1999). ASAE Standarts. D497.4 MAR99: Agricultural Machinery Data. pp. 350-357 ASAE 2950 Niles Rd., St. Joseph, MI, 49085-9659, USA.

Black, R., Bennett, S.R., Thomas, S.M., & Beddington, J.R. (2011). Climate change: Migration as adaptation. Nature, 478(7370): 447-449.

Bolinder, M.A., Janzen, H.H., Gregorich, E.G., Angers, D.A., & Vanden Bygaart, A.J. (2007). An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems and Environment, 118: 29-42.

Boustead, I. (2003). Eco-profiles of the European plastics industry, Olefins. Association of Plastics Manufacturers in Europe (APME), Brussels.

Ceran, R. (2020). Konya’da sulu koşullarda yapılan ayçiçeği tarımının ekonomik ve enerji verimliliğinin değerlendirilmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Konya.

Chen, S., Lu, F., & Wang, X. (2015). Estimation of greenhouse emission factors of China’s nitrogen, phosphate and potash fertilizers. Acta Ecologica Sinica, 35: 1–19. doi:10.5846/stxb201402210304

Davoodi, M.J.Ş., & Housyar, E. (2009). Energy consumption of canola and sunflower production in Iran. American Eurasian Journal of Agricultural and Environmental Sciences, 6(4): 381-384.

Devasenapathy, P., Senthilkumar, G., & Shanmugam, P.M. (2009). Energy management in crop production. Indian Journal of Agronomy, 54(1), 80–90.

DSİ. (2020). Devlet Su İşleri IV. Bölge Müdürlüğü. Konya Kapalı Havzası yeraltı suyu durumu bilgilendirme dökümanı (09.01.2020), Konya.

DSİ. (2021). DSİ IV. Bölge Müdürlüğü Web sayfası, Toprak ve Su Kaynakları. https://bolge04.dsi.gov.tr/

DSİ. (2023). DSİ’ce inşa edilerek işletmeye açılan sulama ve bataklık ıslahı tesisleri. Devlet Su İşleri Genel Müdürlüğü, İşletme ve Bakım Dairesi Başkanlığı.

Dulkadiroğlu, H. (2018). Türkiye’de elektrik üretiminin sera gazi emisyonlari açisindan incelenmesi. ÖHÜ Mühendislik Bilimleri Dergisi, 7(1): 67-74. doi: 10.28948/ngumuh.369948

Dyer, J.A, & Desjardins, R.L. (2003). The impact of farm machinery management on the greenhouse gas emissions from Canadian agriculture. Journal of Sustainable Agriculture, 22: 59 –74. https://doi.org/10.1300/J064v22n03_07

Dyer, J.A, & Desjardins, R.L. (2006). Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosystems Engineering, 93(1):107– 118. doi:10.1016/j.biosystemseng.2005.09.011

Epstein, E., Bloom, A. (2005). Mineral Nutrition of Plants: Principles and Perspectives. 2nd Edition, Sunderland, Mass: Sinauer Associates, USA.

Failla, S., Carlo Ingrao, C., & Arcidiacono, C. (2020). Energy consumption of rainfed durum wheat cultivation in a Mediterranean area using three different soil management systems. Energy, 195, 116960. https://doi.org/10.1016/j.energy.2020.116960

FAO. (2000). The energy and agricultural nexus. Environment and natural resources working paper no. 4, Rome.

Gao, Z., Wang, C., Zhao, J., Wang, K., Shang, M., Qin, Y., Bo, X., Chen, F., & Chu, Q. (2022). Adopting different irrigation and nitrogen management based on precipitation year types balances winter wheat yields and greenhouse gas emissions. Field Crops Research, 280: 108484. https://doi.org/10.1016/ j.fcr.2022.108484

Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M., Sanjani, S., Anvarkhah, S., & Aghel, H. (2011). A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied Energy, 88:283–288.

Glantz, M.H., Gommes, R., Ramasamy, S. (2009). Coping with a changing climate: considerations for adaptation and mitigation in agriculture. Environment and Natural Resources Management Series, Monitoring and Assessment-Food and Agriculture Organization of the United Nations, 15:33-57.

