Antibiotic Resistance in Food Pathogens: New Threats and Preventions Strategies

Authors

DOI:

https://doi.org/10.24925/turjaf.v13i2.514-528.7234

Keywords:

Antimicrobial resistance, Food pathogens, Food safety, Public safety, Antibiotic residue

Abstract

Foodborne pathogens are a major threat for food production and safety, causing serious health problems, including illness and death, and contributing to food spoilage. Antimicrobial agents, which include both natural and synthetic chemicals, are commonly used to control the growth and survival of these microorganisms. However, the misuse of antimicrobial agents, particularly in animal food production, can lead to the contamination of the food chain and facilitate the spread of antibiotic-resistant genes. These resistance genes enable pathogenic bacteria to survive antibiotic treatment, posing a significant threat to global health. The acquisition of antibiotic resistance by foodborne pathogens has become an issue of major concern, contributing to the emergence of infections that are increasingly difficult to treat. This review aims to assess the current knowledge on antibiotic resistance in foodborne pathogens, emphasizing its global impact and the situation in Türkiye. By reviewing the literature on antibiotic resistance genes, this study highlights the urgent need for strategies to combat the rise of resistant pathogens in the food chain.

References

Abebe, E., Gugsa, G., & Ahmed, M. (2020). Review on Major Food-Borne Zoonotic Bacterial Pathogens. Journal of Tropical Medicine, 2020. https://doi.org/10.1155/2020/4674235

Ağay, Z., & Kimiran, A. (2017). Farklı Kaynaklardan İzole Edilen Salmonella Suşlarının Bazı Virülans Faktörlerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(3), 910-916. https://doi.org/10.19113/sdufbed.91790

Akpaka, P., Kissoon, S., & Jayaratne, P. (2016). Molecular Analysis of Vancomycin-Resistant Enterococci Isolated from Regional Hospitals in Trinidad and Tobago. Advances in Medicine, 2016, 1-8. https://doi.org/10.1155/2016/8762691

Aladhadh, M. (2023). A Review of Modern Methods for the Detection of Foodborne Pathogens. Microorganisms, 11(5). https://doi.org/10.3390/microorganisms11051111

Al-Khresieh, R., Al-Daghistani, H., Abu-Romman, S., & Abu-Niaaj, L. (2022). Genetic Signature and Serocompatibility Evidence for Drug Resistant Campylobacter jejuni. Antibiotics-Basel, 11(10). https://doi.org/10.3390/antibiotics11101421

Aminov, R. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1. https://doi.org/10.3389/fmicb.2010.00134

Arslan, S., & Eyi, A. (2010). Occurrence and Antimicrobial Resistance Profiles of Salmonella Species in Retail Meat Products. Journal of Food Protection, 73(9), 1613-1617. https://doi.org/10.4315/0362-028X-73.9.1613

Asal, C. (2021). Salmonella Bakterisinin Gıdalarda Varlığı. Samsun Sağlık Bilimleri Dergisi, 6(1), 28-34. https://doi.org/10.47115/jshs.695685

Babines-Orozco, L., Balbuena-Alonso, M., Barrios-Villa, E., Lozano-Zarain, P., Martínez-Laguna, Y., Rocha-Gracia, R., & Cortés-Cortés, G. (2024). Antimicrobial resistance in food-associated Escherichia coli in Mexico and Latin America. Bioscience Of Microbiota Food And Health, 43(1), 4-12. https://doi.org/10.12938/bmfh.2023-022

Bhunia, A. K. (2018). Introduction to Foodborne Pathogens. Içinde D. R. Heldman (Ed.), Foodborne Microbial Pathogens Mechanisms and Pathogenesis (Second, ss. 1-3). Springer Nature. https://doi.org/10.1007/978-1-4939-7349-1

Can, H., & Sarı, K. B. (2023). Malatya İlinde Üretilen Peynirlerden İzole Edilen Bacillus cereus Suşlarında Enterotoksin Kodlayan Genler ile Antibiyotik Direncinin Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi (Online), 6(2), 1500-1512. TRDizin.

