Natural Preservatives as Medicinal Aromatic Plants: Implications for Sustainable and Functional Bread
DOI:
https://doi.org/10.24925/turjaf.v13i3.620-629.7489Keywords:
Medicinal aromatic plants, Pathogens, Antimicrobial activity, Functional bread, Sustainable food preservationAbstract
In this study, the plants Melissa officinalis (Melissa), Elaeagnus angustifolia (Elaeagnus), Styrax officinalis (Styrax) and Echinops ritro (Echinops) were firstly used to prepare enriched bread and to study their effects on the shelf life of bread. Water and alcohol extracts of the plants were also prepared to determine their antibacterial and antifungal activities in-vitro. The focus is on their potential applications as natural preservatives in sustainable functional bread production. The antimicrobial activity was evaluated using the agar well diffusion assay. Results showed that alcohol extracts of medicinal and aromatic plants exhibited significantly higher antimicrobial activity than water extracts, with inhibition zones diameters ranging from 15-22 mm for alcohol extracts compared to 8-13 mm for water extracts. Gram-negative bacteria, such as Salmonella Paratyphi A, Pseudomonas aeruginosa, and Klebsiella pneumoniae, showed resistance, with inhibition zone diameters below 10 mm. However, alcohol extracts from Styrax and Elaeagnus achieved inhibition zone diameters of 12-15 mm against these pathogens. Gram-positive bacteria, including Staphylococcus aureus, showed promising results, with alcohol extracts zones averaging 20 mm and water extracts inhibition of zone diameters averaging 14 mm. Fungal inhibition zone diameters was effective, with extracts reducing Aspergillus niger growth by 85%. A shelf life experiment revealed that bread enriched with Elaeagnus and Melissa extracts remained mold-free for 7 days, while control samples developed mold within 3-4 days. Sensory analysis indicated that 80% of participants preferred the taste and aroma of Elaeagnus seed bread, with an average score of 4.5-5. The incorporation of medicinal and aromatics plants not only enhances bread flavour but also provides health benefits besides sell life of bread. These plants serve as valuable natural preservatives, improving nutritional value, extending shelf life, and inhibiting harmful microorganisms in sustainable bread production.
References
Abdulmohsin, H., Raghif, A., & Manna M. J. (2019). The protective effects of Echinops heterophyllus extract against methotrexate-induced hepatotoxicity in rabbits. Asian Journal of Pharmaceutical and Clinical Research 12 (1) 384–390. http://dx.doi.org/10.22159/ajpcr.2019.v12i1.30213.
Al-Qura’n, S. (2009). Ethnopharmacological survey of wild medicinal plants in Showbak. Ethnopharmacological survey of medicinal plants in Jordan Mujib Nature Reserve and surrounding area. Journal of Ethnopharmacology, 123(1), 45-50. http://dx.doi.org/10.1016/j.jep.2009.02.031.
Al-Quran, S. (2015). Ethnobotany of analgesic/stimulant plants used by the inhabitants of Ajloun, Northern Jordan. Arnaldoa, 22(1).
Altundag, E., & Ozturk, M. (2011). Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia-Social and Behavioral Sciences, 19, 756-777. http://dx.doi.org/10.1016/j.sbspro.2011.05.195.
Álvarez-Martínez, F. J., Barrajón-Catalán, E., & Micol, V. (2020). Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines, 11;8(10), 405. http://dx.doi.org/10.3390/biomedicines810040.