Haciseferogulları, H., & Acaroğlu, M. (2015). Energy Balance on Pumpkin Seed Production. Journal of Agricultural Science and Applications, 1(2): 49-53. doi:10.14511/jasa.2012.010203

Halkacı, A.Y. (2022). Bireysel sulama kuyu işletmeciliğinin enerji kullanımı ve buna bağlı sera gazı (SG) emisyonunun belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Konya.

He, G., Cui, Z., Ying, H., Zheng, H., Wang, Z., & Zhang, F. (2017). Managing the trade-ofs among yield increase, water resources inputs and greenhouse gas emissions in irrigated wheat production systems. Journal of Cleaner Production, 164:567–574. https://doi.org/10.1016/j.jclepro.2017. 06.085

Kalender, M.A. (2023). Konya havzası sulamasında enerji kullanımı ve ilişkili sera gazı salımı üzerine bir araştırma. Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Konya.

Karimi, M., Rajabi-Pour, A., Tabatabaeefar, A., & Borghei, A. (2008). Energy Analysis of sugarcane production in plants farms a case study in Debel Khazai agro-industry in Iran. American Eurasian Journal of Agricultural and Environmental Sciences, 4: 165–171

Khan, M.A., Khan, M.Z., Zaman, K., & Arif, M. (2014). Global estimates of energy-growth nexus: Application of seemingly unrelated regressions. Renewable and Sustainable Energy Reviews, 29:63–71. https://doi. org/10.1016/j.rser.2013.08.088.

Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013). Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy, 55: 676–682. https://doi.org/10.1016/ j.energy.2013.04.021

Mantineo, M., D’Agosta, G.M., Copani, V., Patane, C., & Cosentino, S.L. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114: 204-213. https://doi.org/10.1016/j.fcr.2009.07.020

MBM. (2021). Uzun yıllar (1985-2020) ortalaması bazı meteorolojik veriler. Meteoroloji 8. Bölge Müdürlüğü kayıtları. Konya.

McGill, B.M., Hamilton, S.K., Millar, N., & Robertson, G.P. (2018). The greenhouse gas cost of agricultural intensifcation with groundwater irrigation in a Midwest U.S. row cropping system. Global Change Biology, 24:5948–5960. https://doi.org/10.1111/gcb.14472.

Mrini, M., Senhaji, F., & Pimentel, D. (2002). Energy analysis of sugar beet production under traditional and intensive farming systems and impacts on sustainable agriculture in Morocco. Journal of Sustainable Agricultural, 20(4): 5-28. https://doi.org/10.1300/J064v20n04-03

Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen M.T., Keyhani, A., Mousavi-Avval, S.H., & Hermansen, E. (2013). Potential greenhouse gas emission reductions in soybean farming: a combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 54: 89-100. https://doi.org/10.1016/ j.jclepro.2013.05.019

Nisar, S., Benbi, D.K., & Toor, A.S. (2021). Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains. Energy, 229: 120661. doi:10.1016/j.energy.2021.120661

Pradeleix, L., Roux, P., Bouarfa, S., Jaouani, B., Lili-Chabaane, Z., & Bellon- Maurel, V. (2015). Environmental impacts of contrasted groundwater pumping systems assessed by life cycle assessment methodology: contribution to the water-energy nexus study. Irrigation and Drainage, 64:124–138. https://doi.org/10.1002/ird.1865

Rafiee, H., Aminizadeh, M., Hosseini, E.M., Aghasafari, H., & Mohammadi, A. (2022). A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems. Sustainability, 14: 4014. https://doi.org/10.3390/su14074014

Ramedani, Z., Rafiee, S., & Heidari, M.D. (2011). An investigation on energy consumption and sensitivity analysis of soybean production farms. Energy 36 (11), 6340-6344. https://doi.org/10.1016/j.jclepro.2018.06.173

Safa, M., Samarasinghe, S., & Mohssen, M.. (2011). A field study of energy consumption in wheat production in Canterbury, New Zealand. Energy Conversion and Management, 52:2526–32.