Caputo, A., Bondad-Reantaso, M., Karunasagar, I., Hao, B., Gaunt, P., Verner-Jeffreys, D., Fridman, S., & Dorado-Garcia, A. (2023). Antimicrobial resistance in aquaculture: A global analysis of literature and national action plans. Reviews In Aquaculture, 15(2), 568-578. https://doi.org/10.1111/raq.12741

Chaguza, C., Cornick, J., & Everett, D. (2015). Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae. Computational And Structural Biotechnology Journal, 13, 241-247. https://doi.org/10.1016/j.csbj.2015.03.007

Chen, L., Mathema, B., Chavda, K., DeLeo, F., Bonomo, R., & Kreiswirth, B. (2014). Carbapenemase-producing Klebsiella pneumoniae: Molecular and genetic decoding. Trends In Mıcrobiology, 22(12), 686-696. https://doi.org/10.1016/j.tim.2014.09.003

Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal Of Molecular Evolution, 88(1), 26-40. https://doi.org/10.1007/s00239-019-09914-3

Cole, M. L., & Singh, O. V. (2017). Foodborne Pathogens and Their Apparent Linkage with Antibiotic Resistance. Içinde O. V. Singh (Ed.), Foodborne Pathogens and Antibiotic Resistance (ss. 247-274). John Wiley & Sons. https://doi.org/10.1002/9781119139188.ch11

Critchley, I., Blosser-Middleton, R., Jones, M., Karlowsky, J., Karginova, E., Thornsberry, C., & Sahm, D. (2002). Phenotypic and genotypic analysis of levofloxacin-resistant clinical isolates of Streptococcus pneumoniae collected in 13 countries during 1999-2000. International Journal Of Antimicrobial Agents, 20(2), 100-107. https://doi.org/10.1016/S0924-8579(02)00125-5

da Silva, A., Rodrigues, M., & Silva, N. (2020). Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: A review. Brazilian Journal Of Microbiology, 51(1), 347-356. https://doi.org/10.1007/s42770-019-00168-1

Davies, J., & Davies, D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiology And Molecular Biology Reviews, 74(3), 417-+. https://doi.org/10.1128/MMBR.00016-10

Dibek, E., Sezer Kürkçü, M., Çiftçi, B. H., & Çöl, B. (2020). P1 transdüksiyon yöntemi ile birden fazla gen bakımından mutant olan Escherichia coli suşlarının elde edilmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 110-119. https://doi.org/10.17798/bitlisfen.588763

Duse, A., Waller, K., Emanuelson, U., Unnerstad, H., Persson, Y., & Bengtsson, B. (2016). Occurrence and Spread of Quinolone-Resistant Escherichia coli on Dairy Farms. Applied And Environmental Microbiology, 82(13), 3765-3773. https://doi.org/10.1128/AEM.03061-15

Egorov, A., Ulyashova, M., & Rubtsova, M. (2018). Bacterial Enzymes and Antibiotic Resistance. Acta Naturae, 10(4), 33-48. https://doi.org/10.32607/20758251-2018-10-4-33-48

Ekici, S., Ünlü, Ö., Demirci, M., & Yığın, A. (2021). Farklı Salmonella Typhimurium kökenlerinin taşıdıkları patojenite adası ve direnç genlerinin in silico analizi. Etlik Veteriner Mikrobiyoloji Dergisi, 32(2), 151-156. https://doi.org/10.35864/evmd.960813

European Food Safety Authority (EFSA). (2004). Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA Journal, 2(4), 48. https://doi.org/10.2903/j.efsa.2004.48

Fernández, L., & Hancock, R. (2012). Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 25(4), 661-+. https://doi.org/10.1128/CMR.00043-12

Fiedler, G., Schneider, C., Igbinosa, E., Kabisch, J., Brinks, E., Becker, B., Stoll, D., Cho, G., Huch, M., & Franz, C. (2019). Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiology, 19(1). https://doi.org/10.1186/s12866-019-1632-2

Gagliotti, C., Nobilio, L., Moro, M., & Emilia Romagna Antibiotic Resistan. (2007). Emergence of ciprofloxacin resistance in Escherichia coli isolates from outpatient urine samples. Clinical Microbiology And Infection, 13(3), 328-331. https://doi.org/10.1111/j.1469-0691.2006.01615.x