Anvari, D., & Jamei, R. (2018). Evaluation of antioxidant capacity and phenolic content in ethanolic extracts of leaves and flowers of some asteraceae species. Recent Patents on Food. Nutrition & Agriculture, 9(1),42-49. http://dx.doi.org/10.2174/2212798409666171023150601
Azeem, U., Hakeem, K., & Hakeem, A. (2020). Bioactive constituents and pharmacological activities. Fungi for Human Health: Current Knowledge and Future Perspectives. http://dx.doi.org/10.1007/978-3-030-58756-7
Bahraminejad, S., Amiri, R., & Abbasi, S. (2015). Anti-fungal properties of 43 plant species against Alternaria solani and Botrytis cinerea. Archives of Phytopathology and Plant Protection, 48, 336-344. https://doi.org/10.1080/03235408.2014.888236
Bertanha, C. S., Utrera, S. H., Gimenez, V. M. M., Groppo, M., Silva, M., Cunhua, W. R., Martins, C. H. G, Januário, A. H., & Pauletti, P. M. (2013). Antibacterial evaluation of Styrax pohlii and isolated compounds. Brazilian Journal of Medical and Biological Research, 49, 653–658. http://dx.doi.org/10.1590/S1984-8250201300040000
Bharadwaj, R., Kongala, P. R., & Ibdah, M. (2024). Styrax spp: Habitat, Phenology, Phytochemicals, Biological Activity and Applications
Biharee, A., Sharma, A., Kumar, A., & Jaitak, V. (2020). Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 146, 104720. http://dx.doi.org/10.1016/j.fitote.2020.104720
Bitew, H., & Hymete, A. (2019). The genus Echinops: Phytochemistry and biological activities: A review. Frontiers in Pharmacology, 1(10), 1234. https://doi.org/ 10.3389/fphar.2019.01234.
Carvalho, F., Duarte, A. P., & Ferreira, S. (2021). Antimicrobial activity of Melissa officinalis and its potential use in food preservation. Food Bioscience, 44(2), 101437. http://dx.doi.org/10.1016/j.fbio.2021.101437
Castronovo, L. M., Vassallo, A., Mengoni, A., Miceli, E., Bogani, P., Firenzuoli, F., Fani, R., & Maggini, V. (2021). Medicinal plants and their bacterial microbiota: a review on antimicrobial compounds production for plant and human health. Pathogens, 10(2), 106. https://doi.org/ 10.3390/pathogens10020106
Celebi, D., Cinisli, K. T., & Celebi, O. (2021). NanoBio challenge: Investigation of antimicrobial effect by combining ZnO nanoparticles with plant extract Eleagnus angustifolia. Materials Today: Proceedings, 45, https://doi.org/ 3814-3818. 10.1016/j.matpr.2021.02.484
Choudhury, A. (2022). Potential role of bioactive phytochemicals in combination therapies against antimicrobial activity. Journal of Pharmacopuncture, 25(2), 79-87. https://doi.org/10.3831/KPI.2022.25.2.79
Dehghan, M. H., Soltani, J., Kalantar, E., Farnad, M., Kamalinejad, M., Khodaii, Z., Hatami, S., & Natanzi, M. M. (2014). Characterization of an Antimicrobial Extract from Elaeagnus angustifolia. International Journal of Enteric Pathogens, 2(3), 1-4.
Demiray, H. (2021). Some Plants Of Aegean Regıon From Turkey: Phytochemıstry and Its Use In Health Care. Medıcınal And Aromatıc Plants, 179.
Elseragy, M. A., El Fishawy, A. M., Fayed, M., & Younis, I. Y. (2024). An Updated Review of the Ethnopharmacological uses, phytochemistry and Selected Biological Activities of Genus Echinops L. Egyptian Journal of Chemistry, 67(5), 205-233.
Erenler, R., Yilmaz, S., Aksit, H., Sen, O., Genc, N., Elmastas, M., & Demirtas, I. (2014). Antioxidant activities of chemical constituents isolated from Echinops orientalis. Records of Natural Products, 8(1), 32-36.
Evaluation of Medicinal, A. (2002). Aromatic plant trade in the world, in the EU and in Turkey. Agro-Food-Industry Hi-Tech.
