Modelling of Rheological Behaviour of Persimmon Puree
DOI:
https://doi.org/10.24925/turjaf.v13i2.439-445.7281Keywords:
Persimmon puree, rheology, Mizhari-Berk, Herschel-Bulkley, TürkiyeAbstract
In this study, the rheological properties of persimmon (Diospyros kaki L.) puree were investigated at various pH (4.0, 5.5 and 7.0), concentrations (15%, 17.5% and 20%), temperatures (25, 50 and 75°C) and shear rates (8.4–28 s−1) to determine the rheological model that best describes the flow behaviour of persimmon (Diospyros kaki L.) puree. Experimental data were applied to Power Law, Herschel-Bulkley, Casson and Mizhari-Berk models. In order to evaluate the goodness of fit, three statistical criteria including the coefficient of determination (R2), reduced chi-squared (ꭓ2) and the root mean squared error (RMSE) were used. Herschel-Bulkley and Mizhari-Berk were the models that provided the best fit to the experimental data under all processing conditions of persimmon puree. However, Mizhari-Berk model was the model that best described the flow behavior of persimmon puree with statistical parameter values of R2 ≥ 0.983, RMSE ≤ 0.0683 and ꭓ2 ≤ 0.0160. Persimmon puree exhibited a non-Newtonian behavior (n<1) which was pseudoplastic (shear thinning).
References
Augusto, P.E., Cristianini, M., & Ibarz, A., (2012). Effect of temperature on dynamic and steady-state shear rheological properties of siriguela (Spondias purpurea L.) pulp. Journal of Food Engineering, 108(2), 283-289. https://doi.org/10.1016/j.jfoodeng.2011.08.015
Barbieri, S.F., Petkowicz, C.L.O., De Godoy, R.C.B., De Azeredo, H.C.M., Franco, C.R.C., & Silveira, J.L.M. (2018). Pulp and Jam of Gabiroba (Campomanesia xanthocarpa Berg): Characterization and Rheological Properties. Food Chemistry, 263, 292-299. https://doi.org/10.1016/j.foodchem.2018.05.004
Brasileiro, J.L.O., De Figueiredo, R.M.E., de Queiroz, A.J.M., & Feitosa, R.M. (2022). Modelling of rheological behaviour of macaíba pulp at different temperatures. Rev. bras. eng. agric. ambient. 26(3) https://doi.org/10.1590/1807-1929/agriambi.v26n3p198-203
Costa, B.S.D., Leite, T.S., Cristianini, M., & Schimdt, F.L,. (2024). Effect of temperature on dynamic and steady-state shear rheological properties of Jambolan (Syzygium cumini) pulp. Measurement: Food, 14, 100156. https://doi.org/10.1016/j.meafoo.2024.100156
Costa, H.C.B., Arouca, F.O., & Silva, D.O. (2018). Study of rheological properties of açai berry pulp: an analysis of its time-dependent behavior and the effect of temperature. Journal of Biological Physics, 4, 557–577. https://doi.org/10.1007/s10867-018-9506-7
Diamante, L. & M. Umemoto. (2015). Rheological Properties of Fruits and Vegetables: A Review. International Journal of Food Properties, 18(6), 1191–1210. https://doi.org/10.1080/10942912.2014.898653
Gabsi, K., Trigui, M., Barrington, S., Helal, A.N., & Taherian, A.R. (2013). Evaluation of rheological properties of date syrup. Journal of Food Engineering, 117(1), 165-172. https://doi.org/10.1016/j.jfoodeng.2013.02.017
González-Montemayor, A.M., Solanilla-Duque, J.F., Flores-Gallegos, A.C., Serrato-Villegas, L.E., Morales-Castro, J., González-Herrera, S.M., & Rodriguez-Herrera, R. (2022). Temperature effect on sensory attributes, thermal and rheological properties of concentrated aguamiel syrups of two Agave species. Measurement: Food, 7,100041. https://doi.org/10.1016/j.meafoo.2022.100041
Gürdaş Mazlum, S., & Lodos, D. (2025). Investigation of the rheological properties of persimmon puree by using response surface methodology. Qualıty Assurance And Safety Of Crops And Foods, 17 (1), 57-74. https://doi.org/10.15586/qas.v17i1.1519.