Ge, H., Wang, Y., & Zhao, X. (2022). Research on the drug resistance mechanism of foodborne pathogens. Microbial Pathogenesis, 162. https://doi.org/10.1016/j.micpath.2021.105306

Ghai, I. (2023). A Barrier to Entry: Examining the Bacterial Outer Membrane and Antibiotic Resistance. Applied Sciences-Basel, 13(7). https://doi.org/10.3390/app13074238

Giacometti, F., Shirzad-Aski, H., & Ferreira, S. (2021). Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics-Basel, 10(6). https://doi.org/10.3390/antibiotics10060671

Godinho, O., Lage, O., & Quinteira, S. (2024). Antibiotic-Resistant Bacteria across a Wastewater Treatment Plant. Applied Microbiology, 4, 364-375. https://doi.org/10.3390/applmicrobiol4010025

Grispoldi, L., Karama, M., Armani, A., Hadjicharalambous, C., & Cenci-Goga, B. (2021). Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. Italian Journal Of Animal Science, 20(1), 677-690. https://doi.org/10.1080/1828051X.2020.1871428

Grudlewska-Buda, K., Bauza-Kaszewska, J., Wiktorczyk-Kapischke, N., Budzyńska, A., Gospodarek-Komkowska, E., & Skowron, K. (2023). Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens—An Issue of Concern? Antibiotics, 12(5). https://doi.org/10.3390/antibiotics12050880

Gulyás, D., Kamotsay, K., Szabó, D., & Kocsis, B. (2023). Investigation of Delafloxacin Resistance in Multidrug-Resistant Escherichia coli Strains and the Detection of E. coli ST43 International High-Risk Clone. Microorganisms, 11(6). https://doi.org/10.3390/microorganisms11061602

Halkman, A. K. ve diğerleri, & Çilak, G. Ö. (2018). Çeşitli Besiyerlerinin Bacillus cereus Sporlanmasındaki Etkisi Üzerine Bir Araştırma. Gıda, 43(2), 347-355. TRDizin. https://doi.org/10.15237/gida.GD18016

Harkins, C., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., De Lencastre, H., Bentley, S., Kearns, A., & Holden, M. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biology, 18. https://doi.org/10.1186/s13059-017-1252-9

Hayden, G., Tuuri, R., Scott, R., Losek, J., Blackshaw, A., Schoenling, A., Nietert, P., & Hall, G. (2016). Triage sepsis alert and sepsis protocol lower times to fluids and antibiotics in the ED. American Journal Of Emergency Medicine, 34(1), 1-9. https://doi.org/10.1016/j.ajem.2015.08.039

Helmy, Y., Taha-Abdelaziz, K., Hawwas, H., Ghosh, S., AlKafaas, S., Moawad, M., Saied, E., Kassem, I., & Mawad, A. (2023). Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics-Basel, 12(2). https://doi.org/10.3390/antibiotics12020274

Hızlısoy, H., AL, S., Onmaz, N. E., Yıldırım, Y., Gönülalan, zafer, Barel, M., Güngör, C., Dışhan, A., & Dişlı, H. B. (2020). Farklı Kesimhanelerden İzole Edilen Campylobacter Türlerinin Virülans Genleri, Antibiyotik Duyarlılık Profilleri ve Moleküler Karakterizasyonu. Mikrobiyoloji Bülteni, 54(1), 11-25. TRDizin. https://doi.org/10.5578/mb.68798

Holzel, C., Tetens, J., & Schwaiger, K. (2018). Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathogens And Disease, 15(11), 671-688. https://doi.org/10.1089/fpd.2018.2501

Humphries, R., Yang, S., Hemarajata, P., Ward, K., Hindler, J., Miller, S., & Gregson, A. (2015). First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate. Antimicrobial Agents And Chemotherapy, 59(10), 6605-6607. https://doi.org/10.1128/AAC.01165-15

Jadhav, H., Annapure, U., & Deshmukh, R. (2021). Non-thermal Technologies for Food Processing. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.657090

Jordan, A., & Gathergood, N. (2013). Designing Safer and Greener Antibiotics. MDPI Antibiotics, 2, 419-438. https://doi.org/10.3390/antibiotics2030419

Kadariya, J., Smith, T., & Thapaliya, D. (2014). Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. Biomed Research International, 2014. https://doi.org/10.1155/2014/827965

Kara, R., & Arpacı, F. D. (2023). Afyonkarahisar’da Tüketime Sunulan Piliç Etlerinde Campylobacter jejuni, Campylobacter coli ve Campylobacter Varlığının Real-Time PCR ile Araştırılması. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 832-841. https://doi.org/10.47495/okufbed.1117251

Kayiş, U. (2019). Antimikrobiyal Direnç Mekanizmaları. Aydın Sağlık Dergisi, 5(1), 1-12.