Falah, F., Shirani, K., Vasiee, A. Yazdi, F. T., & Behbahani, B. A. (2021). In vitro screening of phytochemicals, antioxidant, antimicrobial, and cytotoxic activity of Echinops setifer extract. Biocatalysis and Agricultural Biotechnology, 35, 10210. https://doi.org/10.1016/j.bcab.2021.102102
Giesecke, A. (2023). A cultural history of plants in antiquity. Bloomsbury Academic. Bloomsbury Publishing PIc 1st. Pub. In Great Britan2022
Jalal, Z., El Atki, Y., Lyoussi, B., & Abdellaoui, A. (2015). Phytochemistry of the essential oil of Melissa officinalis L. growing wild in Morocco: Preventive approach against nosocomial infections. Asian Pacific Journal of Tropical Biomedicine, 5(6), 458-461. https://doi.org/10.1016/j.apjtb.2015.03.003
Jaradat, N. (2020). Phytochemistry, traditional uses and biological effects of the desert plant Styrax officinalis L. Journal of Arid Environments, 182, 104253. https://doi.org/10.1016/j.jaridenv.2020.104253
Jiang, B., Wang, F., Liu, L., Tian, S., Li, W., Yang, X., …, & Li, Y. (2017). Antibacterial activity and action mechanism of the Echinops ritro l. essential oil against foodborne pathogenic bacteria. Journal of Essential Oil Bearing Plants, 20(5), 1172–1183. https://doi.org/10.1080/0972060X.2017.1399090
Karthikeyan, G., Swamy, M. K., Viknesh, M. R., Shurya, R., & Sudhakar, N. (2020). Bioactive phytocompounds to fight against antimicrobial resistance. Plant-derived Bioactive Properties and Therapeutic Applications, 335-381. https://doi.org/10.1007/978-981-15-1761-7_14
Khan, S. U., Khan, A. U., Shah, A. U., Shah, S. M., Hussain, S., Ayaz, M., & Ayaz S. (2016). Heavy metals content, phytochemical composition, antimicrobial and insecticidal evaluation of Elaeagnus angustifolia. Toxicology and Industrial Health, 32 (1), 154-161. https://doi.org/10.1177/0748233713498459
Liu, B., Ding, W., Huang, S., Sun, W., & Li, Y. (2018). Chemotaxonomic significance of phenylpropanoids from Styrax suberifolius Hook. Et Arn. Biochemical Systematics and Ecology, 78, 35-38.
Loizeau, P. A. & Jackson, P. W. (2017): World Flora Online mid-term update. Ann. Missouri Botanical Garden, 102, 341–346. https://doi.org/10.3417/D-16-00008A
Mabrouki, H., & Duarte, C. M. M., Akretche D.E. (2018). Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arabian Journal for Science and Engineering, 43, 3349-3357. https://doi.org/1.1007/s13369-017-3000-6
Mahboubi, M. (2018). Elaeagnus angustifolia and its therapeutic applications in osteoarthritis. Industrial crops and Products, 121, 36-45. https://doi.org/10.1016/j.indcrop.2018.04.051.
Mansour, O., Darwish, M., Ali, E., & Ali, A. (2016). Screening of antibacterial activity in vitro of Styrax officinalis L. Covers of berries extracts. Research Journal of Pharmacy and Technology, 9(3), 209-211. https://doi.org/10.5958/0974-360X.2016.00037.8.
Mencherini, T., Picerno, P., Scesa, C., & Aquino R. (2007). Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. Journal of Natural Products, 70 (12), 1889-1894. https://doi.org/10.1021/np070351s
MNPS. (2021). Medicinal Plant Names Services. Available online: https://www.kew.org/science/our-science/science-services/medicinal-plant-names-services.
Moghimi, R., Ghaderi, L., Rafati, H., Aliahmadi, A., & McClements, D. J. (2016). Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chemistry, 194(1), 410–415. https://doi.org/10.1016/j.foodchem.2015.07.139
Moradkhani, H. E., Bibak, Naseri, B., Sadat-Hosseini, M., Fayazi-Barjin A., & Meftahizade H. (2010). Melissa officinalis L., a valuable medicine plant: A review. Journal of Medicinal Plants Research, 4 (25), 2753-275.
Ohiagu, F.O., Chikezie, P.C., & Chikezie, C.M. (2021). Toxicological significance of bioactive compounds of plant origin. Pharmacognosy Communications, 11(2), 67-77.