Singh, H., Mishra, D., Nahar, N.M., & Ranjan, M. (2003). Energy use pattern in production agriculture of a typical village in arid zone India: part II. Energy Conversion and Management, 44(7): 1053-1067. doi:10.1016/S0196-8904(02)00115-2

Spittlehous, D.L., & Stewart, R.B. (2003). Adaptation to climate change in forest management. Journal of Ecosystems and Management, 4(1):1-11.

Taki, M., Soheili-Fard, F., Rohani, A., Chen, G., & Yildizhan, H. (2018a). Life cycle assessment to compare the environmental impacts of different wheat production systems. Journal of Cleaner Production, 197: 195-207. https://doi.org/10.1016/j.jclepro.2018.06.173

Taki, M., Ajabshirchi, Y., & Ghobadifar, A. (2016). Application of nonparametric method for optimization of energy consumption and greenhouse gas emission in wheat production. Journal of Environmental Science and Technology, 18 (2), 101-114.

Taki, M., Rohani, A., Soheili-Fard, F., & Abdeshahi, A. (2018b). Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. Journal of Cleaner Production, 172, 3028-3041.

Topak, R., Süheri, S., Kara, M., & Çalışır, S. (2005). Investigation of the energy efficiency for raising crops under sprinkler irrigation in semi-arid area. Applied Engineering in Agriculture, 21(5): 761-768. doi:10.13031/2013.19701

Topak, R., Süheri, S., & Acar, B. (2010). Comparison of energy of irrigation regimes in sugar beet production in a semi-arid region. Energy, 35: 5464-5471. https://doi.org/ 10.1016/j.energy.2010.06.018

Topak, R., & Ceran, R. (2021). Energy use and related greenhouse gas emissions of groundwater-irrigated oil sunflower production. Seria Agronomie, 64(2): 285-294.

Topak, R., & Kalender. M.A. (2020). Environmental mitigation through irrigation management in sugar beet production. Selcuk Journal of Agriculture and Food Sciences, 34(3): 207- 213.

TSÇMAE. (2020). Toprak Su ve Çölleşme ile Mücadele Araştırma Enstitüsü, Meteoroloji İstasyonu kayıtları. Konya.

TÜİK. (2024a). Türkiye İstatistik Kurumu. Bitkisel üretim istatistikleri. İstatistiksel tablolar. Türkiye İstatistik Kurumu web sayfası. https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1

TÜİK. (2024b). Türkiye İstatistik Kurumu. Sera gazı emisyon istatistikleri 1990-2022. https://data.tuik.gov.tr/Bulten/Index?p=Sera-Gazi-Emisyon-Istatistikleri-1990-2022-53701

Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85: 101–119. https://doi.org/10.1016/j.agsy.2004.07.015.

USDA. (2021). United States Department of Agriculture, Foreign Agricultural Service. https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery.

Wang, Z., Zhang, H., Lu, X., Wang, M., Chu, Q., Wen, X., & Chen, F. (2016). Lowering carbon footprint of winter wheat by improving management practices in North China Plain. Journal of Cleaner Production, 112(1): 149–157. https://doi.org/10.1016/j.jclepro.2015.06.084

Yavuz, D., Süheri, S., & Yavuz, N. (2016). Energy and Water Use for Drip-Irrigated Potato in the Middle Anatolian Region of Türkiye. Environmental Progress and Sustainable Energy, 35 (1): 212-220. doi:10.1002/ep.12216

Yousefi, M., Khoramivafa, M., & Mondani, F. (2014). Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmospheric Environment, 92:501 – 505. https://doi.org/10.1016/j.atmosenv.2014.04.050

Yuan, S., & Peng, S. (2017). Input-output energy analysis of rice production in different crop management practices in central China. Energy, 141: 1124-1132. https:// doi.org/10.1016/j.energy.2017.10.007

Downloads

Published

18.01.2025

How to Cite

Dündar, M. A., Demir Deveci, H. N., & Topak, R. (2025). Improving Energy Efficiency and Environmental Mitigation Through Irrigation Management in Irrigated-Wheat Production. Turkish Journal of Agriculture - Food Science and Technology, 13(1), 194–203. https://doi.org/10.24925/turjaf.v13i1.194-203.7231

Issue

Section

Research Paper