Klugman, K., Capper, T., & Bryskier, A. (1996). In vitro susceptibility of penicillin-resistant Streptococcus pneumoniae to levofloxacin, selection of resistant mutants, and time-kill synergy studies of levofloxacin combined with vancomycin, teicoplanin, fusidic acid, and rifampin. Antimicrobial Agents And Chemotherapy, 40(12), 2802-2804. https://doi.org/10.1128/AAC.40.12.2802

Knothe, H., Shah, P., Krcmery, V., Antal, M., & Mitsuhashi, S. (1983). Transferable Resistance To Cefotaxime, Cefoxitin, Cefamandole And Cefuroxıme In Clinical Isolates Of Klebsiella-Pneumoniae And Serratia-Marcescens. Infection, 11(6), 315-317. https://doi.org/10.1007/BF01641355

Kumar, D., & Kumar, S. (2016). Antimicrobial metabolites and antibiotics obtained from different environmental sources. International Journal Of Pharmaceutical Research And Allied Sciences, 5(3), 85-90.

Kumar, S. B., Arnipalli, S. R., & Ziouzenkova, O. (2020). Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics-Basel, 9(10). https://doi.org/10.3390/antibiotics9100688

Lai, C. K. C., Ng, R. W. Y., Leung, S. S. Y., Hui, M., & Ip, M. (2022). Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches – An overview. Advanced Drug Delivery Reviews, 181, 114078. https://doi.org/10.1016/j.addr.2021.114078

Lakhtakia, R. (2014). The Legacy of Robert Koch: Surmise, search, substantiate. Sultan Qaboos University medical journal, 14(1), 37-41. https://doi.org/10.12816/0003334

Leclercq, R., & Courvalin, P. (2002). Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Antimicrobial Agents And Chemotherapy, 46(9), 2727-2734. https://doi.org/10.1128/AAC.46.9.2727-2734.2002

Lee, H., & Yoon, Y. (2021). Etiological Agents Implicated in Foodborne Illness World Wide. Food Science Of Animal Resources, 41(1), 1-7. https://doi.org/10.5851/kosfa.2020.e75

Lockhart, S., Etienne, K., Vallabhaneni, S., Farooqi, J., Chowdhary, A., Govender, N., Colombo, A., Calvo, B., Cuomo, C., Desjardins, C., Berkow, E., Castanheira, M., Magobo, R., Jabeen, K., Asghar, R., Meis, J., Jackson, B., Chiller, T., & Litvintseva, A. (2017). Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clinical Infectious Diseases, 64(2), 134-140. https://doi.org/10.1093/cid/ciw691

Long, S., Olsen, R., Mehta, S., Palzkill, T., Cernoch, P., Perez, K., Musick, W., Rosato, A., & Musser, J. (2014). PBP2a Mutations Causing High-Level Ceftaroline Resistance in Clinical Methicillin-Resistant Staphylococcus aureus Isolates. Antimicrobial Agents And Chemotherapy, 58(11), 6668-6674. https://doi.org/10.1128/AAC.03622-14

Lv, G., Jiang, R., Zhang, H., Wang, L., Li, L., Gao, W., Zhang, H., Pei, Y., Wei, X., Dong, H., & Qin, L. (2021). Molecular Characteristics of Staphylococcus aureus From Food Samples and Food Poisoning Outbreaks in Shijiazhuang, China. Frontiers In Microbiology, 12. https://doi.org/10.3389/fmicb.2021.652276

Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens, 10, 1310. https://doi.org/10.3390/pathogens10101310