Okmen, G., & Turkcan, O. (2014). A study on antimicrobial, antioxidant and antimutagenic activities of Elaeagnus angustifolia L. leaves. African Journal of Traditional, Complementary and Alternative Medicines, 11(1), 116-120. https://doi.org/10.4314/ajtcam.v11i1.17
Onyancha, W., Ali, M. I., Sharma, G. & Moin, S. (2021). Synergistic potential of herbal plants and conventional antibiotics against multidrug-resistant bacteria. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 13(1), 13-21. https://doi.org/10.5958/0975-6892.2021.00003.4
Özdemir, O., Kaya, M. O., Gok, M., Yılmaz, N., & Tuzcu, Z. (2023). Chloroform-Methanol Extraction Antimicrobial Potential of Rheum Ribes Originating from Elazig/Aricak Province. Journal of the Institute of Science and Technology, 13(2), 830-838. https://doi.org/10.21597/jist.1179562
Özdemir, O., Yılmaz, N., & Kaya, M. O. (2024). The Effect of Rheum ribes Extract Origin of Elazig Province on Ventilator-Associated Pneumonia and Antioxidant Capacity. Gazi University Journal of Science Part C: Design and Technology, 12(1), 25-39. https://doi.org/10.29109/gujsc.1301083
Özdemir, O., Yılmaz, N., Gok, M., & Kaya, M. O. (2022). Determination of antimicrobial and antioxidant activities of Lavandula angustifolia volatile oil. Türkiye Tarımsal Araştırmalar Dergisi, 9(3), 265-273. https://doi.org/10.19159/tutad.1099620
Öztürk, S. E. Akgül, Y., & Anıl H. (2008). Synthesis and antibacterial activity of egonol derivatives Bioorganic & Medicinal Chemistry, 16, 4431-4437. https://doi.org/10.1016/j.bmc.2008.02.057
Paparella, A., Serio, A., Shaltiel-Harpaz, L., Bharadwaj, R., Kongala, P. R., & Ibdah, M. (2024). Styrax spp: Habitat, Phenology, Phytochemicals, Biological Activity and Applications. https://doi.org/10.20944/preprints202412.2085.v1
Picking, D. (2024). The global regulatory framework for medicinal plants. In Pharmacognosy, Academic Press, 769-782. https://doi.org/10.1016/B978-0-443-18657-8.00023-2
Pouyanfar, E., Hadian, J., Akbarzade, M., Hatami, M., Kanani, M. R., & Ghorbanpour, M. (2018). Analysis of phytochemical and morphological variability in different wild-and agro-ecotypic populations of Melissa officinalis L. growing in northern habitats of Iran. Industrial Crops and Products, 112, 262-273.
Sak, S., Özdenefe, M. S., Erol, Ü. H., & Takcı, A. M. (2024). Total Chemical Components, Biological Activity and Chromatographic Analyzes of Styrax officinalis Fruit Extract. Journal of Anatolian Environmental and Animal Sciences, 9(3), 457-463. https://doi.org/10.35229/jaes.1511075
Shirani, K., Falah, F., Vasiee, A., Yazdi, F. T., Behbahani, B. A., & Zanganeh, H. (2022). Effects of incorporation of Echinops setifer extract on quality, functionality, and viability of strains in probiotic yogurt. Journal of Food Measurement and Characterization, 16(4), 2899-2907.
Son, N. T., Linh, N. T. T., Tra, N. T., Ha, N. T. T., Cham, B. T., Anh, D. T. T., & Van Tuyen, N. (2021). Genus Styrax: a resource of bioactive compounds. Studies in Natural Products Chemistry, 69, 299-347.