Kechinski, K. P., Schumacher, A. B., Marczak, L. D., Tessaro, I. C., & Cardozo, N. S. (2011). Rheological behavior of blueberry (Vaccinium ashei) purees containing xanthan gum and fructose as ingredients. Food Hydrocolloids, 25(3), 299-306. https://doi.org/10.1016/j.foodhyd.2010.06.007
Kaur, N., Kumari, A., Agarwal, A., Sabharwal, M. & Dipti, S. (2022). Utilisation of Diospyros kaki L. (persimmon) as a functional ingredient to produce functional foods: a review. Nutrition & Food Science, 52(7), 1083-1099. https://doi.org/10.1108/NFS-11-2021-0337
Lukhmana, N., Kong, F., Kerr, W., &Singh, R. (2018). Rheological and structural properties of tart cherry puree as affected by particle size reduction. LWT, 90:650-657. https://doi.org/10.1016/j.lwt.2017.11.032
Martinez-Padilla, L.P. (2024). Rheology of liquid foods under shear flow conditions: Recently used models. Journal of Texture Studies 55(1):e12802. https://doi.org/10.1111/jtxs.12802
Matheus, J.R.V., Andrade, C.J.D., Miyahira, R.F., & Fai, A.E.C. (2022). Persimmon (Diospyros Kaki L.): Chemical properties, bioactive compounds and potential use in the development of new products–a review. Food Reviews International, 38, 384-401. https://doi.org/10.1080/87559129.2020.1733597
Meher, J., Keshav, A., & Mazumdar, B. (2018). Effect of blanching and thermal preservation on rheology of curry leaf puree. Food Measure, 12, 105–117 https://doi.org/10.1007/s11694-017-9621-3
Milani, J. M., Naghavi, A., Golkar, A., & Khosravi, T. (2019). Rheological behavior of different phases of grape molasses after storage: Effect of concentration and temperature. Journal of Food Processing and Preservation, 43(8), e14013. https://doi.org/10.1111/jfpp.14013
Mitschka, P. (1982). Simple conversion of Brookfield R.V.T. readings into viscosity functions. Rheological Acta, 21, 207-209.
Murali, P., Shams, R., & Dar, A.H. (2023). Insights on nutritional profile, nutraceutical components, pharmacological potential, and trending utilization of persimmon cultivars: A review. Food Chemistry Advances, 3:100431. https://doi.org/10.1016/j.focha.2023.100431
Mustapha, L., Yusuff, A., & Dim, P. (2023). RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon, 9(8), e18634. https://doi.org/10.1016/j.heliyon.2023.e18634
Nindo, C., Tang, J., Powers, J., & Takhar, P. (2007). Rheological properties of blueberry puree for processing applications. LWT-Food Science and Technology, 40(2), 292-299. https://doi.org/10.1016/j.lwt.2005.10.003
Patel, G., Murakonda, S., & Dwivedi, M. (2022). Steady and dynamic shear rheology of Indian Jujube (Ziziphus mauritiana Lam.) fruit pulp with physiochemical, textural and thermal properties of the fruit. Measurement: Food, 5, 100023. https://doi.org/10.1016/j.meafoo.2022.100023
Salehi, F. (2020). Physicochemical characteristics and rheological behaviour of some fruit juices and their concentrates. Food Measure 14, 2472–2488 https://doi.org/10.1007/s11694-020-00495-0
Santos, P.H., Silva, L.H.M., Rodrigues, A.M.C., & Souza. J.A.R. (2016). Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense) juice. Braz. J. Food Technol., 19, e2015009, https://doi.org/10.1590/1981-6723.0915
Tardugno, R., Gervasi, T., Nava, V., Cammilleri, G., Ferrantelli, V., & Cicero, N. (2022). Nutritional and mineral composition of persimmon fruits (Diospyros kaki L.) from Central and Southern Italy. Natural Product Research 36, 5168-5173. DOI: 10.1080/14786419.2021.1921768
Tavakolipour, H., Mokhtarian, M., & Kalbasi-Ashtari, A., (2020). Rheological modeling and activation energy of Persian grape molasses. Journal of Food Process Engineering, 43(12), e13547. https://doi.org/10.1111/jfpe.13547
Yaqub, S., Farooq, U., Shafi, A., Akram, K., Murtaza, M. A., Kausar, T., & Siddique, F. (2015). Chemistry and Functionality of Bioactive Compounds Present in Persimmon. Journal of Chemistry, 2016(1), 3424025. https://doi.org/10.1155/2016/3424025
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.