Mangili, A., Bica, I., Snydman, D., & Hamera, D. (2005). Daptomycin-resistant, methicillin-resistant Staphylococcus aureus bacteremia. Clinical Infectious Diseases, 40(7), 1058-1060. https://doi.org/10.1086/428616

Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules, 23(4). https://doi.org/10.3390/molecules23040795

Martinović, T., Andjelković, U., Gajdošik, M. Š., Rešetar, D., & Josić, D. (2016). Foodborne pathogens and their toxins. Foodomics - Novel insights in food and nutrition domains, 147, 226-235. https://doi.org/10.1016/j.jprot.2016.04.029

Mcmahon, A., Xu, J., Moore, J., Blair, I., & Mcdowell, D. (2007). Environmental Stress and Antibiotic Resistance in Food-Related Pathogens. Applied and environmental microbiology, 73, 211-217. https://doi.org/10.1128/AEM.00578-06

Meral, H., & Korukluoğlu, M. (2014). Laktik Asit Bakterilerinin Antibiyotik Direnç Mekanizmaları. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 28(2), 71-82.

Michalik, M., Kosecka-Strojek, M., Wolska, M., Samet, A., Podbielska-Kubera, A., & Miedzobrodzki, J. (2021). First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland. Pathogens, 10(3). https://doi.org/10.3390/pathogens10030335

Moura, A., Leclercq, A., Vales, G., Tessaud-Rita, N., Bracq-Dieye, H., Thouvenot, P., Madec, Y., Charlier, C., & Lecuit, M. (2024). Phenotypic and genotypic antimicrobial resistance of Listeria monocytogenes: An observational study in France. Lancet Regional Health-Europe, 37. https://doi.org/10.1016/j.lanepe.2024.100843

Muteeb, G., Rehman, M., Shahwan, M., & Aatif, M. (2023). Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals, 16(11). https://doi.org/10.3390/ph16111615

Naeim, D., Eldesoukey, I., Moawad, A., & Ahmed, A. (2023). Molecular detection of methicillin-resistant Staphylococcus aureus isolated from different foodstuffs in Egypt. Veterinary Research Forum, 14(5), 243-248. https://doi.org/10.30466/vrf.2022.551346.3434

Patterson, J., & Zervos, M. (1990). High-Level Gentamicin Resistance In Enterococcus—Microbiology, Genetic-Basis, And Epidemiology. Reviews Of Infectious Diseases, 12(4), 644-652.

Pehlivanlar Onen, S., & Elmalı, M. (2016). Determination of L. monocytogenes, and its Antibiotic Resistance of Local Produced Cheese Consuming in Hatay. Van Veterinary Journal, 27(1), 25-29.

Perlin, D. (2015). Echinocandin Resistance in Candida. Clinical Infectious Diseases, 61, S612-S617. https://doi.org/10.1093/cid/civ791

Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Microbiology Spectrum, 6. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and global health, 109, 2047773215Y0000000030. https://doi.org/10.1179/2047773215Y.0000000030

Rahman, M., Alam, M., Luies, S., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S., Amin, N., Hasan, R., Tadesse, B., Taneja, N., Islam, M., & Ercumen, A. (2022). Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. International Journal Of Environmental Research And Public Health, 19(1). https://doi.org/10.3390/ijerph19010360

Rammelkamp, C. H., & Maxon, T. (1942). Resistance of Staphylococcus aureus to the Action of Penicillin. Proceedings of the Society for Experimental Biology and Medicine, 51(3), 386-389. https://doi.org/10.3181/00379727-51-13986

Reygaert, W. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482-501. https://doi.org/10.3934/microbiol.2018.3.482

Rice, L., Willey, S., PapanicolaouL, G., Medeiros, A., Eliopoulos, G., Moellering, R., & Jacoby, G. (1990). Outbreak Of Ceftazidime Resistance Caused By Extended-Spectrum Beta-Lactamases At A Massachusetts Chronic-Care Facility. Antimicrobial Agents And Chemotherapy, 34(11), 2193-2199. https://doi.org/10.1128/AAC.34.11.2193

Roberts, M. (1996). Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. Fems Microbiology Reviews, 19(1), 1-24. https://doi.org/10.1111/j.1574-6976.1996.tb00251.x