Stéphane, F. F. Y., Jules, B. K. J., Batiha, G. E. S., Ali, I., & Bruno, L. N. (2021). Extraction of bioactive compounds from medicinal plants and herbs. Natural medicinal plants, 1-39. https://doi.org/10.5772/intechopen.98602
Sytar, O., Zivcak, M., Konate, K., & Brestic, M. (2022). Phenolic Acid Patterns in Different Plant Species of Families Asteraceae and Lamiaceae: Possible Phylogenetic Relationships and Potential Molecular Markers. Journal of Chemistry, 96, 32979. https://doi.org/10.1155/2022/9632979.
Tayoub, G., Schwob I., Bessie`re, J. M., Masotti, V., Rabier, J., Ruzzier, M., Girard, A., & Viano G. J. (2006). Essential oil composition of leaf, flower and stem of Styrax (Styrax officinalis L.) from south-eastern Franc. Flavour and Fragrance Journal, 21, 809 812. https://doi.org/10.1002/ffj.1731
Tehranizadeh, Z. A., Baratian, A., & Hosseinzadeh, H. (2016). Russian olive (Elaeagnus angustifolia) as a herbal healer. Bioimpacts: BI, 6(3), 155. https://doi.org/10.15171/bi.2016.22
Tiwari, P., Bajpai, M., & Sharma, A. (2023). Antimicrobials from medicinal plants: Key examples, success stories and prospects in tackling antibiotic resistance. Letters in Drug Design & Discovery, 20(4), 420-438.
Tunca-Pinarli, Y., Benek, A., Turu, D., Bozyel, M. E., Canli, K., & Altuner, E. M. (2023). Biological Activities and Biochemical Composition of Endemic Achillea fraasii. Microorganisms, 11, 978. https://doi.org/10.3390/microorganisms11040978
Umaru, I. J., Shuaibu, S. I., Adam, R. B., Habibu, B., Umaru, K. I., Haruna, D. E., & David, B. C. (2020). Effect of herbal medicine and its biochemical implication. International Journal of Advanced Biochemistry Research, 4, 46-57. https://doi.org/10.33545/26174693.2020.v4.i2a.130
Uzelac, M., Sladonja, B., Šola, I., Dudaš, S., Bilić, J., Famuyide, I. M., ..., & Poljuha, D. (2023). Invasive alien species as a potential source of phytopharmaceuticals: Phenolic composition and antimicrobial and cytotoxic activity of Robinia pseudoacacia L. leaf and flower extracts. Plants, 12(14), 2715.
Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C. & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041
Wang, M., Sun, J., Jiang, Z., Xie, W., & Zhang, X. (2015). Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. The American Journal of Chinese Medicine, 43, 241–254. https://doi.org/10.1142/S0192415X15500160
Yücel, E., Önen, F., & Yücel, D. (2019). Investigation of Medicinal Plant Production and Trade Potential in Turkey. International Journal of Environmental Research and Technology, 2(3), 199-203.
Zam, W., Quispe, C., Sharifi-Rad, J., López, M. D., Schoebitz, M., Martorell, M., ... & Pezzani, R. (2022). An updated review on the properties of Melissa officinalis L.: Not exclusively anti-anxiety. Frontiers in Bioscience-Scholar, 14(2), 16. https://doi.org/10.31083/j.fbs1402016.
Zengin, G., Fahmy, N. M., Sinan, K. I., Uba, A. I., Bouyahya, A., Lorenzo, J. M., Yildiztugay, E., Eldahshan, O. A., & Fayez, S. (2022). Differential Metabolomic Fingerprinting of the Crude Extracts of Three Asteraceae Species with Assessment of Their In Vitro Antioxidant and Enzyme-Inhibitory Activities Supported by In Silico Investigations. Processes 10(10), 1911. https://doi.org/10.3390/pr10101911.
Zheleva-Dimitrova, D., Simeonova, R., Kondeva-Burdina, M., Savov, Y., Balabanova, V., Zengin, G., Petrova, A., & Gevrenova, R. (2023). Antioxidant and hepatoprotective potential of Echinops ritro L. extracts on induced oxidative stress in vitro/in vivo. International Journal of Molecular Sciences, 24(12), 9999. http://dx.doi.org/10.3390/ijms24129999
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.