Saber, T., Samir, M., El-Mekkawy, R., Ariny, E., El-Sayed, S., Enan, G., Abdelatif, S., Askora, A., Merwad, A., & Tartor, Y. (2022). Methicillin- and Vancomycin-Resistant Staphylococcus aureus From Humans and Ready-To-Eat Meat: Characterization of Antimicrobial Resistance and Biofilm Formation Ability. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.735494

Sabet, M., Tarazi, Z., Nolan, T., Parkinson, J., Rubio-Aparicio, D., Lomovskaya, O., Dudley, M., & Griffith, D. (2018). Activity of Meropenem-Vaborbactam in Mouse Models of Infection Due to KPC-Producing Carbapenem-Resistant Enterobacteriaceae. Antimicrobial Agents And Chemotherapy, 62(1). https://doi.org/10.1128/AAC.01446-17

Sağlam, D., & Şeker, E. (2016). Gıda Kaynaklı Bakteriyel Patojenler. Kocatepe Veterinary Journal, 9(2), 105-113. https://doi.org/10.5578/kvj.23164

Salam, M., Al-Amin, M., Salam, M., Pawar, J., Akhter, N., Rabaan, A., & Alqumber, M. (2023). Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare, 11(13). https://doi.org/10.3390/healthcare11131946

Sambaza, S., & Naicker, N. (2023). Contribution of wastewater to Antimicrobial Resistance- A Review article. Journal of Global Antimicrobial Resistance, 34. https://doi.org/10.1016/j.jgar.2023.05.010

Samrot, A., Wilson, S., Preeth, R., Pandurangan, P., Sathiyasree, M., Saigeetha, s, Nagarajan, S., Pachiyappan, S., & Rajesh, V. (2023). Sources of Antibiotic Contamination in Wastewater and Approaches to Their Removal—An Overview. Sustainability, 15, 12639. https://doi.org/10.3390/su151612639

Samtiya, M., Matthews, K., Dhewa, T., & Puniya, A. (2022). Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods, 11(19). https://doi.org/10.3390/foods11192966

Sandoval-Motta, S., & Aldana, M. (2016). Adaptive resistance to antibiotics in bacteria: A systems biology perspective. Wiley Interdisciplinary Reviews-Systems Biology And Medicine, 8(3), 253-267. https://doi.org/10.1002/wsbm.1335

Serwecińska, L. (2020). Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water, 12(12). https://doi.org/10.3390/w12123313

Sharma, K., Abdali, B., Kesharwani, P., Mittal, N., & Bisht, H. (2020). Antimicrobial Resistance: Then and Now. International Journal Of Pharmaceutical Education And Research, 2, 50-55. https://doi.org/10.37021/ijper.v2i2.4

Sharma, P., Tomar, S., Goswami, P., Sangwan, V., & Singh, R. (2014). Antibiotic resistance among commercially available probiotics. Food Research International, 57, 176-195. https://doi.org/10.1016/j.foodres.2014.01.025

Sjölund-Karlsson, M., Joyce, K., Blickenstaff, K., Ball, T., Haro, J., Medalla, F., Fedorka-Cray, P., Zhao, S., Crump, J., & Whichard, J. (2011). Antimicrobial Susceptibility to Azithromycin among Salmonella enterica Isolates from the United States. Antimicrobial Agents And Chemotherapy, 55(9), 3985-3989. https://doi.org/10.1128/AAC.00590-11

Skandalis, N., Maeusli, M., Papafotis, D., Miller, S., Lee, B., Theologidis, I., & Luna, B. (2021). Environmental Spread of Antibiotic Resistance. Antibiotics-Basel, 10(6). https://doi.org/10.3390/antibiotics10060640

Şık, B. (2018, Temmuz 10). Türkiye’de Hayvancılıkta Kullanılan Antibiyotik Miktarı Nedir? [Post]. https://bianet.org/yazi/turkiye-de-hayvancilikta-kullanilan-antibiyotik-miktari-nedir-198987

Talukder, H., Alam, S., Debnath, K., Sharma, B., Ahmed, J., & Roy, S. (2023). Prevalence and Antimicrobial Resistance Profile of Salmonella Isolated from Human, Animal and Environment Samples in South Asia: A 10-Year Meta-analysis. Journal of Epidemiology and Global Health, 13. https://doi.org/10.1007/s44197-023-00160-x

Tanaman, E., & Vural, A. (2023). Organik Süt ve Süt Ürünlerinden İzole Edilen Staphylococcus spp.’nin Tür Düzeyinde Dağılımı ve Antibiyotiklere Duyarlılığının Belirlenmesi. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 37(3), 237-244. TRDizin.

Tanış, H., Aytaç, B., Aygan, A., & Ertaş, E. (2021). Lor Peynirlerinde Fekal Kaynaklı Esherichia coli, Klebsiella pneumoniae Aranması ve Antibiyotik Direnç Profillerinin Belirlenmesi. Türk Doğa ve Fen Dergisi, 10(1), 46-51. https://doi.org/10.46810/tdfd.802241

Tiseo, K., Huber, L., Gilbert, M., Robinson, T., & Van Boeckel, T. (2020). Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030. Antibiotics-Basel, 9(12). https://doi.org/10.3390/antibiotics9120918

Toomey, N., Monaghan, Á., Fanning, S., & Bolton, D. J. (2009). Assessment of Antimicrobial Resistance Transfer Between Lactic Acid Bacteria and Potential Foodborne Pathogens Using In Vitro Methods and Mating in a Food Matrix. Foodborne Pathogens and Disease, 6(8), 925-933. https://doi.org/10.1089/fpd.2009.0278

Usui, M., Ozeki, K., Komatsu, T., Fukuda, A., & Tamura, Y. (2019). Prevalence of Extended-Spectrum β-Lactamase-Producing Bacteria on Fresh Vegetables in Japan. Journal Of Food Protection, 82(10), 1663-1666. https://doi.org/10.4315/0362-028X.JFP-19-138

Ventola, C. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P & T : a peer-reviewed journal for formulary management, 40, 277-283.

Vicar, E., Alo, D., Koyiri, V., Opare-Asamoah, K., Obeng-Bempong, M., & Mensah, G. (2023). Carriage of Antibiotic Resistant Bacteria and Associated Factors Among Food Handlers in Tamale Metropolis, Ghana: Implications for Food Safety. Microbiology Insights, 16, 117863612211506. https://doi.org/10.1177/11786361221150695

Walsh, C., Duffy, G., Nally, P., O’Mahony, R., McDowell, D., & Fanning, S. (2008). Transfer of ampicillin resistance from Salmonella Typhimurium DT104 to Escherichia coli K12 in food. Letters In Applied Microbiology, 46(2), 210-215. https://doi.org/10.1111/j.1472-765X.2007.02288.x

WHO. (2017, Şubat 27). WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Yavuz, M., & Korukluoğlu, M. (2010). Listeria monocytogenes’in Gıdalardaki Önemi ve İnsan Sağlığı Üzerine Etkileri. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 24(1), 1-10.

Yenew, C., & Tadele, F. (2020). Antimicrobial-Resistant Pathogens in Food Handlers Serving in Mass Catering Centers. https://doi.org/10.21203/rs.3.rs-116656/v1

Zalas-Wiecek, P., Plachta, K., & Gospodarek-Komkowska, E. (2022). Cefiderocol against Multi-Drug and Extensively Drug-Resistant Escherichia coli: An In Vitro Study in Poland. Pathogens, 11(12). https://doi.org/10.3390/pathogens11121508

Zanella, R., Valdetaro, F., Lovgren, M., Tyrrel, G., Bokermann, S., Almeida, S., Vieira, V., & Brandileone, M. (1999). First confirmed case of a vancomycin-resistant Enterococcus faecium with vanA phenotype from Brazil: Isolation from a meningitis case in Sao Paulo. Microbial Drug Reistance-Mechanisms Epidemiology And Disease, 5(2), 159-162. https://doi.org/10.1089/mdr.1999.5.159

Downloads

Published

28.02.2025

How to Cite

Uras, A., & Karakaş Budak, B. (2025). Antibiotic Resistance in Food Pathogens: New Threats and Preventions Strategies. Turkish Journal of Agriculture - Food Science and Technology, 13(2), 514–528. https://doi.org/10.24925/turjaf.v13i2.514-528.7234

Issue

Section

Review Articles